1
|
Xu W, Xu A, Xu P, Li J, Luo C, Yang X, Ming M, Liu Y, Wang G, Xue L, Cao F, Wang G, Fu F. Transcriptional dynamics and functions of WUSCHEL-related homeobox (WOX) genes from Ginkgo biloba in tissue culture. BMC PLANT BIOLOGY 2025; 25:697. [PMID: 40413410 DOI: 10.1186/s12870-025-06719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND In vitro regeneration presents significant challenges for the propagation and genetic improvement of most woody plants, particularly gymnosperms. The WUSCHEL-related homeobox (WOX) genes are known to play vital roles as growth regulators in tissue culture regeneration in several plant species. However, the specific functions of WOX genes in the regeneration processes of gymnosperms had not been previously elucidated. This study aims to systematically identify and analyze the WOX gene family in Ginkgo biloba to understand its potential role in tissue culture regeneration. RESULTS Thirteen WOX genes from Ginkgo biloba, designated as GbWUS and GbWOXs, were systematically identified. Phylogenetic analysis revealed the presence of nine genes in the WUSCHEL (WUS) clade, one in the intermediate clade, and three in the ancient clade. Transcriptome analysis indicated tissue-specific expression of seven GbWOXs, with two gymnosperm-specific GbWOXs characterized by extra-long introns exhibiting constitutive expression. Further investigation through Ginkgo tissue culture indicated that GbWOX2 was specifically expressed in embryos and facilitated callus induction, while GbWOX3A showed preferential expression during the early stages of embryo and callus development. Co-expression and Gene Ontology (GO) enrichment analyses suggested interactions and functional roles among GbWOXs. Three genes (GbWOX1, GbWOX2, and GbWOX3A) were then cloned and transformed into poplar and/or tobacco. Overexpression of GbWOX2 resulted in larger and denser callus formation, whereas GbWOX3A effectively enhanced shoot regeneration and noticeably increased the rate of adventitious shoot induction. CONCLUSIONS This study provides the first comprehensive analysis of the WOX gene family in Ginkgo biloba and highlights its significant role in tissue culture regeneration. The findings suggest that specific GbWOXs are critical for embryo development and callus regeneration, which provides the foundation for the establishment of effective tissue culture systems in Ginkgo. Moreover, this research contributes valuable insights that could be beneficial for improving propagation techniques and genetic studies in other forest trees, especially within the gymnosperm group.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- The Jiangsu Province Platform for Construction and Utilization of Agricultural Germplasm, Nanjing, Jiangsu, 210037, China
| | - Ang Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- The Jiangsu Province Platform for Construction and Utilization of Agricultural Germplasm, Nanjing, Jiangsu, 210037, China
| | - Pingjun Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jiaqi Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chao Luo
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xiaoming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Meiling Ming
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yuhua Liu
- Jiangsu Vocational and Technical College of Agriculture & Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Guibin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Liangjiao Xue
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Fuliang Cao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- The Jiangsu Province Platform for Construction and Utilization of Agricultural Germplasm, Nanjing, Jiangsu, 210037, China
| | - Gaiping Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Fangfang Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
2
|
Jain R, Dhaka N, Krishnan K, Yadav G, Priyam P, Sharma MK, Sharma RA. Temporal Gene Expression Profiles From Pollination to Seed Maturity in Sorghum Provide Core Candidates for Engineering Seed Traits. PLANT, CELL & ENVIRONMENT 2025; 48:2662-2690. [PMID: 39248611 DOI: 10.1111/pce.15134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Sorghum (Sorghum bicolor (L.) Moench) is a highly nutritional multipurpose millet crop. However, the genetic and molecular regulatory mechanisms governing sorghum grain development and the associated agronomic traits remain unexplored. In this study, we performed a comprehensive transcriptomic analysis of pistils collected 1-2 days before pollination, and developing seeds collected -2, 10, 20 and 30 days after pollination of S. bicolor variety M35-1. Out of 31 337 genes expressed in these stages, 12 804 were differentially expressed in the consecutive stages of seed development. These exhibited 10 dominant expression patterns correlated with the distinct pathways and gene functions. Functional analysis, based on the pathway mapping, transcription factor enrichment and orthology, delineated the key patterns associated with pollination, fertilization, early seed development, grain filling and seed maturation. Furthermore, colocalization with previously reported quantitative trait loci (QTLs) for grain weight/size revealed 48 differentially expressed genes mapping to these QTL regions. Comprehensive literature mining integrated with QTL mapping and expression data shortlisted 25, 17 and 8 core candidates for engineering grain size, starch and protein content, respectively.
Collapse
Affiliation(s)
- Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Kushagra Krishnan
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Garima Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Prachi Priyam
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | | | - Rita A Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani, Rajasthan, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| |
Collapse
|
3
|
Bekele B, Andargie M, Gallach M, Beyene D, Tesfaye K. Decoding gene expression dynamics during seed development in sesame (Sesamum indicum L.) through RNA-Seq analysis. Genomics 2025; 117:110997. [PMID: 39809365 DOI: 10.1016/j.ygeno.2025.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood. This study analyzed transcriptomes at two seed development stages: Young Stage (YS, pods 1.5-2.5 cm) and Mature Stage (MS, brown pods >2.5 cm), to explore regulatory mechanisms and identify key genes involved in lipid biosynthesis. From 25,173 genes, 18,820 with expression values >10 CPM in at least 70 % of replicates were included in differential expression (DE) analysis. Active expression (LFC > 0) was observed in 9372 and 9448 genes at YS and MS, respectively. DEGs were annotated, revealing roles in various biological processes, (e.g., mRNA metabolic process, reproduction-related developmental processes, seed development), molecular functions (e.g., aminoacyltransferase activity, ubiquitin-like protein and ubiquitin-protein transferase activities), and cellular components (e.g., peroxisome, microbody, lipid droplet). KEGG analysis highlighted genes involved in fatty acid synthesis (e.g., fabG, fabZ), TAG biosynthesis (DGAT1, GPAT), and alpha-linolenic acid metabolism (AOS, LCAT3). Key genes upregulated at MS included SIN_1025205 (protein transport), SIN_1006853 (acetylajmalan esterase), and SIN_1003267 (gamma-cadinene synthase). The study generated a valuable transcriptome dataset and gene list for seed development and lipid biosynthesis, which will be validated through functional studies. An interactive webpage is provided for data exploration.
Collapse
Affiliation(s)
- Bantayehu Bekele
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia.; Biology Department, Oda bultum University, Chiro, Ethiopia.
| | | | | | - Dereje Beyene
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Department of Microbial, Cellular, and molecular biology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Liu Y, Li W, Zhang L, Huang Q, Hou X, Li Q, Lei Z, Zeng Y. HaNAC146 from sunflower overexpression enhances plant growth and stress tolerance. PLANT CELL REPORTS 2025; 44:59. [PMID: 39969670 DOI: 10.1007/s00299-024-03391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
KEY MESSAGE This study mined a gene, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential. NAC (NAM/ATAF/CUC) is one of the largest transcription factor families. They play important roles in regulating plant development, aging, morphogenesis, as well as biotic and abiotic stress. There is a delicate balance between stress resistance and plant growth and development. To date, few genes have been identified in crops that can simultaneously enhance resistance and increase production. Sunflower, as a pioneering crop in saline-alkali soils, exhibit a certain level of tolerance to drought, barren, and saline-alkali stress. In this study, we identified a transcription factor gene, HaNAC146, which can improve both the growth and abiotic stress tolerance in transgenic Arabidopsis thaliana. Our main findings indicated that HaNAC146 is induced in sunflower by various abiotic stress and some plant hormones. It is localized in the nucleus and has transcriptional activation activity. HaNAC146 can promote growth, and increase seed production by enhancing photosynthesis in transgenic Arabidopsis. Utilizing a transient transformation system in sunflower and a stable transformation platform in Arabidopsis, we demonstrated that HaNAC146 can enhance the resistance of both sunflower seedlings and Arabidopsis to salt and drought stress. This enhancement is achieved through multiple pathways, including increasing antioxidant capacity, accumulating osmotic modulating substances, improving photosynthetic efficiency, activating the expression of downstream stress-responsive genes and promoting stomatal closure with plant sensitivity to abscisic acid (ABA). These results also indicated that robust growth is a key factor in plant resistance to abiotic stress. This unique stress-responsive transcription factor, HaNAC146, holds promise as a valuable candidate gene for developing crops with improved stress tolerance and high production potential.
Collapse
Affiliation(s)
- Yuxin Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Wenhui Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Lingling Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Qiang Li
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China.
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China.
| |
Collapse
|
5
|
Sharma S, Prusty A, Dansana PK, Kapoor S, Tyagi AK. Overexpression of the general transcription factor OsTFIIB5 alters rice development and seed quality. PLANT CELL REPORTS 2025; 44:27. [PMID: 39794608 DOI: 10.1007/s00299-025-03423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE Overexpression of general transcription factor OsTFIIB5 in rice affects seedling growth, plant height, flowering time, panicle architecture, and seed protein/starch levels and involves modulation of expression of associated genes. TFIIB, a key general transcription factor (GTF), plays a critical role in pre-initiation complex (PIC) formation and facilitates RNA polymerase II-mediated transcription. In humans and yeast, TFIIB is encoded by a single gene; however, in plants it is encoded by a multigene family whose products may perform specialized transcriptional functions. The role of plant TFIIBs, particularly in monocots, remains largely unexplored. This study presents the first functional characterization of the rice TFIIB gene, OsTFIIB5 (LOC_Os09g36440), during development. Expression profiling of OsTFIIB5 revealed differential patterns across various developmental stages, with pronounced transcript accumulation during seed development. Overexpression of OsTFIIB5 impacted multiple stages of plant growth and development, leading to phenotypic changes such as altered seedling growth, reduced plant height, early heading, altered panicle architecture, decreased yield, and changes in seed storage substances. Notably, there were no effects on seed germination, pollen development, and grain size. Reduction in shoot length and plant height was linked to altered expression of genes involved in gibberellin (GA) biosynthesis, signalling, and deactivation. Overexpression of OsTFIIB5 enhanced the expression of genes involved in the photoperiodic flowering pathway, resulting in early panicle emergence. Higher expression levels of OsTFIIB5 also induced the accumulation of seed storage proteins (SSPs), while reducing starch content and altering the proportions of amylose and amylopectin in seeds. These findings suggest that OsTFIIB5 functions as a transcriptional regulator, governing multiple aspects of rice growth and development.
