1
|
Chen C, Shao Y, Wang S, Li M, Qiao H. The role of primate-specific genes in the phenotypic evolution of lorises. Curr Zool 2025; 71:267-272. [PMID: 40264722 PMCID: PMC12011486 DOI: 10.1093/cz/zoae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/02/2024] [Indexed: 04/24/2025] Open
Affiliation(s)
- Chunyan Chen
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang 712046, Shaanxi Province, China
- Traditional Chinese Medicine Master Research Institute, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang 712046, Shaanxi Province, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650223, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming 650223, China
| | - Mingli Li
- Department of Neuroscience, Yale University School of Medicine, 100 College Street, Suite C944, New Haven, CT 06510, USA
| | - Haifa Qiao
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang 712046, Shaanxi Province, China
- College of Acupuncture and Tuina, Shaanxi University of Chinese Medicine, Xixian New Area, Xianyang 712046, Shaanxi Province, China
| |
Collapse
|
2
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. Genome Res 2025; 35:379-392. [PMID: 39952680 PMCID: PMC11960464 DOI: 10.1101/gr.279498.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans owing to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, we reveal a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (∼0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes owing to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potential for phenotypic innovation in young genes compared to older genes, a process under natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA;
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China;
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA;
| |
Collapse
|
3
|
Tang L, Xu D, Luo L, Ma W, He X, Diao Y, Ke R, Kapranov P. A novel human protein-coding locus identified using a targeted RNA enrichment technique. BMC Biol 2024; 22:273. [PMID: 39593153 PMCID: PMC11590353 DOI: 10.1186/s12915-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Accurate and comprehensive genomic annotation, including the full list of protein-coding genes, is vital for understanding the molecular mechanisms of human biology. We have previously shown that the genome contains a multitude of yet hidden functional exons and transcripts, some of which might represent novel mRNAs. These results resonate with those from other groups and strongly argue that two decades after the completion of the first draft of the human genome sequence, the current annotation of human genes and transcripts remains far from being complete. RESULTS Using a targeted RNA enrichment technique, we showed that one of the novel functional exons previously discovered by us and currently annotated as part of a long non-coding RNA, is actually a part of a novel protein-coding gene, InSETG-4, which encodes a novel human protein with no known homologs or motifs. We found that InSETG-4 is induced by various DNA-damaging agents across multiple cell types and therefore might represent a novel component of DNA damage response. Despite its low abundance in bulk cell populations, InSETG-4 exhibited expression restricted to a small fraction of cells, as demonstrated by the amplification-based single-molecule fluorescence in situ hybridization (asmFISH) analysis. CONCLUSIONS This study argues that yet undiscovered human protein-coding genes exist and provides an example of how targeted RNA enrichment techniques can help to fill this major gap in our knowledge of the information encoded in the human genome.
Collapse
Affiliation(s)
- Lu Tang
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Dongyang Xu
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| | - Lingcong Luo
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Weiyan Ma
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Xiaojie He
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Yong Diao
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen, 361021, China.
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Xiao C, Mo F, Lu Y, Xiao Q, Yao C, Li T, Qi J, Liu X, Chen JY, Zhang L, Guo T, Hu B, An NA, Li CY. Reply to: Identification of old coding regions disproves the hominoid de novo status of genes. Nat Ecol Evol 2024; 8:1831-1834. [PMID: 39187608 DOI: 10.1038/s41559-024-02515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfei Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qi Xiao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Chao Yao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
- Southwest United Graduate School, Kunming, China.
| |
Collapse
|
5
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567139. [PMID: 38045239 PMCID: PMC10690195 DOI: 10.1101/2023.11.14.567139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans due to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, our research shows a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Notably, young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes due to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potentials for phenotypic innovation in young genes compared to older genes, a process that is subject to natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| |
Collapse
|
6
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
7
|
Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L, Chen CL, Zhang YE. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum. Genome Biol 2022; 23:251. [PMID: 36474250 PMCID: PMC9724437 DOI: 10.1186/s13059-022-02821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite having been extensively studied, it remains largely unclear why humans bear a particularly high risk of cancer. The antagonistic pleiotropy hypothesis predicts that primate-specific genes (PSGs) tend to promote tumorigenesis, while the molecular atavism hypothesis predicts that PSGs involved in tumors may represent recently derived duplicates of unicellular genes. However, these predictions have not been tested. RESULTS By taking advantage of pan-cancer genomic data, we find the upregulation of PSGs across 13 cancer types, which is facilitated by copy-number gain and promoter hypomethylation. Meta-analyses indicate that upregulated PSGs (uPSGs) tend to promote tumorigenesis and to play cell cycle-related roles. The cell cycle-related uPSGs predominantly represent derived duplicates of unicellular genes. We prioritize 15 uPSGs and perform an in-depth analysis of one unicellular gene-derived duplicate involved in the cell cycle, DDX11. Genome-wide screening data and knockdown experiments demonstrate that DDX11 is broadly essential across cancer cell lines. Importantly, non-neutral amino acid substitution patterns and increased expression indicate that DDX11 has been under positive selection. Finally, we find that cell cycle-related uPSGs are also preferentially upregulated in the highly proliferative embryonic cerebrum. CONCLUSIONS Consistent with the predictions of the atavism and antagonistic pleiotropy hypotheses, primate-specific genes, especially those PSGs derived from cell cycle-related genes that emerged in unicellular ancestors, contribute to the early proliferation of the human cerebrum at the cost of hitchhiking by similarly highly proliferative cancer cells.