Collapse
Affiliation(s)
- Shivam Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Ankita Prusty
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Prasant Kumar Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India
| | - Akhilesh Kumar Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus (UDSC), Benito Juarez Marg, New Delhi, 110021, India.
| |
Collapse
|
6
|
Zhu Y, Zeng X, Zhu T, Jiang H, Lei P, Zhang H, Chen H. Plant Hormone Pathway Is Involved in Regulating the Embryo Development Mechanism of the Hydrangea macrophylla Hybrid. Int J Mol Sci 2024; 25:7812. [PMID: 39063054 PMCID: PMC11276702 DOI: 10.3390/ijms25147812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haixia Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (X.Z.); (T.Z.); (H.J.); (P.L.); (H.Z.)
| |
Collapse
|
7
|
Zhang H, Li Y, Liu W, Sun Y, Tang J, Che J, Yang S, Wang X, Zhang R. Genetic Analysis of Adaptive Traits in Spring Wheat in Northeast China. Life (Basel) 2024; 14:168. [PMID: 38398677 PMCID: PMC10890535 DOI: 10.3390/life14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
The dissection of the genetic architecture and the detection of the loci for adaptive traits are important for marker-assisted selection (MAS) for breeding. A spring wheat diversity panel with 251 cultivars, mainly from China, was obtained to conduct a genome-wide association study (GWAS) to detect the new loci, including the heading date (HD), maturating date (MD), plant height (PH), and lodging resistance (LR). In total, 41 loci existing in all 21 chromosomes, except for 4A and 6B, were identified, and each explained 4.3-18.9% of the phenotypic variations existing in two or more environments. Of these, 13 loci are overlapped with the known genes or quantitative trait loci (QTLs), whereas the other 28 are likely to be novel. The 1A locus (296.9-297.7 Mb) is a multi-effect locus for LR and PH, whereas the locus on chromosome 6D (464.5-471.0 Mb) affects both the HD and MD. Furthermore, four candidate genes for adaptive traits were identified, involved in cell division, signal transduction, and plant development. Additionally, two competitive, allele-specific PCR (KASP) markers, Kasp_2D_PH for PH and Kasp_6D_HD for HD, were developed and validated in another 162 spring wheat accessions. Our study uncovered the genetic basis of adaptive traits and provided the associated SNPs and varieties with more favorable alleles for wheat MAS breeding.
Collapse
Affiliation(s)
- Hongji Zhang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Yuyao Li
- Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Wenlin Liu
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Yan Sun
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Jingquan Tang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Jingyu Che
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161600, China;
| | - Shuping Yang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Xiangyu Wang
- Crop Resources Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.L.); (Y.S.); (J.T.); (S.Y.); (X.W.)
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| |
Collapse
|
8
|
Shu J, Yin X, Liu Y, Mi Y, Zhang B, Zhang A, Guo H, Dong J. MBD3 Regulates Male Germ Cell Division and Sperm Fertility in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2654. [PMID: 37514268 PMCID: PMC10384339 DOI: 10.3390/plants12142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
DNA methylation plays important roles through the methyl-CpG-binding domain (MBD) to realize epigenetic modifications. Thirteen AtMBD proteins have been identified from the Arabidopsis thaliana genome, but the functions of some members are unclear. AtMBD3 was found to be highly expressed in pollen and seeds and it preferably binds methylated CG, CHG, and unmethylated DNA sequences. Then, two mutant alleles at the AtMBD3 locus were obtained in order to further explore its function using CRISPR/Cas9. When compared with 92.17% mature pollen production in the wild type, significantly lower percentages of 84.31% and 78.91% were observed in the mbd3-1 and mbd3-2 mutants, respectively. About 16-21% of pollen from the mbd3 mutants suffered a collapse in reproductive transmission, whereas the other pollen was found to be normal. After pollination, about 16% and 24% of mbd3-1 and mbd3-2 mutant seeds underwent early or late abortion, respectively. Among all the late abortion seeds in mbd3-2 plants, 25% of the abnormal seeds were at the globular stage, 31.25% were at the transition stage, and 43.75% were at the heart stage. A transcriptome analysis of the seeds found 950 upregulated genes and 1128 downregulated genes between wild type and mbd3-2 mutants. Some transcriptional factors involved in embryo development were selected to be expressed, and we found significant differences between wild type and mbd3 mutants, such as WOXs, CUC1, AIB4, and RGL3. Furthermore, we found a gene that is specifically expressed in pollen, named PBL6. PBL6 was found to directly interact with AtMBD3. Our results provide insights into the function of AtMBD3 in plants, especially in sperm fertility.
Collapse
Affiliation(s)
- Jia Shu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xiaochang Yin
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yannan Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingjie Mi
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Bin Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Aoyuan Zhang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Hongbo Guo
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
9
|
Singh R, Shankar R, Yadav SK, Kumar V. Transcriptome analysis of ovules offers early developmental clues after fertilization in Cicer arietinum L.. 3 Biotech 2023; 13:177. [PMID: 37188294 PMCID: PMC10175530 DOI: 10.1007/s13205-023-03599-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
Chickpea (Cicer arietinum L.) seeds are valued for their nutritional scores and limited information on the molecular mechanisms of chickpea fertilization and seed development is available. In the current work, comparative transcriptome analysis was performed on two different stages of chickpea ovules (pre- and post-fertilization) to identify key regulatory transcripts. Two-staged transcriptome sequencing was generated and over 208 million reads were mapped to quantify transcript abundance during fertilization events. Mapping to the reference genome showed that the majority (92.88%) of high-quality Illumina reads were aligned to the chickpea genome. Reference-guided genome and transcriptome assembly yielded a total of 28,783 genes. Of these, 3399 genes were differentially expressed after the fertilization event. These involve upregulated genes including a protease-like secreted in CO(2) response (LOC101500970), amino acid permease 4-like (LOC101506539), and downregulated genes MYB-related protein 305-like (LOC101493897), receptor like protein 29 (LOC101491695). WGCNA analysis and pairwise comparison of datasets, successfully constructed four co-expression modules. Transcription factor families including bHLH, MYB, MYB-related, C2H2 zinc finger, ERF, WRKY and NAC transcription factor were also found to be activated after fertilization. Activation of these genes and transcription factors results in the accumulation of carbohydrates and proteins by enhancing their trafficking and biosynthesis. Total 17 differentially expressed genes, were randomly selected for qRT-PCR for validation of transcriptome analysis and showed statistically significant correlations with the transcriptome data. Our findings provide insights into the regulatory mechanisms underlying changes in fertilized chickpea ovules. This work may come closer to a comprehensive understanding of the mechanisms that initiate developmental events in chickpea seeds after fertilization. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03599-8.
Collapse
Affiliation(s)
- Reetu Singh
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| | - Rama Shankar
- Department of Paediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503 USA
| | | | - Vinay Kumar
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
10
|
Zhou H, Deng XW, He H. Gene expression variations and allele-specific expression of two rice and their hybrid in caryopses at single-nucleus resolution. FRONTIERS IN PLANT SCIENCE 2023; 14:1171474. [PMID: 37287712 PMCID: PMC10242081 DOI: 10.3389/fpls.2023.1171474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023]
Abstract
Seeds are an indispensable part of the flowering plant life cycle and a critical determinant of agricultural production. Distinct differences in the anatomy and morphology of seeds separate monocots and dicots. Although some progress has been made with respect to understanding seed development in Arabidopsis, the transcriptomic features of monocotyledon seeds at the cellular level are much less understood. Since most important cereal crops, such as rice, maize, and wheat, are monocots, it is essential to study transcriptional differentiation and heterogeneity during seed development at a finer scale. Here, we present single-nucleus RNA sequencing (snRNA-seq) results of over three thousand nuclei from caryopses of the rice cultivars Nipponbare and 9311 and their intersubspecies F1 hybrid. A transcriptomics atlas that covers most of the cell types present during the early developmental stage of rice caryopses was successfully constructed. Additionally, novel specific marker genes were identified for each nuclear cluster in the rice caryopsis. Moreover, with a focus on rice endosperm, the differentiation trajectory of endosperm subclusters was reconstructed to reveal the developmental process. Allele-specific expression (ASE) profiling in endosperm revealed 345 genes with ASE (ASEGs). Further pairwise comparisons of the differentially expressed genes (DEGs) in each endosperm cluster among the three rice samples demonstrated transcriptional divergence. Our research reveals differentiation in rice caryopsis from the single-nucleus perspective and provides valuable resources to facilitate clarification of the molecular mechanism underlying caryopsis development in rice and other monocots.
Collapse
Affiliation(s)
- Han Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Hang He
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agriculture Sciences and School of Life Sciences, Peking University, Beijing, China
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| |
Collapse
|
11
|
Mahto A, Yadav A, P V A, Parida SK, Tyagi AK, Agarwal P. Cytological, transcriptome and miRNome temporal landscapes decode enhancement of rice grain size. BMC Biol 2023; 21:91. [PMID: 37076907 PMCID: PMC10116700 DOI: 10.1186/s12915-023-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.
Collapse
Affiliation(s)
- Arunima Mahto
- National Institute of Plant Genome Research, New Delhi, India
| | - Antima Yadav
- National Institute of Plant Genome Research, New Delhi, India
| | - Aswathi P V
- National Institute of Plant Genome Research, New Delhi, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India.
| |
Collapse
|
12
|
Ray S, Basnet A, Bhattacharya S, Banerjee A, Biswas K. A comprehensive analysis of NAC gene family in Oryza sativa japonica: a structural and functional genomics approach. J Biomol Struct Dyn 2023; 41:856-870. [PMID: 34931596 DOI: 10.1080/07391102.2021.2014968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
NAC gene family regulates diverse aspects of plant growth and developmental processes. The NAC DNA binding domains together with cis-acting elements play inter-related roles in regulating gene expression. In this study, an in silico approach for genome wide analysis of NAC gene in Oryza sativa japonica lead to an identification of 11 NAC genes, distributed over 12 chromosomes. A detailed analysis of phylogenetic relationship, motifs, gene structure, duplication patterns, positive-selection pressure and cis-elements of 11 OsNAC genes were performed. Three pairs of NAC genes with a high degree of homology in terminal nodes were observed and were inferred to be paralogous pairs. One conserved NAC domain was analyzed in all the NAC proteins. Only one gene was studied to be intronless and the majority had 2 introns. Segmental gene duplication pattern was predominant in 11 NAC genes. Ka/Ks ratio of 3 pairs of segmentally duplicated gene was substantially lower than 1, suggesting that the OsNAC sequences are under strong purifying selection pressure. NAC74 and NAC71 gene showed the maximum responsiveness for several factors. The paralogous genes, NAC2 and NAC67 were found to have maximum mya values, respectively. They showed maximum difference amongst themselves in all the categories of responsiveness. Responsiveness towards abscisic acid was observed to be absent in NAC67, but present in NAC2, while responsiveness to meristem inducibility was observed to remain absent in NAC2 but present in NAC67. These results would provide a platform for the future identification and analysis of NAC genes in Oryza sativa japonica.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Abishek Basnet
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Shreya Bhattacharya
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, India
| | - Koustav Biswas
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| |
Collapse
|
13
|
Ramírez-Rodas YC, Arévalo-Galarza MDL, Cadena-Iñiguez J, Soto-Hernández RM, Peña-Valdivia CB, Guerrero-Analco JA. Chayote Fruit ( Sechium edule var. virens levis) Development and the Effect of Growth Regulators on Seed Germination. PLANTS (BASEL, SWITZERLAND) 2022; 12:108. [PMID: 36616239 PMCID: PMC9823722 DOI: 10.3390/plants12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The chayote fruit is a nontraditional vegetable belonging to the Cucurbitaceae family. The fruit has an endocarpic recalcitrant seed that emerges postharvest, drastically shortening its shelf life. In this study, the changes during fruit and seed development before and after harvest (ah) are reported. Additionally, in order to investigate how growth regulators (GRs) affect seed germination, 2-cloroethylphosphonic acid (CPA) (200 µL L-1), gibberellic acid (GA3) (100 and 200 mg L-1), auxin (2,4-D) (0.5 and 1.0 mM), and abscisic acid (ABA) (0.5 and 1.0 mM) were applied after harvest. The results showed that the chayote fruit reached horticultural maturity at 21 days after anthesis, with a sigmoid trend: phase I featured slow growth and high transpiration; in phase II, growth was accelerated and accumulation of endosperm was observed; and in phase III, both growth rate and transpiration were reduced, soluble sugars increased, and the seed showed 25% cotyledon development. At day 13 ah, CPA, GA3, and 2,4-D (0.5 mM) increased seed germination, with values between 10 and 15 mm of the embryonary axis, and the treatments with 2,4-D (1 mM) and ABA (0.5 and 1.0 mM) retarded their growth (2-6 mm). This research allowed us to reveal the phenological phases and the shelf life of the chayote fruit, as well as the results of possible postharvest treatment with GRs; our results suggest that strategies to delay viviparism and prolong the shelf life of the fruit should be applied before 10 days ah, when the embryonic axis of the seed has not developed.
Collapse
Affiliation(s)
- Yeimy C. Ramírez-Rodas
- Colegio de Postgraduados, Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo 56230, Mexico
| | | | - Jorge Cadena-Iñiguez
- Colegio de Postgraduados, Campus San Luis Potosí, San Iturbide No. 73, Salinas de Hidalgo, San Luis Potosí 78600, Mexico
| | - Ramón M. Soto-Hernández
- Colegio de Postgraduados, Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo 56230, Mexico
| | - Cecilia B. Peña-Valdivia
- Colegio de Postgraduados, Campus Montecillo, Km. 36.5 Carretera México-Texcoco, Montecillo 56230, Mexico
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster Biomimic, Instituto de Ecología, A. C. Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| |
Collapse
|
14
|
Liu N, Wu B, Pandey MK, Huang L, Luo H, Chen Y, Zhou X, Chen W, Huai D, Yu B, Chen H, Guo J, Lei Y, Liao B, Varshney RK, Jiang H. Gene expression and DNA methylation altering lead to the high oil content in wild allotetraploid peanut ( A. monticola). FRONTIERS IN PLANT SCIENCE 2022; 13:1065267. [PMID: 36589096 PMCID: PMC9802669 DOI: 10.3389/fpls.2022.1065267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION The wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking. METHODS We investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties. RESULTS The analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B). DISCUSSION From the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bei Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Manish K. Pandey
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huaiyong Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaojing Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weigang Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Bolun Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianbin Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
15
|
Hazra A, Varshney V, Verma P, Kamble NU, Ghosh S, Achary RK, Gautam S, Majee M. Methionine sulfoxide reductase B5 plays a key role in preserving seed vigor and longevity in rice (Oryza sativa). THE NEW PHYTOLOGIST 2022; 236:1042-1060. [PMID: 35909309 DOI: 10.1111/nph.18412] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Oxidation of methionine leads to the formation of methionine S-sulfoxide and methionine R-sulfoxide, which can be reverted by two types of methionine sulfoxide reductase (MSR): MSRA and MSRB. Though the role of MSR enzymes has been elucidated in various physiological processes, the regulation and role of MSR in seeds remains poorly understood. In this study, through molecular, biochemical, and genetic studies using seed-specific overexpression and RNAi lines of OsMSRB5 in Oryza sativa, we demonstrate the role of OsMSRB5 in maintaining seed vigor and longevity. We show that an age-induced reduction in the vigor and viability of seeds is correlated with reduced MSR activity and increased methionine sulfoxide (MetSO) formation. OsMSRB5 expression increases during seed maturation and is predominantly localized to the embryo. Further analyses on transgenic lines reveal the role of OsMSRB5 in modulating reactive oxygen species (ROS) homeostasis to preserve seed vigor and longevity. We show that ascorbate peroxidase and PROTEIN l-ISOASPARTYL METHYLTRANSFERASE undergo MetSO modification in seeds that affects their functional competence. OsMSRB5 physically interacts with these proteins and reverts this modification to facilitate their functions and preserve seed vigor and longevity. Our results thus illustrate the role of OsMSRB5 in preserving seed vigor and longevity by modulating ROS homeostasis in seeds.
Collapse
Affiliation(s)
- Abhijit Hazra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vishal Varshney
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pooja Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nitin Uttam Kamble
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shraboni Ghosh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rakesh Kumar Achary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shikha Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
16
|
Hasan S, Furtado A, Henry R. Gene Expression in the Developing Seed of Wild and Domesticated Rice. Int J Mol Sci 2022; 23:13351. [PMID: 36362135 PMCID: PMC9658725 DOI: 10.3390/ijms232113351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/06/2024] Open
Abstract
The composition and nutritional properties of rice are the product of the expression of genes in the developing seed. RNA-Seq was used to investigate the level of gene expression at different stages of seed development in domesticated rice (Oryza sativa ssp. japonica var. Nipponbare) and two Australian wild taxa from the primary gene pool of rice (Oryza meridionalis and Oryza rufipogon type taxa). Transcriptome profiling of all coding sequences in the genome revealed that genes were significantly differentially expressed at different stages of seed development in both wild and domesticated rice. Differentially expressed genes were associated with metabolism, transcriptional regulation, nucleic acid processing, and signal transduction with the highest number of being linked to protein synthesis and starch/sucrose metabolism. The level of gene expression associated with domestication traits, starch and sucrose metabolism, and seed storage proteins were highest at the early stage (5 days post anthesis (DPA)) to the middle stage (15 DPA) and declined late in seed development in both wild and domesticated rice. However, in contrast, black hull colour (Bh4) gene was significantly expressed throughout seed development. A substantial number of novel transcripts (38) corresponding to domestication genes, starch and sucrose metabolism, and seed storage proteins were identified. The patterns of gene expression revealed in this study define the timing of metabolic processes associated with seed development and may be used to explain differences in rice grain quality and nutritional value.
Collapse
Affiliation(s)
- Sharmin Hasan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, St Lucia 4072, Australia
| |
Collapse
|
17
|
Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. The transcription factor TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5634-5649. [PMID: 35554544 PMCID: PMC9467655 DOI: 10.1093/jxb/erac204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/10/2022] [Indexed: 05/13/2023]
Abstract
Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Samuel Bocobza
- Department of Ornamentals and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, 7528809, Rishon LeZion, Israel
| | | |
Collapse
|
18
|
Fu Q, Zeng T, Xu Y. Molecular Cloning and Expression Profiling of CncC in Bactrocera dorsalis Hendel. INSECTS 2022; 13:785. [PMID: 36135487 PMCID: PMC9503647 DOI: 10.3390/insects13090785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
The cap 'n' collar isoform C (CncC) transcription factor is thought to be a regulator associated with antioxidant and detoxification genes that can enhance pest resistance by regulating the expression of detoxification enzyme genes. However, this transcription factor has not been well studied in the important agricultural pest Bactrocera dorsalis. In this study, the cDNA sequence of CncC in B. dorsalis was cloned, and the complete ORF sequence was obtained; it had a sequence length of 3378 bp, encoding a total of 1125 amino acids. Phylogenetic tree analysis showed that B. dorsalis CncC belonged to the CNC family and that its amino acid sequence showed the closest relationship with B. tryoni. The conserved structural region of BdCncC was analyzed and was found to include a conserved bZIP superfamily structural domain. Spatiotemporal expression analysis revealed that BdCncC was most highly expressed in the adult Malpighian tubules, followed by the antennae, foregut, and midgut, and then the brain, hemolymph, hindgut, and fat body. BdCncC was expressed at every developmental stage, and the highest expression was found in mature males. This study provides a theoretical basis for an in-depth investigation of the function of BdCncC in regulating pesticide resistance in B. dorsalis.