Collapse
Affiliation(s)
- Chenyu Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Li
- School of Engineering Medicine, Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), and Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Huijing Ma
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tianhan Su
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Chun-Long Chen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3244, Dynamics of Genetic Information, 75005, Paris, France
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
8
|
Zhou Y, Zhang C, Zhang L, Ye Q, Liu N, Wang M, Long G, Fan W, Long M, Wing RA. Gene fusion as an important mechanism to generate new genes in the genus Oryza. Genome Biol 2022; 23:130. [PMID: 35706016 PMCID: PMC9199173 DOI: 10.1186/s13059-022-02696-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Events of gene fusion have been reported in several organisms. However, the general role of gene fusion as part of new gene origination remains unknown. RESULTS We conduct genome-wide interrogations of four Oryza genomes by designing and implementing novel pipelines to detect fusion genes. Based on the phylogeny of ten plant species, we detect 310 fusion genes across four Oryza species. The estimated rate of origination of fusion genes in the Oryza genus is as high as 63 fusion genes per species per million years, which is fixed at 16 fusion genes per species per million years and much higher than that in flies. By RNA sequencing analysis, we find more than 44% of the fusion genes are expressed and 90% of gene pairs show strong signals of purifying selection. Further analysis of CRISPR/Cas9 knockout lines indicates that newly formed fusion genes regulate phenotype traits including seed germination, shoot length and root length, suggesting the functional significance of these genes. CONCLUSIONS We detect new fusion genes that may drive phenotype evolution in Oryza. This study provides novel insights into the genome evolution of Oryza.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Chengjun Zhang
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China.
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Li Zhang
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA
- Chinese Institute for Brain Research, (CIBR), Beijing, 102206, China
| | - Qiannan Ye
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Ningyawen Liu
- Germplasm Bank of Wild species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Muhua Wang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519000, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL, 60637, USA.
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
- Center for Desert Agriculture, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
9
|
Chen C, Yin Y, Li H, Zhou B, Zhou J, Zhou X, Li Z, Liu G, Pan X, Zhang R, Lin Z, Chen L, Qiu Q, Zhang YE, Wang W. Ruminant-specific genes identified using high-quality genome data and their roles in rumen evolution. Sci Bull (Beijing) 2022; 67:825-835. [PMID: 36546235 DOI: 10.1016/j.scib.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/26/2021] [Accepted: 12/13/2021] [Indexed: 01/06/2023]
Abstract
Ruminants comprise a highly successful group of mammals with striking morphological innovations, including the presence of a rumen. Many studies have shown that species-specific or lineage-specific genes (referred to as new genes) play important roles in phenotypic evolution. In this study, we identified 1064 ruminant-specific genes based on the newly assembled high-quality genomes of representative members of two ruminant families and other publically available high-quality genomes. Ruminant-specific genes shared similar evolutionary and expression patterns with new genes found in other mammals, such as primates and rodents. Most new genes were derived from gene duplication and tended to be expressed in the testes or immune-related tissues, but were depleted in the adult brain. We also found that most genes expressed in the rumen were genes predating sheep-sperm whale split (referred to as old genes), but some new genes were also involved in the evolution of the rumen, and contributed more during rumen development than in the adult rumen. Notably, expression levels of members of the ruminant-specific PRD-SPRRII gene family, which are subject to positive selection, varied throughout rumen development and may thus play important roles in the development of the keratin-rich surface of the rumen. Overall, this study generated two novel ruminant genomes and also provided novel insights into the evolution of new mammalian organs.
Collapse
Affiliation(s)
- Chunyan Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuan Yin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Botong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiong Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaofang Zhou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiangyu Pan
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangzhou 510080, China
| | - Ru Zhang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zeshan Lin
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
10
|
Leveraging omic features with F3UTER enables identification of unannotated 3'UTRs for synaptic genes. Nat Commun 2022; 13:2270. [PMID: 35477703 PMCID: PMC9046390 DOI: 10.1038/s41467-022-30017-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
There is growing evidence for the importance of 3' untranslated region (3'UTR) dependent regulatory processes. However, our current human 3'UTR catalogue is incomplete. Here, we develop a machine learning-based framework, leveraging both genomic and tissue-specific transcriptomic features to predict previously unannotated 3'UTRs. We identify unannotated 3'UTRs associated with 1,563 genes across 39 human tissues, with the greatest abundance found in the brain. These unannotated 3'UTRs are significantly enriched for RNA binding protein (RBP) motifs and exhibit high human lineage-specificity. We find that brain-specific unannotated 3'UTRs are enriched for the binding motifs of important neuronal RBPs such as TARDBP and RBFOX1, and their associated genes are involved in synaptic function. Our data is shared through an online resource F3UTER ( https://astx.shinyapps.io/F3UTER/ ). Overall, our data improves 3'UTR annotation and provides additional insights into the mRNA-RBP interactome in the human brain, with implications for our understanding of neurological and neurodevelopmental diseases.