Collapse
|
19
|
Dhaka N, Jain R, Yadav A, Yadav P, Kumar N, Sharma MK, Sharma R. Transcriptome analysis reveals cell cycle-related transcripts as key determinants of varietal differences in seed size of Brassica juncea. Sci Rep 2022; 12:11713. [PMID: 35810218 PMCID: PMC9271088 DOI: 10.1038/s41598-022-15938-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Brassica juncea is an important oilseed crop, widely grown as a source of edible oil. Seed size is a pivotal agricultural trait in oilseed Brassicas. However, the regulatory mechanisms underlying seed size determination are poorly understood. To elucidate the transcriptional dynamics involved in the determination of seed size in B. juncea, we performed a comparative transcriptomic analysis using developing seeds of two varieties, small-seeded Early Heera2 (EH2) and bold-seeded Pusajaikisan (PJK), at three distinct stages (15, 30 and 45 days after pollination). We detected 112,550 transcripts, of which 27,186 and 19,522 were differentially expressed in the intra-variety comparisons and inter-variety comparisons, respectively. Functional analysis using pathway, gene ontology, and transcription factor enrichment revealed that cell cycle- and cell division-related transcripts stay upregulated during later stages of seed development in the bold-seeded variety but are downregulated at the same stage in the small-seeded variety, indicating that an extended period of cell proliferation in the later stages increased seed weight in PJK as compared to EH2. Further, k-means clustering and candidate genes-based analyses unravelled candidates for employing in seed size improvement of B. juncea. In addition, candidates involved in determining seed coat color, oil content, and other seed traits were also identified.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Rubi Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhinandan Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Pinky Yadav
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, India
| | - Neeraj Kumar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Pilani, Rajasthan, India
| |
Collapse
|
20
|
Badoni S, Parween S, Henry RJ, Sreenivasulu N. Systems seed biology to understand and manipulate rice grain quality and nutrition. Crit Rev Biotechnol 2022:1-18. [PMID: 35723584 DOI: 10.1080/07388551.2022.2058460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.
Collapse
Affiliation(s)
- Saurabh Badoni
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Sabiha Parween
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Robert J Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| |
Collapse
|
21
|
Kamble NU, Majee M. ABI transcription factors and PROTEIN L-ISOASPARTYL METHYLTRANSFERASE module mediate seed desiccation tolerance and longevity in Oryza sativa. Development 2022; 149:275672. [PMID: 35686643 DOI: 10.1242/dev.200600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
In contrast to desiccation-tolerant orthodox seeds, recalcitrant seeds are desiccation sensitive and are unable to survive for a prolonged time. Here, our analyses of Oryza species with contrasting seed desiccation tolerance reveals that PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT), an enzyme that repairs abnormal isoaspartyl (isoAsp) residues in proteins, acts as a key player that governs seed desiccation tolerance to orthodox seeds but is ineffective in recalcitrant seeds. We observe that, unlike the orthodox seed of Oryza sativa, desiccation intolerance of the recalcitrant seeds of Oryza coarctata are linked to reduced PIMT activity and increased isoAsp accumulation due to the lack of coordinated action of ABA and ABI transcription factors to upregulate PIMT during maturation. We show that suppression of PIMT reduces, and its overexpression increases, seed desiccation tolerance and seed longevity in O. sativa. Our analyses further reveal that the ABI transcription factors undergo isoAsp formation that affect their functional competence; however, PIMT interacts with and repairs isoAsp residues and facilitates their functions. Our results thus illustrate a new insight into the mechanisms of acquisition of seed desiccation tolerance and longevity by ABI transcription factors and the PIMT module.
Collapse
Affiliation(s)
- Nitin Uttam Kamble
- MM203 Seed and Stress Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Majee
- MM203 Seed and Stress Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
22
|
Verma S, Attuluri VPS, Robert HS. Transcriptional control of Arabidopsis seed development. PLANTA 2022; 255:90. [PMID: 35318532 PMCID: PMC8940821 DOI: 10.1007/s00425-022-03870-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
The entire process of embryo development is under the tight control of various transcription factors. Together with other proteins, they act in a combinatorial manner and control distinct events during embryo development. Seed development is a complex process that proceeds through sequences of events regulated by the interplay of various genes, prominent among them being the transcription factors (TFs). The members of WOX, HD-ZIP III, ARF, and CUC families have a preferential role in embryonic patterning. While WOX TFs are required for initiating body axis, HD-ZIP III TFs and CUCs establish bilateral symmetry and SAM. And ARF5 performs a major role during embryonic root, ground tissue, and vasculature development. TFs such as LEC1, ABI3, FUS3, and LEC2 (LAFL) are considered the master regulators of seed maturation. Furthermore, several new TFs involved in seed storage reserves and dormancy have been identified in the last few years. Their association with those master regulators has been established in the model plant Arabidopsis. Also, using chromatin immunoprecipitation (ChIP) assay coupled with transcriptomics, genome-wide target genes of these master regulators have recently been proposed. Many seed-specific genes, including those encoding oleosins and albumins, have appeared as the direct target of LAFL. Also, several other TFs act downstream of LAFL TFs and perform their function during maturation. In this review, the function of different TFs in different phases of early embryogenesis and maturation is discussed in detail, including information about their genetic and molecular interactors and target genes. Such knowledge can further be leveraged to understand and manipulate the regulatory mechanisms involved in seed development. In addition, the genomics approaches and their utilization to identify TFs aiming to study embryo development are discussed.
Collapse
Affiliation(s)
- Subodh Verma
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Venkata Pardha Saradhi Attuluri
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S. Robert
- Mendel Centre for Genomics and Proteomics of Plants Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Han B, Wu D, Zhang Y, Li DZ, Xu W, Liu A. Epigenetic regulation of seed-specific gene expression by DNA methylation valleys in castor bean. BMC Biol 2022; 20:57. [PMID: 35227267 PMCID: PMC8886767 DOI: 10.1186/s12915-022-01259-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/18/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Understanding the processes governing angiosperm seed growth and development is essential both for fundamental plant biology and for agronomic purposes. Master regulators of angiosperm seed development are expressed in a seed-specific manner. However, it is unclear how this seed specificity of transcription is established. In some vertebrates, DNA methylation valleys (DMVs) are highly conserved and strongly associated with key developmental genes, but comparable studies in plants are limited to Arabidopsis and soybean. Castor bean (Ricinus communis) is a valuable model system for the study of seed biology in dicots and source of economically important castor oil. Unlike other dicots such as Arabidopsis and soybean, castor bean seeds have a relatively large and persistent endosperm throughout seed development, representing substantial structural differences in mature seeds. Here, we performed an integrated analysis of RNA-seq, whole-genome bisulfite sequencing, and ChIP-seq for various histone marks in the castor bean. RESULTS We present a gene expression atlas covering 16 representative tissues and identified 1162 seed-specific genes in castor bean (Ricinus communis), a valuable model for the study of seed biology in dicots. Upon whole-genome DNA methylation analyses, we detected 32,567 DMVs across five tissues, covering ~33% of the castor bean genome. These DMVs are highly hypomethylated during development and conserved across plant species. We found that DMVs have the potential to activate transcription, especially that of tissue-specific genes. Focusing on seed development, we found that many key developmental regulators of seed/endosperm development, including AGL61, AGL62, LEC1, LEC2, ABI3, and WRI1, were located within DMVs. ChIP-seq for five histone modifications in leaves and seeds clearly showed that the vast majority of histone modification peaks were enriched within DMVs, and their remodeling within DMVs has a critical role in the regulation of seed-specific gene expression. Importantly, further experiment analysis revealed that distal DMVs may act as cis-regulatory elements, like enhancers, to activate downstream gene expression. CONCLUSIONS Our results point to the importance of DMVs and special distal DMVs behaving like enhancers, in the regulation of seed-specific genes, via the reprogramming of histone modifications within DMVs. Furthermore, these results provide a comprehensive understanding of the epigenetic regulator roles in seed development in castor bean and other important crops.
Collapse
Affiliation(s)
- Bing Han
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Di Wu
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyu Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Wei Xu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
24
|
Mathur S, Paritosh K, Tandon R, Pental D, Pradhan AK. Comparative Analysis of Seed Transcriptome and Coexpression Analysis Reveal Candidate Genes for Enhancing Seed Size/Weight in Brassica juncea. Front Genet 2022; 13:814486. [PMID: 35281836 PMCID: PMC8907137 DOI: 10.3389/fgene.2022.814486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Seed size/weight is a multigenic trait that is governed by complex transcriptional regulatory pathways. An understanding of the genetic basis of seed size is of great interest in the improvement of seed yield and quality in oilseed crops. A global transcriptome analysis was performed at the initial stages of seed development in two lines of Brassica juncea, small-seeded EH-2 and large-seeded PJ. The anatomical analyses revealed significant differences in cell number and cell size in the outer layer of the seed coat between EH-2 and PJ. Pairwise comparisons at each developmental stage identified 5,974 differentially expressed genes (DEGs) between the two lines, of which 954 genes belong to different families of transcription factors. Two modules were found to be significantly correlated with an increased seed size using weighted gene coexpression network analysis. The DEG and coexpression datasets were integrated with the thousand seed weight (Tsw) quantitative trait loci (QTL) mapped earlier in the EPJ (EH-2 × PJ) doubled haploid (DH) population, which identified forty potential key components controlling seed size. The candidate genes included genes regulating the cell cycle, cell wall biogenesis/modification, solute/sugar transport, and hormone signaling. The results provide a valuable resource to widen the current understanding of regulatory mechanisms underlying seed size in B. juncea.