Collapse
|
11
|
Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes (Basel) 2021; 12:genes12111819. [PMID: 34828425 PMCID: PMC8618825 DOI: 10.3390/genes12111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Origination of new genes are of inherent interest of evolutionary geneticists for decades, but few studies have addressed the general pattern in a fish lineage. Using our recent released whole genome data of flatfishes, which evolved one of the most specialized body plans in vertebrates, we identified 1541 (6.9% of the starry flounder genes) flatfish-lineage-specific genes. The origination pattern of these flatfish new genes is largely similar to those observed in other vertebrates, as shown by the proportion of DNA-mediated duplication (1317; 85.5%), RNA-mediated duplication (retrogenes; 96; 6.2%), and de novo-origination (128; 8.3%). The emergence rate of species-specific genes is 32.1 per Mya and the whole average level rate for the flatfish-lineage-specific genes is 20.9 per Mya. A large proportion (31.4%) of these new genes have been subjected to selection, in contrast to the 4.0% in primates, while the old genes remain quite similar (66.4% vs. 65.0%). In addition, most of these new genes (70.8%) are found to be expressed, indicating their functionality. This study not only presents one example of systematic new gene identification in a teleost taxon based on comprehensive phylogenomic data, but also shows that new genes may play roles in body planning.
Collapse
|
12
|
Lineage-Specific Genes and Family Expansions in Dictyostelid Genomes Display Expression Bias and Evolutionary Diversification during Development. Genes (Basel) 2021; 12:genes12101628. [PMID: 34681022 PMCID: PMC8535579 DOI: 10.3390/genes12101628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.
Collapse
|
13
|
Estimating the age of single nucleotide polymorphic sites in humans. Genes Genomics 2021; 43:1179-1188. [PMID: 34245420 DOI: 10.1007/s13258-021-01135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Determining the ages of polymorphic sites in human genomes needs to be carried out in a careful balance between the degree of complexity of the approach and the desired accuracy. OBJECTIVE We provide evidence that a simpler approach where age determination is based upon the degree to which the alternative allele is spread among the population can be competitive with more complex methods. METHODS The information contained in the vcf files of Phase 1 of the 1000 Genomes Project combined with the genomic sequences of seven non-human primate species was analyzed. The analyses were supplemented by a computer simulation of the mutational changes in 10,000 model chromosomes with a length of 10,000 nucleotides over a period of 16 million years. The list of the birth dates of the derived alleles of homozygous and heterozygous components of the derived alleles served as a yardstick to estimate the ages of human alternative alleles. RESULTS The age of the derived alleles born in Africa before the "Out of Africa" event and not brought to other continents are estimated to be 0.17 Ma, the derived alleles present simultaneously on all continents are estimated to be 1.3 Ma old and the age of alleles arising in Europe or Asia is 0.06 Ma. CONCLUSION Our approach functions with polymorphisms that respect the "more frequent means older" principle. However, this shortcoming only leads to disagreement with the Atlas of Variant Age in about 20% of cases.
Collapse
|
14
|
GenOrigin: A comprehensive protein-coding gene origination database on the evolutionary timescale of life. J Genet Genomics 2021; 48:1122-1129. [PMID: 34538772 DOI: 10.1016/j.jgg.2021.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/20/2022]
Abstract
The origination of new genes contributes to the biological diversity of life. New genes may quickly build their network, exert important functions, and generate novel phenotypes. Dating gene age and inferring the origination mechanisms of new genes, like primate-specific genes, is the basis for the functional study of the genes. However, no comprehensive resource of gene age estimates across species is available. Here, we systematically date the age of 9,102,113 protein-coding genes from 565 species in the Ensembl and Ensembl Genomes databases, including 82 bacteria, 57 protists, 134 fungi, 58 plants, 56 metazoa, and 178 vertebrates, using a protein-family-based pipeline with Wagner parsimony algorithm. We also collect gene age estimate data from other studies and uniformly distribute the gene age estimates to time ranges in a million years for comparison across studies. All the data are cataloged into GenOrigin (http://genorigin.chenzxlab.cn/), a user-friendly new database of gene age estimates, where users can browse gene age estimates by species, age, and gene ontology. In GenOrigin, the information such as gene age estimates, annotation, gene ontology, ortholog, and paralog, as well as detailed gene presence/absence views for gene age inference based on the species tree with evolutionary timescale, is provided to researchers for exploring gene functions.
Collapse
|
15
|
Gui Q, Deng S, Zhou Z, Cao W, Zhang X, Shi W, Cai X, Jiang W, Cui Z, Hu Z, Chen X. Transcriptome Analysis in Yeast Reveals the Externality of Position Effects. Mol Biol Evol 2021; 38:3294-3307. [PMID: 33871622 PMCID: PMC8321525 DOI: 10.1093/molbev/msab104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The activity of a gene newly integrated into a chromosome depends on the genomic context of the integration site. This “position effect” has been widely reported, although the other side of the coin, that is, how integration affects the local chromosomal environment, has remained largely unexplored, as have the mechanism and phenotypic consequences of this “externality” of the position effect. Here, we examined the transcriptome profiles of approximately 250 Saccharomyces cerevisiae strains, each with GFP integrated into a different locus of the wild-type strain. We found that in genomic regions enriched in essential genes, GFP expression tended to be lower, and the genes near the integration site tended to show greater expression reduction. Further joint analysis with public genome-wide histone modification profiles indicated that this effect was associated with H3K4me2. More importantly, we found that changes in the expression of neighboring genes, but not GFP expression, significantly altered the cellular growth rate. As a result, genomic loci that showed high GFP expression immediately after integration were associated with growth disadvantages caused by elevated expression of neighboring genes, ultimately leading to a low total yield of GFP in the long run. Our results were consistent with competition for transcriptional resources among neighboring genes and revealed a previously unappreciated facet of position effects. This study highlights the impact of position effects on the fate of exogenous gene integration and has significant implications for biological engineering and the pathology of viral integration into the host genome.
Collapse
Affiliation(s)
- Qian Gui
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuyun Deng
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - ZhenZhen Zhou
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Waifang Cao
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xin Zhang
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Shi
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiujuan Cai
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wenbing Jiang
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, Precision Medicine Institute, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zheng Hu
- Department of Obstetrics and Gynecology, Precision Medicine Institute, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshu Chen
- Department of Biology and Medical Genetics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
16
|
Shen P, Xu A, Hou Y, Wang H, Gao C, He F, Yang D. Conserved paradoxical relationships among the evolutionary, structural and expressional features of KRAB zinc-finger proteins reveal their special functional characteristics. BMC Mol Cell Biol 2021; 22:7. [PMID: 33482715 PMCID: PMC7821633 DOI: 10.1186/s12860-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background One striking feature of the large KRAB domain-containing zinc finger protein (KZFP) family is its rapid evolution, leading to hundreds of member genes with various origination time in a certain mammalian genome. However, a comprehensive genome-wide and across-taxa analysis of the structural and expressional features of KZFPs with different origination time is lacking. This type of analysis will provide valuable clues about the functional characteristics of this special family. Results In this study, we found several conserved paradoxical phenomena about this issue. 1) Ordinary young domains/proteins tend to be disordered, but most of KRAB domains are completely structured in 64 representative species across the superclass of Sarcopterygii and most of KZFPs are also highly structured, indicating their rigid and unique structural and functional characteristics; as exceptions, old-zinc-finger-containing KZFPs have relatively disordered KRAB domains and linker regions, contributing to diverse interacting partners and functions. 2) In general, young or highly structured proteins tend to be spatiotemporal specific and have low abundance. However, by integrated analysis of 29 RNA-seq datasets, including 725 samples across early embryonic development, embryonic stem cell differentiation, embryonic and adult organs, tissues in 7 mammals, we found that KZFPs tend to express ubiquitously with medium abundance regardless of evolutionary age and structural disorder degree, indicating the wide functional requirements of KZFPs in various states. 3) Clustering and correlation analysis reveal that there are differential expression patterns across different spatiotemporal states, suggesting the specific-high-expression KZFPs may play important roles in the corresponding states. In particular, part of young-zinc-finger-containing KZFPs are highly expressed in early embryonic development and ESCs differentiation into endoderm or mesoderm. Co-expression analysis revealed that young-zinc-finger-containing KZFPs are significantly enriched in five co-expression modules. Among them, one module, including 13 young-zinc-finger-containing KZFPs, showed an ‘early-high and late-low’ expression pattern. Further functional analysis revealed that they may function in early embryonic development and ESC differentiation via participating in cell cycle related processes. Conclusions This study shows the conserved and special structural, expressional features of KZFPs, providing new clues about their functional characteristics and potential causes of their rapid evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00346-w.
Collapse
Affiliation(s)
- Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Animal Sciences College of Jilin University, Changchun, 130062, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Huqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
17
|
Cardoso-Moreira M, Sarropoulos I, Velten B, Mort M, Cooper DN, Huber W, Kaessmann H. Developmental Gene Expression Differences between Humans and Mammalian Models. Cell Rep 2020; 33:108308. [PMID: 33113372 PMCID: PMC7610014 DOI: 10.1016/j.celrep.2020.108308] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/16/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Identifying the molecular programs underlying human organ development and how they differ from model species is key for understanding human health and disease. Developmental gene expression profiles provide a window into the genes underlying organ development and a direct means to compare them across species. We use a transcriptomic resource covering the development of seven organs to characterize the temporal profiles of human genes associated with distinct disease classes and to determine, for each human gene, the similarity of its spatiotemporal expression with its orthologs in rhesus macaque, mouse, rat, and rabbit. We find clear associations between spatiotemporal profiles and the phenotypic manifestations of diseases. We also find that half of human genes differ from their mouse orthologs in their temporal trajectories in at least one of the organs. These include more than 200 genes associated with brain, heart, and liver disease for which mouse models should undergo extra scrutiny.