Collapse
Affiliation(s)
- Shikha Mathur
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, New Delhi, India
| | - Deepak Pental
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre of Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- *Correspondence: Akshay K. Pradhan,
| |
Collapse
|
25
|
Wang Y, Nie L, Ma J, Zhou B, Han X, Cheng J, Lu X, Fan Z, Li Y, Cao Y. Transcriptomic Variations and Network Hubs Controlling Seed Size and Weight During Maize Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:828923. [PMID: 35237291 PMCID: PMC8882617 DOI: 10.3389/fpls.2022.828923] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
To elucidate the mechanisms underlying seed development in maize, comprehensive RNA-seq analyses were conducted on Zhengdan1002 (ZD1002), Zhengdan958 (ZD958), and their parental lines during seven seed developmental stages. We found that gene expression levels were largely nonadditive in hybrids and that cis-only or trans × cis pattern played a large role in hybrid gene regulation during seed developmental stage. Weighted gene co-expression network (WGCNA) analysis showed that 36 modules were highly correlated (r = -0.90-0.92, p < 0.05) with kernel weight, length, and width during seed development. Forty-five transcription factors and 38 ribosomal protein genes were identified as major hub genes determining seed size/weight. We also described a network hub, Auxin Response Factor 12 of maize (ZmARF12), a member of a family of transcription factor that mediate gene expression in response to auxin, potentially links auxin signal pathways, cell division, and the size of the seeds. The ZmARF12 mutant exhibited larger seed size and higher grain weight. ZmARF12 transcription was negatively associated with cell division during seed development, which was confirmed by evaluating the yield of protoplasts that isolated from the kernels of the mutant and other inbred lines. Transient knock-down of ZmARF12 in maize plants facilitated cell expansion and division, whereas transient silencing of its potential interactor ZmIAA8 impaired cell division. ZmIAA8 expression was repressed in the ZmARF12 over-expressed protoplasts. The mutant phenotype and the genetics studies presented here illustrated evidence that ZmARF12 is a cell division repressor, and potentially determines the final seed size.
Collapse
Affiliation(s)
- Yanzhao Wang
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lihong Nie
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Juan Ma
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bo Zhou
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaohua Han
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junling Cheng
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaomin Lu
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zaifeng Fan
- State Kay Laboratory of Agro-biotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, China Agricultural University, Beijing, China
| | - Yuling Li
- Henan Maize Engineering Technology Joint Center, Henan Agricultural University, Zhengzhou, China
| | - Yanyong Cao
- Henan Provincial Key Laboratory of Maize Biology, Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
26
|
Ding X, Jia X, Xiang Y, Jiang W. Histone Modification and Chromatin Remodeling During the Seed Life Cycle. FRONTIERS IN PLANT SCIENCE 2022; 13:865361. [PMID: 35548305 PMCID: PMC9083068 DOI: 10.3389/fpls.2022.865361] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 05/16/2023]
Abstract
Seeds are essential for the reproduction and dispersion of spermatophytes. The seed life cycle from seed development to seedling establishment proceeds through a series of defined stages regulated by distinctive physiological and biochemical mechanisms. The role of histone modification and chromatin remodeling in seed behavior has been intensively studied in recent years. In this review, we summarize progress in elucidating the regulatory network of these two kinds of epigenetic regulation during the seed life cycle, especially in two model plants, rice and Arabidopsis. Particular emphasis is placed on epigenetic effects on primary tissue formation (e.g., the organized development of embryo and endosperm), pivotal downstream gene expression (e.g., transcription of DOG1 in seed dormancy and repression of seed maturation genes in seed-to-seedling transition), and environmental responses (e.g., seed germination in response to different environmental cues). Future prospects for understanding of intricate interplay of epigenetic pathways and the epigenetic mechanisms in other commercial species are also proposed.
Collapse
Affiliation(s)
- Xiali Ding
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Xuhui Jia
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yong Xiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
| | - Wenhui Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences (CAAS), Shenzhen, China
- *Correspondence: Wenhui Jiang,
| |
Collapse
|
27
|
Su L, Wan S, Zhou J, Shao QS, Xing B. Transcriptional regulation of plant seed development. PHYSIOLOGIA PLANTARUM 2021; 173:2013-2025. [PMID: 34480800 DOI: 10.1111/ppl.13548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plant seeds, which are unique reproductive organs of gymnosperms and angiosperms, are used for edible, medicinal, and industrial purposes. Transcription factors (TFs) are master regulators of plant growth, development, and stress responses. This review describes, in detail, the functions of TFs in regulating seed development. Different TFs, or even different TF families, may have similar functions in seed development. For example, WUSCHEL-related homeobox, LEC2/FUS3/ABI3, and HEME ACTIVATOR PROTEIN3 families can control plant seed embryonic initiation and development. In contrast, some members of the same TF family may have completely opposite roles. For instance, AtMYB76 and AtMYB89 inhibit the accumulation of seed oil, whereas AtMYB96 promotes seed fatty acid accumulation in Arabidopsis thaliana. Compared with the number of studies that have addressed regulation by single TFs, only a few have focused on multiple-TF regulatory networks. This review should be useful as a reference for future studies on regulatory networks of TF complexes.
Collapse
Affiliation(s)
- Liyang Su
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Junmei Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qing Song Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Bingcong Xing
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese medicine, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
28
|
Singh S, Koyama H, Bhati KK, Alok A. The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. JOURNAL OF PLANT RESEARCH 2021; 134:475-495. [PMID: 33616799 PMCID: PMC8106581 DOI: 10.1007/s10265-021-01270-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/13/2021] [Indexed: 05/02/2023]
Abstract
Climate change, malnutrition, and food insecurity are the inevitable challenges being faced by the agriculture sector today. Plants are susceptible to extreme temperatures during the crucial phases of flowering and seed development, and elevated carbon levels also lead to yield losses. Productivity is also affected by floods and droughts. Therefore, increasing plant yield and stress tolerance are the priorities to be met through novel biotechnological interventions. The contributions of NAC genes towards enhancing plant survivability under stress is well known. Here we focus on the potential of NAC genes in the regulation of abiotic stress tolerance, secondary cell wall synthesis, lateral root development, yield potential, seed size and biomass, ROS signaling, leaf senescence, and programmed cell death. Once naturally tolerant candidate NAC genes have been identified, and the nature of their association with growth and fitness against multi-environmental stresses has been determined, they can be exploited for building inherent tolerance in future crops via transgenic technologies. An update on the latest developments is provided in this review, which summarizes the current understanding of the roles of NAC in the establishment of various stress-adaptive mechanisms in model and food crop plants.
Collapse
Affiliation(s)
- Sadhana Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Hiroyuki Koyama
- Laboratory of Plant Cell Technology, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kaushal K Bhati
- Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Anshu Alok
- Department of Biotechnology, UIET, Punjab University, Chandigarh, India
| |
Collapse
|
29
|
Canales J, Verdejo J, Carrasco-Puga G, Castillo FM, Arenas-M A, Calderini DF. Transcriptome Analysis of Seed Weight Plasticity in Brassica napus. Int J Mol Sci 2021; 22:4449. [PMID: 33923211 PMCID: PMC8123204 DOI: 10.3390/ijms22094449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed number (SN), which has been commonly reported in several crops, including Brassica napus. Despite the agronomic relevance of this issue, the molecular factors involved in the interaction between SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different source-sink (S-S) ratios in order to examine the relationship between SW and SN under different field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of 1014 genes exclusively regulated by the S-S ratio. We found that a reduction in the S-S ratio during seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress responses. Moreover, we identified five co-expression modules that are positively correlated with SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as major hubs underlying SW and SN compensation. Taken together, our study provides novel insights into the molecular factors associated with the SW-SN relationship in rapeseed and identifies TFs as potential targets when improving crop yield.
Collapse
Affiliation(s)
- Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - José Verdejo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Gabriela Carrasco-Puga
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| | - Francisca M. Castillo
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Anita Arenas-M
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile; (F.M.C.); (A.A.-M.)
- ANID–Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), 8331150 Santiago, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, 5110566 Valdivia, Chile;
| |
Collapse
|
30
|
Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J. A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2947-2964. [PMID: 33476364 DOI: 10.1093/jxb/erab027] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/19/2021] [Indexed: 05/10/2023]
Abstract
High temperature often leads to failure of grain filling in rice (Oryza sativa) causing yield loss, but the underlying mechanisms are still not elucidated. Here, we report that two genes encoding seed-specific NAM/ATAF/CUC (NAC) domain transcription factors, ONAC127 and ONAC129, are responsive to heat stress and involved in the grain filling process of rice. ONAC127 and ONAC129 are dominantly expressed in the pericarp and can form a heterodimer during rice grain filling. CRISPR/Cas9 induced mutants and overexpression lines were then generated to investigate the function of these two transcription factors. Interestingly, both knock-out and overexpression plants showed incomplete grain filling and shrunken grains, which became more severe under heat stress. Transcriptome analysis revealed that ONAC127 and ONAC129 mainly regulate stimulus response and nutrient transport. ChIP-seq analysis identified that the direct target genes of ONAC127 and ONAC129 in developing rice seeds include monosaccharide transporter gene OsMST6, sugar transporter gene OsSWEET4, calmodulin-like protein gene OsMSR2 and AP2/ERF factor gene OsEATB. These results suggest that ONAC127 and ONAC129 regulate grain filling by affecting sugar transportation and abiotic stress responses. Overall, this study demonstrates a transcriptional regulatory network with ONAC127 and ONAC129 coordinating multiple pathways to modulate seed development and heat stress responses at rice reproductive stages.
Collapse
Affiliation(s)
- Ye Ren
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhouquan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengsheng Wu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufei Xiong
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Dhaka N, Sharma R. MicroRNA-mediated regulation of agronomically important seed traits: a treasure trove with shades of grey! Crit Rev Biotechnol 2021; 41:594-608. [PMID: 33682533 DOI: 10.1080/07388551.2021.1873238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Seed development is an intricate process with multiple levels of regulation. MicroRNAs (miRNAs) have emerged as one of the crucial components of molecular networks underlying agronomically important seed traits in diverse plant species. In fact, loss of function of the genes regulating miRNA biogenesis also exhibits defects in seed development. A total of 21 different miRNAs have experimentally been shown to regulate seed size, nutritional content, vigor, and shattering, and have been reviewed here. The mechanism details of the associated regulatory cascades mediated through transcriptional regulators, phytohormones, basic metabolic machinery, and secondary siRNAs are elaborated. Co-localization of miRNAs and their target regions with seed-related QTLs provides new avenues for engineering these traits using conventional breeding programs or biotechnological interventions. While global analysis of miRNAs using small RNA sequencing studies are expanding the repertoire of candidate miRNAs, recent revelations on their inheritance, transport, and mechanism of action would be instrumental in designing better strategies for optimizing agronomically relevant seed traits.
Collapse
Affiliation(s)
- Namrata Dhaka
- Department of Biotechnology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Haryana, India.,Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rita Sharma
- Crop Genetics and Informatics Group, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Verma A, Prakash G, Ranjan R, Tyagi AK, Agarwal P. Silencing of an Ubiquitin Ligase Increases Grain Width and Weight in indica Rice. Front Genet 2021; 11:600378. [PMID: 33510769 PMCID: PMC7835794 DOI: 10.3389/fgene.2020.600378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/27/2020] [Indexed: 11/18/2022] Open
Abstract
Many quantitative trait loci (QTLs) have been identified by molecular genetic studies which control grain size by regulating grain width, length, and/or thickness. Grain width 2 (GW2) is one such QTL that codes for a RING-type E3 ubiquitin ligase and increases grain size by regulating grain width through ubiquitin-mediated degradation of unknown substrates. A natural variation (single-nucleotide polymorphism at the 346th position) in the functional domain-coding region of OsGW2 in japonica rice genotypes has been shown to cause an increase in grain width/weight in rice. However, this variation is absent in indica rice genotypes. In this study, we report that reduced expression of OsGW2 can alter grain size, even though natural sequence variation is not responsible for increased grain size in indica rice genotypes. OsGW2 shows high expression in seed development stages and the protein localizes to the nucleus and cytoplasm. Downregulation of OsGW2 by RNAi technology results in wider and heavier grains. Microscopic observation of grain morphology suggests that OsGW2 determines grain size by influencing both cell expansion and cell proliferation in spikelet hull. Using transcriptome analysis, upregulated genes related to grain size regulation have been identified among 1,426 differentially expressed genes in an OsGW2_RNAi transgenic line. These results reveal that OsGW2 is a negative regulator of grain size in indica rice and affects both cell number and cell size in spikelet hull.
Collapse
Affiliation(s)
- Ankit Verma
- National Institute of Plant Genome Research, New Delhi, India
| | - Geeta Prakash
- National Institute of Plant Genome Research, New Delhi, India.,Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, New Delhi, India.,Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
33
|
Bassal M, Abukhalaf M, Majovsky P, Thieme D, Herr T, Ayash M, Tabassum N, Al Shweiki MR, Proksch C, Hmedat A, Ziegler J, Lee J, Neumann S, Hoehenwarter W. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. MOLECULAR PLANT 2020; 13:1709-1732. [PMID: 33007468 DOI: 10.1016/j.molp.2020.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 05/21/2023]
Abstract
Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis.Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Collapse
Affiliation(s)
- Mona Bassal
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohammad Abukhalaf
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Petra Majovsky
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Domenika Thieme
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Tobias Herr
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohamed Ayash
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Naheed Tabassum
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mhd Rami Al Shweiki
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Carsten Proksch
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Ali Hmedat
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Jörg Ziegler
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Wolfgang Hoehenwarter
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany.
| |
Collapse
|
34
|
Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z, Chen C. OsbZIP76 interacts with OsNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1983-1996. [PMID: 32621654 DOI: 10.1111/jipb.12989] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/03/2020] [Indexed: 05/23/2023]
Abstract
Following double fertilization, plant endosperm nuclei undergo syncytial divisions, followed by synchronous cellularization. Cellularization is a key event during endosperm development, but our understanding of its regulation is limited to Arabidopsis. In this study we show that OsbZIP76 regulates cellularization in rice (Oryza sativa). Activation of OsbZIP76 coincided with the initiation of cellularization, and its knockdown or knockout mutants exhibited precocious cellularization. Genes involved in endosperm development or starch biosynthesis were prematurely activated in the osbzip76 caryopsis. As a putative transcription factor, OsbZIP76 alone lacked transcriptional activation activity; however, it interacted with the nuclear factor Y (NF-Y) family transcription factors OsNF-YB9 and OsNF-YB1 in yeast and in planta. OsbZIP76 and OsNF-YB9 were predominantly expressed in the endosperm and the proteins colocalized. Seeds of osnf-yb1 and osbzip76 mutants showed reduced size and reduced apparent amylose content. The parent-of-origin-dependent expression of OsbZIP76 is variable in different rice accessions. In summary, OsbZIP76 is an endosperm-expressed imprinted gene that regulates endosperm development in rice.
Collapse
Affiliation(s)
- Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Hui Deng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Tingting Li
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Sandeep Sharma
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, BHU, Varanasi, 221005, India
| | - Qianbin Yun
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qianru Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310000, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
35
|
Qi D, Wen Q, Meng Z, Yuan S, Guo H, Zhao H, Cui S. OsLFR is essential for early endosperm and embryo development by interacting with SWI/SNF complex members in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:901-916. [PMID: 32808364 DOI: 10.1111/tpj.14967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/09/2020] [Accepted: 07/29/2020] [Indexed: 05/26/2023]
Abstract
Rice (Oryza sativa L.) endosperm provides the developing embryo with nutrients and provides human beings with a staple food. The embryo eventually develops into a new sporophyte generation. Despite their important roles, the molecular mechanisms underlying early-stage endosperm and embryo development remain elusive. Here, we established the fundamental functions of rice OsLFR, an ortholog of the Arabidopsis SWI/SNF chromatin-remodeling complex (CRC) component LFR. OsLFR was expressed primarily in the rice spikelets and seeds, and the OsLFR protein was localized to the nucleus. We conducted genetic, cellular and molecular analyses of loss-of-function mutants and transgenic rescue lines. OsLFR depletion resulted in homozygous lethality in the early seed stage through endosperm and embryo defects, which could be successfully recovered by the OsLFR genomic sequence. Cytological observations revealed that the oslfr endosperm had relatively fewer free nuclei, had abnormal and arrested cellularization, and demonstrated premature programed cell death: the embryo was reduced in size and failed to differentiate. Transcriptome profiling showed that many genes, involved in DNA replication, cell cycle, cell wall assembly and cell death, were differentially expressed in a knockout mutant of OsLFR (oslfr-1), which was consistent with the observed seed defects. Protein-protein interaction analysis showed that OsLFR physically interacts with several putative rice SWI/SNF CRC components. Our findings demonstrate that OsLFR, possibly as one component of the SWI/SNF CRC, is an essential regulator of rice seed development, and provide further insights into the regulatory mechanism of early-stage rice endosperm and embryo development.
Collapse
Affiliation(s)
- Dongmei Qi
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Qingqing Wen
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Ze Meng
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Shan Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hong Guo
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| |
Collapse
|
36
|
Cheng X, Pan M, E Z, Zhou Y, Niu B, Chen C. Functional divergence of two duplicated Fertilization Independent Endosperm genes in rice with respect to seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:124-137. [PMID: 33463824 DOI: 10.1111/tpj.14911] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Abstract
Fertilization Independent Endosperm (FIE) is an essential member of Polycomb Repressive Complex 2 (PRC2) that plays important roles in the developmental regulation of plants. OsFIE1 and OsFIE2 are two FIE homologs in the rice genome. Here, we showed that OsFIE1 probably duplicated from OsFIE2 after the origin of the tribe Oryzeae, but has a specific expression pattern and methylation landscape. During evolution, OsFIE1 underwent a less intensive purifying selection than did OsFIE2. The mutant osfie1 produced smaller seeds and displayed reduced dormancy, indicating that OsFIE1 predominantly functions in late seed development. Ectopic expression of OsFIE1, but not OsFIE2, was deleterious to vegetative growth in a dose-dependent manner. The newly evolved N-terminal tail of OsFIE1 was probably not the cause of the adverse effects on vegetative growth. The CRISPR/Cas9-derived mutant osfie2 exhibited impaired cellularization of the endosperm, which suggested that OsFIE2 is indispensable for early seed development as a positive regulator of cellularization. Autonomous endosperm was observed in both OsFIE2+- and osfie1/OsFIE2+- but at a very low frequency. Although OsFIE1-PRC2 exhibited H3K27me3 methyltransferase ability in plants, OsFIE1-PRC2 is likely to be less important for development in rice than is OsFIE2-PRC2. Our findings revealed the functional divergence of OsFIE1 and OsFIE2 and shed light on their distinct evolution following duplication.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Meiyao Pan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Zhiguo E
- Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Baixiao Niu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Chen Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
37
|
Mathew IE, Priyadarshini R, Mahto A, Jaiswal P, Parida SK, Agarwal P. SUPER STARCHY1/ONAC025 participates in rice grain filling. PLANT DIRECT 2020; 4:e00249. [PMID: 32995698 PMCID: PMC7507516 DOI: 10.1002/pld3.249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/10/2020] [Accepted: 07/10/2020] [Indexed: 05/04/2023]
Abstract
NAC transcription factors (TFs) are known for their role in development and stress. This article attempts to functionally validate the role of rice SS1/ ONAC025 (LOC_Os11g31330) during seed development. The gene is seed-specific and its promoter directs reporter expression in the developing endosperm and embryo in rice transgenic plants. Furthermore, rice transgenic plants ectopically expressing SS1/ ONAC025 have a plantlet lethal phenotype with hampered vegetative growth, but increased tillers and an altered shoot apical meristem structure. The vegetative cells of these plantlets are filled with distinct starch granules. RNAseq analysis of two independent plantlets reveals the differential expression of reproductive and photosynthetic genes. A comparison with seed development transcriptome indicates differential regulation of many seed-related genes by SS1/ ONAC025. Genes involved in starch biosynthesis, especially amylopectin and those encoding seed storage proteins, and regulating seed size are also differentially expressed. In conjunction, SS1/ ONAC025 shows highest expression in japonica rice. As a TF, SS1/ ONAC025 is a transcriptional repressor localized to endoplasmic reticulum and nucleus. The article shows that SS1/ ONAC025 is a seed-specific gene promoting grain filling in rice, and negatively affecting vegetative growth.