Collapse
Affiliation(s)
- Margarida Cardoso-Moreira
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| | - Ioannis Sarropoulos
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Britta Velten
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Matthew Mort
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - David N Cooper
- Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK
| | - Wolfgang Huber
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Zhang D, Guelfi S, Garcia-Ruiz S, Costa B, Reynolds RH, D'Sa K, Liu W, Courtin T, Peterson A, Jaffe AE, Hardy J, Botía JA, Collado-Torres L, Ryten M. Incomplete annotation has a disproportionate impact on our understanding of Mendelian and complex neurogenetic disorders. SCIENCE ADVANCES 2020; 6:eaay8299. [PMID: 32917675 PMCID: PMC7286675 DOI: 10.1126/sciadv.aay8299] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 04/07/2020] [Indexed: 05/02/2023]
Abstract
Growing evidence suggests that human gene annotation remains incomplete; however, it is unclear how this affects different tissues and our understanding of different disorders. Here, we detect previously unannotated transcription from Genotype-Tissue Expression RNA sequencing data across 41 human tissues. We connect this unannotated transcription to known genes, confirming that human gene annotation remains incomplete, even among well-studied genes including 63% of the Online Mendelian Inheritance in Man-morbid catalog and 317 neurodegeneration-associated genes. We find the greatest abundance of unannotated transcription in brain and genes highly expressed in brain are more likely to be reannotated. We explore examples of reannotated disease genes, such as SNCA, for which we experimentally validate a previously unidentified, brain-specific, potentially protein-coding exon. We release all tissue-specific transcriptomes through vizER: http://rytenlab.com/browser/app/vizER We anticipate that this resource will facilitate more accurate genetic analysis, with the greatest impact on our understanding of Mendelian and complex neurogenetic disorders.
Collapse
Affiliation(s)
- David Zhang
- Institute of Neurology, University College London (UCL), London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Sebastian Guelfi
- Institute of Neurology, University College London (UCL), London, UK
| | - Sonia Garcia-Ruiz
- Institute of Neurology, University College London (UCL), London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
| | - Beatrice Costa
- Institute of Neurology, University College London (UCL), London, UK
| | | | - Karishma D'Sa
- Institute of Neurology, University College London (UCL), London, UK
| | - Wenfei Liu
- Institute of Neurology, University College London (UCL), London, UK
| | - Thomas Courtin
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, France
| | - Amy Peterson
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Hardy
- Institute of Neurology, University College London (UCL), London, UK
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK
- NIHR, University College London Hospitals, Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Juan A Botía
- Institute of Neurology, University College London (UCL), London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100 Murcia, Spain
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Mina Ryten
- Institute of Neurology, University College London (UCL), London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK
| |
Collapse
|
19
|
Blondel L, Jones TEM, Extavour CG. Bacterial contribution to genesis of the novel germ line determinant oskar. eLife 2020; 9:e45539. [PMID: 32091394 PMCID: PMC7250577 DOI: 10.7554/elife.45539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022] Open
Abstract
New cellular functions and developmental processes can evolve by modifying existing genes or creating novel genes. Novel genes can arise not only via duplication or mutation but also by acquiring foreign DNA, also called horizontal gene transfer (HGT). Here we show that HGT likely contributed to the creation of a novel gene indispensable for reproduction in some insects. Long considered a novel gene with unknown origin, oskar has evolved to fulfil a crucial role in insect germ cell formation. Our analysis of over 100 insect Oskar sequences suggests that oskar arose de novo via fusion of eukaryotic and prokaryotic sequences. This work shows that highly unusual gene origin processes can give rise to novel genes that may facilitate evolution of novel developmental mechanisms.
Collapse
Affiliation(s)
- Leo Blondel
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Tamsin EM Jones
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
20
|
Ni X, Flynn JJ, Wyss AR, Zhang C. Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids. SCIENCE ADVANCES 2019; 5:eaav7913. [PMID: 31457077 PMCID: PMC6703862 DOI: 10.1126/sciadv.aav7913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Understanding of ancestral conditions for anthropoids has been hampered by the paucity of well-preserved early fossils. Here, we provide an unprecedented view of the cerebral morphology of the 20-million-year-old Chilecebus carrascoensis, the best-preserved early diverging platyrrhine known, obtained via high-resolution CT scanning and 3D digital reconstruction. These analyses are crucial for reconstructing ancestral brain conditions in platyrrhines and anthropoids given the early diverging position of Chilecebus. Although small, the brain of Chilecebus is not lissencephalic and presents at least seven pairs of sulci on its endocast. Comparisons of Chilecebus and other basal anthropoids indicate that the major brain subdivisions of these early anthropoids exhibit no consistent scaling pattern relative to the overall brain size. Many gross cerebral features appear to have transformed in a mosaic fashion and probably have originated in platyrrhine and catarrhine anthropoids independently, involving multiple, independent instances of size increase, as well as some secondary decreases.