Collapse
Affiliation(s)
| | | | - Arunima Mahto
- National Institute of Plant Genome ResearchNew DelhiIndia
| | - Priya Jaiswal
- National Institute of Plant Genome ResearchNew DelhiIndia
| | | | - Pinky Agarwal
- National Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
38
|
Wang X, Yan X, Tian X, Zhang Z, Wu W, Shang J, Ouyang J, Yao W, Li S. Glycine- and Proline-Rich Protein OsGPRP3 Regulates Grain Size and Quality in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7581-7590. [PMID: 32579349 DOI: 10.1021/acs.jafc.0c01803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The grain size and shape of rice are limited by the growth of the spikelet hulls and are important selective target during domestication and breeding. In this study, we identified a glycine- and proline-rich protein (OsGPRP3), which belongs to a conserved family rarely studied. We found that OsGPRP3 was highly expressed in the seed at 10 days after pollination (DAP) using qRT-PCR, pOsGPRP3::GUS and in situ hybridization. Knockout and knockdown of OsGPRP3 led to significant decrease of 1000-grain weight, grain width, and grain thickness. We further found that the content of storage protein and total lipid were decreased in osgprp3 lines. In particular, the contents of C14:0 (myristic acid), C16:0 (palmitic acid), C18:1 (oleic acid), and C18:2 (linoleic acid) were reduced in osgprp3 lines. Cytological experiments revealed that the cell width of spikelet hull in osgprp3 lines was significantly reduced than that in WT. Taken together, our results reveal that OsGPRP3 regulates the grain size and shape of rice by influencing the cell width of spikelet hulls and the accumulation of storage protein and lipids.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Xiaoxiao Tian
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Zongfei Zhang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Weiwei Wu
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Junjun Shang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Gene Engineering of Jiangxi Province, College of life sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
39
|
Genome-Wide Association Analysis Identifies Candidate Genes Regulating Seed Number Per Silique in Arabidopsis thaliana. PLANTS 2020; 9:plants9050585. [PMID: 32370287 PMCID: PMC7284809 DOI: 10.3390/plants9050585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
Seed weight and number ultimately determine seed yield. Arabidopsis seed number comprised of silique number and seed number per silique (SNS). Comparing seed development and weight, determinants of seed number remain largely uncharacterized. In this study, taking advantage of 107 available Arabidopsis accessions, genome-wide association analysis (GWAS) was employed to identify the candidate genes regulating SNS. GWAS-based genotype and phenotype association analysis identified 38 most significant SNPs marker sites that were mapped to specific chromosomal positions and allowed us to screen for dozens of candidate genes. One of them (PIN3) was selected for functional validation based on gene expression analysis. It is a positive regulator of Arabidopsis SNS. Although silique length of PIN3 loss of function mutant was not significantly changed, its SNS and seed density (SD) were significantly reduced as compared with the wild type. Notably, PIN3 overexpression lines driven by a placenta-specific promoter STK exhibited significantly shorter siliques, slightly reduced SNS, but significant increased SD compared with wild type, suggesting that PIN3 positively regulates SD through inducing ovule primordia initiation regardless of the placenta size. Ovule initiation determines the maximal possibility of SNS, and new genes and mechanism regulating SNS through modulating ovule initiation is worth further investigated.
Collapse
|
40
|
Ponce K, Zhang Y, Guo L, Leng Y, Ye G. Genome-Wide Association Study of Grain Size Traits in Indica Rice Multiparent Advanced Generation Intercross (MAGIC) Population. FRONTIERS IN PLANT SCIENCE 2020; 11:395. [PMID: 32391027 PMCID: PMC7193545 DOI: 10.3389/fpls.2020.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/19/2020] [Indexed: 05/15/2023]
Abstract
Rice grain size plays a crucial role in determining grain quality and yield. In this study, two multiparent advanced generation intercross (MAGIC) populations, DC1 and BIM, were evaluated for grain size across three environments and genotyped with 55K array-based SNP detection and genotype-by-sequencing (GBS), respectively, to identify QTLs and SNPs associated with grain length, grain width, grain length-width ratio, grain thickness, and thousand grain weight. A total of 18 QTLs were identified for the five grain size-related traits and explained 6.43-63.35% of the total phenotypic variance. Twelve of these QTLs colocalized with the cloned genes, GS3, GW5/qSW5, GW7/GL7/SLG7, and GW8/OsSPL16, of which the first two genes showed the strongest effect for grain length and grain width, respectively. Four potential new genes were also identified from the QTLs, which exhibited both genetic background independency and environment stability and could be validated in future studies. Moreover, the significant SNP markers identified are valuable for direct utilization in marker-assisted breeding to improve rice grain size.
Collapse
Affiliation(s)
- Kimberly Ponce
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ya Zhang
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yujia Leng
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
41
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
42
|
Malik N, Ranjan R, Parida SK, Agarwal P, Tyagi AK. Mediator subunit OsMED14_1 plays an important role in rice development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1411-1429. [PMID: 31702850 DOI: 10.1111/tpj.14605] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 10/30/2019] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit co-activator complex, regulates transcription in eukaryotes and is involved in diverse processes in Arabidopsis through its different subunits. Here, we have explored developmental aspects of one of the rice Mediator subunit gene OsMED14_1. We analyzed its expression pattern through RNA in situ hybridization and pOsMED14_1:GUS transgenics that showed its expression in roots, leaves, anthers and seeds prominently at younger stages, indicating possible involvement of this subunit in multiple aspects of rice development. To understand the developmental roles of OsMED14_1 in rice, we generated and studied RNAi-based knockdown rice plants that showed multiple effects including less height, narrower leaves and culms with reduced vasculature, lesser lateral root branching, defective microspore development, reduced panicle branching and seed set, and smaller seeds. Histological analyses showed that slender organs were caused by reduction in both cell number and cell size in OsMED14_1 knockdown plants. Flow cytometric analyses and expression analyses of cell cycle-related genes revealed that defective cell-cycle progression led to these defects. Expression analyses of auxin-related genes and indole-3-acetic acid (IAA) immunolocalization study indicated altered auxin level in these knockdown plants. Reduction of lateral root branching in knockdown plants was corrected by exogenous IAA supplement. OsMED14_1 physically interacts with transcription factors YABBY5, TAPETUM DEGENERATION RETARDATION (TDR) and MADS29, possibly regulating auxin homeostasis and ultimately leading to lateral organ/leaf, microspore and seed development.
Collapse
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi, 110021, India
| |
Collapse
|
43
|
Marone D, Rodriguez M, Saia S, Papa R, Rau D, Pecorella I, Laidò G, Pecchioni N, Lafferty J, Rapp M, Longin FH, De Vita P. Genome-Wide Association Mapping of Prostrate/Erect Growth Habit in Winter Durum Wheat. Int J Mol Sci 2020; 21:ijms21020394. [PMID: 31936286 PMCID: PMC7014441 DOI: 10.3390/ijms21020394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
By selecting for prostrate growth habit of the juvenile phase of the cycle, durum wheat cultivars could be developed with improved competitive ability against weeds, and better soil coverage to reduce the soil water lost by evaporation. A panel of 184 durum wheat (Triticum turgidum subsp. durum) genotypes, previously genotyped with DArT-seq markers, was used to perform association mapping analysis of prostrate/erect growth habit trait and to identify candidate genes. Phenotypic data of plant growth habit were recorded during three consecutive growing seasons (2014–2016), two different growth conditions (field trial and greenhouse) and two sowing periods (autumn and spring). Genome-wide association study revealed significant marker-trait associations, twelve of which were specific for a single environment/year, 4 consistent in two environments, and two MTAs for the LSmeans were identified across all environments, on chromosomes 2B and 5A. The co-localization of some MTAs identified in this study with known vernalization and photoperiod genes demonstrated that the sensitivity to vernalization and photoperiod response are actually not only key components of spring/winter growth habit, but they play also an important role in defining the magnitude of the tiller angle during the tillering stage. Many zinc-finger transcription factors, such as C2H2 or CCCH-domain zinc finger proteins, known to be involved in plant growth habit and in leaf angle regulation were found as among the most likely candidate genes. The highest numbers of candidate genes putatively related to the trait were found on chromosomes 3A, 4B, 5A and 6A. Moreover, a bioinformatic approach has been considered to search for functional ortholog genes in wheat by using the sequence of rice and barley tiller angle-related genes. The information generated could be used to improve the understanding of the mechanisms that regulate the prostrate/erect growth habit in wheat and the adaptive potential of durum wheat under resource-limited environmental conditions.
Collapse
Affiliation(s)
- Daniela Marone
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Via E. de Nicola, 14, 07100 Sassari, Italy; (M.R.); (D.R.)
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale, Università degli Studi di Sassari, SS 127bis, km 28.500 Surigheddu, 07041 Alghero, Italy
| | - Sergio Saia
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
- Research Centre for Cereal and Industrial Crops, CREA, SS 11, km 2.500, 13100 Vercelli, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Domenico Rau
- Department of Agriculture, University of Sassari, Via E. de Nicola, 14, 07100 Sassari, Italy; (M.R.); (D.R.)
| | - Ivano Pecorella
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
| | - Julia Lafferty
- Saatzucht Donau GesmbH & CoKG, Saatzuchtstrasse 11, A-2301 Probstdorf, Austria;
| | - Matthias Rapp
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstraße 21, 70593 Stuttgart, Germany; (M.R.); (F.H.L.)
| | - Friedrich H. Longin
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstraße 21, 70593 Stuttgart, Germany; (M.R.); (F.H.L.)
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops, CREA, SS 673, km 25.200, 71122 Foggia, Italy; (D.M.); (S.S.); (I.P.); (G.L.); (N.P.)
- Correspondence: ; Tel.: +39-0881-714911
| |
Collapse
|
44
|
Flores-Vergara MA, Oneal E, Costa M, Villarino G, Roberts C, De Luis Balaguer MA, Coimbra S, Willis J, Franks RG. Developmental Analysis of Mimulus Seed Transcriptomes Reveals Functional Gene Expression Clusters and Four Imprinted, Endosperm-Expressed Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:132. [PMID: 32161609 PMCID: PMC7052496 DOI: 10.3389/fpls.2020.00132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
The double fertilization of the female gametophyte initiates embryogenesis and endosperm development in seeds via the activation of genes involved in cell differentiation, organ patterning, and growth. A subset of genes expressed in endosperm exhibit imprinted expression, and the correct balance of gene expression between parental alleles is critical for proper endosperm and seed development. We use a transcriptional time series analysis to identify genes that are associated with key shifts in seed development, including genes associated with secondary cell wall synthesis, mitotic cell cycle, chromatin organization, auxin synthesis, fatty acid metabolism, and seed maturation. We relate these genes to morphological changes in Mimulus seeds. We also identify four endosperm-expressed transcripts that display imprinted (paternal) expression bias. The imprinted status of these four genes is conserved in other flowering plants, suggesting that they are functionally important in endosperm development. Our study explores gene regulatory dynamics in a species with ab initio cellular endosperm development, broadening the taxonomic focus of the literature on gene expression in seeds. Moreover, it is the first to validate genes with imprinted endosperm expression in Mimulus guttatus, and will inform future studies on the genetic causes of seed failure in this model system.