Collapse
Affiliation(s)
- Xijun Ni
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi Zhi Men Wai Street, Beijing 100044, China
- Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - John J. Flynn
- Division of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - André R. Wyss
- Department of Earth Science, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Chi Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi Zhi Men Wai Street, Beijing 100044, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| |
Collapse
|
21
|
Zhang JY, Zhou Q. On the Regulatory Evolution of New Genes Throughout Their Life History. Mol Biol Evol 2019; 36:15-27. [PMID: 30395322 DOI: 10.1093/molbev/msy206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Every gene has a birthplace and an age, that is, a cis-regulatory environment and an evolution lifespan since its origination, yet how the two shape the evolution trajectories of genes remains unclear. Here, we address this basic question by comparing phylogenetically dated new genes in the context of both their ages and origination mechanisms. In both Drosophila and vertebrates, we confirm a clear "out of the testis" transition from the specifically expressed young genes to the broadly expressed old housekeeping genes, observed only in testis but not in other tissues. Many new genes have gained important functions during embryogenesis, manifested as either specific activation at maternal-zygotic transition, or different spatiotemporal expressions from their parental genes. These expression patterns are largely driven by an age-dependent evolution of cis-regulatory environment. We discover that retrogenes are more frequently born in a pre-existing repressive regulatory domain, and are more diverged in their enhancer repertoire than the DNA-based gene duplications. During evolution, new gene duplications gradually gain active histone modifications and undergo more enhancer turnovers when becoming older, but exhibit complex trends of gaining or losing repressive histone modifications in Drosophila or vertebrates, respectively. Interestingly, vertebrate new genes exhibit an "into the testis" epigenetic transition that older genes become more likely to be co-occupied by both active and repressive ("bivalent") histone modifications specifically in testis. Our results uncover the regulatory mechanisms underpinning the stepwise acquisition of novel and complex functions by new genes, and illuminate the general evolution trajectory of genes throughout their life history.
Collapse
Affiliation(s)
- Jia-Yu Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qi Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Haploid selection drives new gene male germline expression. Genome Res 2019; 29:1115-1122. [PMID: 31221725 PMCID: PMC6633266 DOI: 10.1101/gr.238824.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 05/31/2019] [Indexed: 11/25/2022]
Abstract
New genes are a major source of novelties, and a disproportionate amount of them are known to show testis expression in later phases of male gametogenesis in different groups such as mammals and plants. Here, we propose that this enhanced expression is a consequence of haploid selection during the latter stages of male gametogenesis. Because emerging adaptive mutations will be fixed faster if their phenotypes are expressed by haploid rather than diploid genotypes, new genes with advantageous functions arising during this unique stage of development have a better chance to become fixed. To test this hypothesis, expression levels of genes of differing evolutionary age were examined at various stages of Drosophila spermatogenesis. We found, consistent with a model based on haploid selection, that new Drosophila genes are both expressed in later haploid phases of spermatogenesis and harbor a significant enrichment of adaptive mutations. Additionally, the observed overexpression of new genes in the latter phases of spermatogenesis was limited to the autosomes. Because all male cells exhibit hemizygous expression for X-linked genes (and therefore effectively haploid), there is no expectation that selection acting on late spermatogenesis will have a different effect on X-linked genes in comparison to initial diploid phases. Together, our proposed hypothesis and the analyzed data suggest that natural selection in haploid cells elucidates several aspects of the origin of new genes by explaining the general prevalence of their testis expression, and a parsimonious solution for new alleles to avoid being lost by genetic drift or pseudogenization.
Collapse
|
23
|
Gain of transcription factor binding sites is associated to changes in the expression signature of human brain and testis and is correlated to genes with higher expression breadth. SCIENCE CHINA-LIFE SCIENCES 2019; 62:526-534. [PMID: 30919278 DOI: 10.1007/s11427-018-9454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/15/2018] [Indexed: 11/26/2022]
Abstract
The gain of transcription factor binding sites (TFBS) is believed to represent one of the major causes of biological innovation. Here we used strategies based on comparative genomics to identify 21,822 TFBS specific to the human lineage (TFBS-HS), when compared to chimpanzee and gorilla genomes. More than 40% (9,206) of these TFBS-HS are in the vicinity of 1,283 genes. A comparison of the expression pattern of these genes and the corresponding orthologs in chimpanzee and gorilla identified genes differentially expressed in human tissues. These genes show a more divergent expression pattern in the human testis and brain, suggesting a role for positive selection in the fixation of TFBS gains. Genes associated with TFBS-HS were enriched in gene ontology categories related to transcriptional regulation, signaling, differentiation/development and nervous system. Furthermore, genes associated with TFBS-HS present a higher expression breadth when compared to genes in general. This biased distribution is due to a preferential gain of TFBS in genes with higher expression breadth rather than a shift in the expression pattern after the gain of TFBS.
Collapse
|
24
|
Origination and evolution of orphan genes and de novo genes in the genome of Caenorhabditis elegans. SCIENCE CHINA-LIFE SCIENCES 2019; 62:579-593. [DOI: 10.1007/s11427-019-9482-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022]
|
25
|
Shao Y, Chen C, Shen H, He BZ, Yu D, Jiang S, Zhao S, Gao Z, Zhu Z, Chen X, Fu Y, Chen H, Gao G, Long M, Zhang YE. GenTree, an integrated resource for analyzing the evolution and function of primate-specific coding genes. Genome Res 2019; 29:682-696. [PMID: 30862647 PMCID: PMC6442393 DOI: 10.1101/gr.238733.118] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
The origination of new genes contributes to phenotypic evolution in humans. Two major challenges in the study of new genes are the inference of gene ages and annotation of their protein-coding potential. To tackle these challenges, we created GenTree, an integrated online database that compiles age inferences from three major methods together with functional genomic data for new genes. Genome-wide comparison of the age inference methods revealed that the synteny-based pipeline (SBP) is most suited for recently duplicated genes, whereas the protein-family–based methods are useful for ancient genes. For SBP-dated primate-specific protein-coding genes (PSGs), we performed manual evaluation based on published PSG lists and showed that SBP generated a conservative data set of PSGs by masking less reliable syntenic regions. After assessing the coding potential based on evolutionary constraint and peptide evidence from proteomic data, we curated a list of 254 PSGs with different levels of protein evidence. This list also includes 41 candidate misannotated pseudogenes that encode primate-specific short proteins. Coexpression analysis showed that PSGs are preferentially recruited into organs with rapidly evolving pathways such as spermatogenesis, immune response, mother–fetus interaction, and brain development. For brain development, primate-specific KRAB zinc-finger proteins (KZNFs) are specifically up-regulated in the mid-fetal stage, which may have contributed to the evolution of this critical stage. Altogether, hundreds of PSGs are either recruited to processes under strong selection pressure or to processes supporting an evolving novel organ.
Collapse
Affiliation(s)
- Yi Shao
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- College of Computers, Hunan University of Technology, Zhuzhou Hunan 412007, China
| | - Bin Z He
- FAS Center for Systems Biology and Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Shilei Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiqiang Gao
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Xi Chen
- Wuhan Institute of Biotechnology, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430072, China
| | - Yan Fu
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Center for Mathematics and Interdisciplinary Sciences, Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Center for Bioinformatics, Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
26
|
Rapid evolution of protein diversity by de novo origination in Oryza. Nat Ecol Evol 2019; 3:679-690. [PMID: 30858588 DOI: 10.1038/s41559-019-0822-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
New protein-coding genes that arise de novo from non-coding DNA sequences contribute to protein diversity. However, de novo gene origination is challenging to study as it requires high-quality reference genomes for closely related species, evidence for ancestral non-coding sequences, and transcription and translation of the new genes. High-quality genomes of 13 closely related Oryza species provide unprecedented opportunities to understand de novo origination events. Here, we identify a large number of young de novo genes with discernible recent ancestral non-coding sequences and evidence of translation. Using pipelines examining the synteny relationship between genomes and reciprocal-best whole-genome alignments, we detected at least 175 de novo open reading frames in the focal species O. sativa subspecies japonica, which were all detected in RNA sequencing-based transcriptomes. Mass spectrometry-based targeted proteomics and ribosomal profiling show translational evidence for 57% of the de novo genes. In recent divergence of Oryza, an average of 51.5 de novo genes per million years were generated and retained. We observed evolutionary patterns in which excess indels and early transcription were favoured in origination with a stepwise formation of gene structure. These data reveal that de novo genes contribute to the rapid evolution of protein diversity under positive selection.
Collapse
|
27
|
Exaptation at the molecular genetic level. SCIENCE CHINA-LIFE SCIENCES 2018; 62:437-452. [PMID: 30798493 DOI: 10.1007/s11427-018-9447-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 12/22/2022]
Abstract
The realization that body parts of animals and plants can be recruited or coopted for novel functions dates back to, or even predates the observations of Darwin. S.J. Gould and E.S. Vrba recognized a mode of evolution of characters that differs from adaptation. The umbrella term aptation was supplemented with the concept of exaptation. Unlike adaptations, which are restricted to features built by selection for their current role, exaptations are features that currently enhance fitness, even though their present role was not a result of natural selection. Exaptations can also arise from nonaptations; these are characters which had previously been evolving neutrally. All nonaptations are potential exaptations. The concept of exaptation was expanded to the molecular genetic level which aided greatly in understanding the enormous potential of neutrally evolving repetitive DNA-including transposed elements, formerly considered junk DNA-for the evolution of genes and genomes. The distinction between adaptations and exaptations is outlined in this review and examples are given. Also elaborated on is the fact that such distinctions are sometimes more difficult to determine; this is a widespread phenomenon in biology, where continua abound and clear borders between states and definitions are rare.