Collapse
Affiliation(s)
- Miguel A. Flores-Vergara
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Elen Oneal
- Department of Biology, Duke University, Durham, NC, United States
- *Correspondence: Elen Oneal,
| | - Mario Costa
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gonzalo Villarino
- Biology Department, San Diego State University, San Diego, CA, United States
| | - Caitlyn Roberts
- Department of Biology, Berea College, Berea, KY, United States
| | | | - Sílvia Coimbra
- GreenUPorto, Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences, University of Porto, Porto, Portugal
| | - John Willis
- Department of Biology, Duke University, Durham, NC, United States
| | - Robert G. Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
45
|
Das S, Parida SK, Agarwal P, Tyagi AK. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. PLANTA 2019; 250:1849-1865. [PMID: 31482329 DOI: 10.1007/s00425-019-03268-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/26/2019] [Indexed: 05/02/2023]
Abstract
OsNF-YB9 controls heading by affecting expression of regulators of flowering. It affects the development of the reproductive meristem by interacting with MADS1 and controlling expression of hormone-related genes. Nuclear Factor-Y (NF-Y) family of transcription factors takes part in many aspects of growth and development in eukaryotes. They have been classified into three subunit classes, namely, NF-YA, NF-YB and NF-YC. In plants, this transcription factor family is much diverged and takes part in several developmental processes and stress. We investigated NF-Y subunit genes of rice (Oryza sativa) and found OsNF-YB9 as the closest homologue of LEAFY COTYLEDON1. OsNF-YB9 delayed the heading date when ectopically expressed in rice. Expression of several heading date regulating genes such as Hd1, Ehd1, Hd3a and RFT1 were altered. OsNF-YB9 overexpression also resulted in morphological defects in the reproductive organs and led to pseudovivipary. OsNF-YB9 interacted with MADS1, a key regulator of floral development. This NF-Y subunit acted upstream to several transcription factors as well as signalling proteins involved in brassinosteroid and gibberellic acid metabolism and cell cycle. OsNF-YB9 and OsNF-YC12 interacted in planta and the latter also delayed heading in rice upon overexpression suggesting its involvement in a similar pathway. Our data provide new insights into the rice heading date pathway integrating these OsNF-Y subunit members to the network. These features can be exploited to improve vegetative growth and yield of rice plants in future.
Collapse
Affiliation(s)
- Sweta Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Akhilesh Kumar Tyagi
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
46
|
Bengoa Luoni S, Astigueta FH, Nicosia S, Moschen S, Fernandez P, Heinz R. Transcription Factors Associated with Leaf Senescence in Crops. PLANTS (BASEL, SWITZERLAND) 2019; 8:E411. [PMID: 31614987 PMCID: PMC6843677 DOI: 10.3390/plants8100411] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Leaf senescence is a complex mechanism controlled by multiple genetic and environmental variables. Different crops present a delay in leaf senescence with an important impact on grain yield trough the maintenance of the photosynthetic leaf area during the reproductive stage. Additionally, because of the temporal gap between the onset and phenotypic detection of the senescence process, candidate genes are key tools to enable the early detection of this process. In this sense and given the importance of some transcription factors as hub genes in senescence pathways, we present a comprehensive review on senescence-associated transcription factors, in model plant species and in agronomic relevant crops. This review will contribute to the knowledge of leaf senescence process in crops, thus providing a valuable tool to assist molecular crop breeding.
Collapse
Affiliation(s)
- Sofia Bengoa Luoni
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
| | - Francisco H Astigueta
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
| | - Salvador Nicosia
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Universidad Nacional de Lujan, Cruce Rutas Nac. 5 y 7, Lujan, Buenos Aires 6700, Argentina.
| | - Sebastian Moschen
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Famaillá, Tucumán 4142, Argentina.
| | - Paula Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
| | - Ruth Heinz
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires 1425, Argentina.
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires 1686, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires 1428, Argentina.
| |
Collapse
|
47
|
Ahmad B, Zhang S, Yao J, Rahman MU, Hanif M, Zhu Y, Wang X. Genomic Organization of the B3-Domain Transcription Factor Family in Grapevine ( Vitis vinifera L.) and Expression during Seed Development in Seedless and Seeded Cultivars. Int J Mol Sci 2019; 20:ijms20184553. [PMID: 31540007 PMCID: PMC6770561 DOI: 10.3390/ijms20184553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/03/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Members of the plant-specific B3-domain transcription factor family have important and varied functions, especially with respect to vegetative and reproductive growth. Although B3 genes have been studied in many other plants, there is limited information on the genomic organization and expression of B3 genes in grapevine (Vitis vinifera L.). In this study, we identified 50 B3 genes in the grapevine genome and analyzed these genes in terms of chromosomal location and syntenic relationships, intron–exon organization, and promoter cis-element content. We also analyzed the presumed proteins in terms of domain structure and phylogenetic relationships. Based on the results, we classified these genes into five subfamilies. The syntenic relationships suggest that approximately half of the genes resulted from genome duplication, contributing to the expansion of the B3 family in grapevine. The analysis of cis-element composition suggested that most of these genes may function in response to hormones, light, and stress. We also analyzed expression of members of the B3 family in various structures of grapevine plants, including the seed during seed development. Many B3 genes were expressed preferentially in one or more structures of the developed plant, suggesting specific roles in growth and development. Furthermore, several of the genes were expressed differentially in early developing seeds from representative seeded and seedless cultivars, suggesting a role in seed development or abortion. The results of this study provide a foundation for functional analysis of B3 genes and new resources for future molecular breeding of grapevine.
Collapse
Affiliation(s)
- Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Mati Ur Rahman
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Muhammad Hanif
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Yanxun Zhu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Xianyang 712100, China.
| |
Collapse
|
48
|
Singh P, Mathew IE, Verma A, Tyagi AK, Agarwal P. Analysis of Rice Proteins with DLN Repressor Motif/S. Int J Mol Sci 2019; 20:ijms20071600. [PMID: 30935059 PMCID: PMC6479872 DOI: 10.3390/ijms20071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two “DLN” residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.
Collapse
Affiliation(s)
- Purnima Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Iny Elizebeth Mathew
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Ankit Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, South Campus Delhi University, New Delhi-110021, India.
| | - Pinky Agarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India.
| |
Collapse
|
49
|
Xia F, Sun T, Yang S, Wang X, Chao J, Li X, Hu J, Cui M, Liu G, Wang D, Sun Y. Insight into the B3Transcription Factor Superfamily and Expression Profiling of B3 Genes in Axillary Buds after Topping in Tobacco( Nicotiana tabacum L.). Genes (Basel) 2019; 10:E164. [PMID: 30791672 PMCID: PMC6409620 DOI: 10.3390/genes10020164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/06/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Members of the plant-specific B3 transcription factor superfamily play important roles in various growth and developmental processes in plants. Even though there are many valuable studies on B3 genes in other species, little is known about the B3 superfamily in tobacco. We identified 114 B3 proteins from tobacco using comparative genome analysis. These proteins were classified into four subfamilies based on their phylogenetic relationships, and include the ARF, RAV, LAV, and REM subfamilies. The chromosomal locations, gene structures, conserved protein motifs, and sub-cellular localizations of the tobacco B3 proteins were analyzed. The patterns of exon-intron numbers and arrangement and the protein structures of the tobacco B3 proteins were in general agreement with their phylogenetic relationships. The expression patterns of 114 B3 genes revealed that many B3 genes show tissue-specific expression. The expression levels of B3 genes in axillary buds after topping showed that the REM genes are mainly up-regulated in response to topping, while the ARF genes are down-regulated after topping.
Collapse
Affiliation(s)
- Fei Xia
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Tingting Sun
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China.
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| | - Xiao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Jiangtao Chao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Xiaoxu Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Junhua Hu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Mengmeng Cui
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Guanshan Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Dawei Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China.
| |
Collapse
|
50
|
Zhang J, Wang Y, Naeem M, Zhu M, Li J, Yu X, Hu Z, Chen G. An AGAMOUS MADS-box protein, SlMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:909-924. [PMID: 30481310 DOI: 10.1093/jxb/ery418] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/18/2018] [Indexed: 05/25/2023]
Abstract
AGAMOUS (AG) MADS-box transcription factors have been shown to play crucial roles in floral organ and fruit development in angiosperms. Here, we isolated a tomato (Solanum lycopersicum) AG MADS-box gene SlMBP3 and found that it is preferentially expressed in flowers and during early fruit developmental stages in the wild-type (WT), and in the Nr (never ripe) and rin (ripening inhibitor) mutants. Its transcripts are notably accumulated in the pistils; transcripts abundance decrease during seed and placental development, increasing again during flower development. SlMBP3-RNAi tomato plants displayed fleshy placenta without locular gel and extremely malformed seeds with no seed coat, while SlMBP3-overexpressing plants exhibited advanced liquefaction of the placenta and larger seeds. Enzymatic activities related to cell wall modification, and the contents of cell wall components and pigments were dramatically altered in the placentas of SlMBP3-RNAi compared with the WT. Alterations in these physiological features were also observed in the placentas of SlMBP3-overexpressing plants. The lignin content of mature seeds in SlMBP3-RNAi lines was markedly lower than that in the WT. RNA-seq and qRT-PCR analyses revealed that genes involved in seed development and the biosynthesis of enzymes related to cell wall modification, namely gibberellin, indole-3-acetic acid, and abscisic acid were down-regulated in the SlMBP3-RNAi lines. Taking together, our results demonstrate that SlMBP3 is involved in the regulation of placenta and seed development in tomato.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Yicong Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Muhammad Naeem
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China
| |
Collapse
|