Collapse
|
28
|
Luis Villanueva-Cañas J, Ruiz-Orera J, Agea MI, Gallo M, Andreu D, Albà MM. New Genes and Functional Innovation in Mammals. Genome Biol Evol 2017; 9:1886-1900. [PMID: 28854603 PMCID: PMC5554394 DOI: 10.1093/gbe/evx136] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
The birth of genes that encode new protein sequences is a major source of evolutionary innovation. However, we still understand relatively little about how these genes come into being and which functions they are selected for. To address these questions, we have obtained a large collection of mammalian-specific gene families that lack homologues in other eukaryotic groups. We have combined gene annotations and de novo transcript assemblies from 30 different mammalian species, obtaining ∼6,000 gene families. In general, the proteins in mammalian-specific gene families tend to be short and depleted in aromatic and negatively charged residues. Proteins which arose early in mammalian evolution include milk and skin polypeptides, immune response components, and proteins involved in reproduction. In contrast, the functions of proteins which have a more recent origin remain largely unknown, despite the fact that these proteins also have extensive proteomics support. We identify several previously described cases of genes originated de novo from noncoding genomic regions, supporting the idea that this mechanism frequently underlies the evolution of new protein-coding genes in mammals. Finally, we show that most young mammalian genes are preferentially expressed in testis, suggesting that sexual selection plays an important role in the emergence of new functional genes.
Collapse
Affiliation(s)
- José Luis Villanueva-Cañas
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Present address: Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Jorge Ruiz-Orera
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - M. Isabel Agea
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Maria Gallo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M. Mar Albà
- Evolutionary Genomics Group, Research Programme in Biomedical Informatics, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
29
|
Tian M, Yang W, Zhang J, Dang H, Lu X, Fu C, Miao W. Nonsense-mediated mRNA decay in Tetrahymena is EJC independent and requires a protozoa-specific nuclease. Nucleic Acids Res 2017; 45:6848-6863. [PMID: 28402567 PMCID: PMC5499736 DOI: 10.1093/nar/gkx256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is essential for removing premature termination codon-containing transcripts from cells. Studying the NMD pathway in model organisms can help to elucidate the NMD mechanism in humans and improve our understanding of how this biologically important process has evolved. Ciliates are among the earliest branching eukaryotes; their NMD mechanism is poorly understood and may be primordial. We demonstrate that highly conserved Upf proteins (Upf1a, Upf2 and Upf3) are involved in the NMD pathway of the ciliate, Tetrahymena thermophila. We further show that a novel protozoa-specific nuclease, Smg6L, is responsible for destroying many NMD-targeted transcripts. Transcriptome-wide identification and characterization of NMD-targeted transcripts in vegetative Tetrahymena cells showed that many have exon-exon junctions downstream of the termination codon. However, Tetrahymena may lack a functional exon junction complex (EJC), and the Tetrahymena ortholog of an EJC core component, Mago nashi (Mag1), is dispensable for NMD. Therefore, NMD is EJC independent in this early branching eukaryote.
Collapse
Affiliation(s)
- Miao Tian
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna A-1030, Austria
| | - Wentao Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huai Dang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xingyi Lu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjie Fu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| |
Collapse
|
30
|
Yu D, Shi W, Zhang YE. Underrepresentation of active histone modification marks in evolutionarily young genes. INSECT SCIENCE 2017; 24:174-186. [PMID: 26607206 DOI: 10.1111/1744-7917.12299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 06/05/2023]
Abstract
It is known that evolutionarily new genes can rapidly evolve essential roles in fundamental biological processes. Nevertheless, the underlying molecular mechanism of how they acquire their novel transcriptional pattern is less characterized except for the role of cis-regulatory evolution. Epigenetic modification offers an alternative possibility. Here, we examined how histone modifications have changed among different gene age groups in Drosophila melanogaster by integrative analyses of an updated new gene dataset and published epigenomic data. We found a robust pattern across various datasets where both the coverage and intensity of active histone modifications, histone 3 lysine 4 trimethylation and lysine 36 trimethylation, increased with evolutionary age. Such a temporal correlation is negative and much weaker for the repressive histone mark, lysine 9 trimethylation, which is expected given its major association with heterochromatin. By further comparison with neighboring old genes, the depletion of active marks of new genes could be only partially explained by the local epigenetic context. All these data are consistent with the observation that older genes bear relatively higher expression levels and suggest that the evolution of histone modifications could be implicated in transcriptional evolution after gene birth.
Collapse
Affiliation(s)
- Daqi Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenwen Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
31
|
Klasberg S, Bitard-Feildel T, Mallet L. Computational Identification of Novel Genes: Current and Future Perspectives. Bioinform Biol Insights 2016; 10:121-31. [PMID: 27493475 PMCID: PMC4970615 DOI: 10.4137/bbi.s39950] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/31/2022] Open
Abstract
While it has long been thought that all genomic novelties are derived from the existing material, many genes lacking homology to known genes were found in recent genome projects. Some of these novel genes were proposed to have evolved de novo, ie, out of noncoding sequences, whereas some have been shown to follow a duplication and divergence process. Their discovery called for an extension of the historical hypotheses about gene origination. Besides the theoretical breakthrough, increasing evidence accumulated that novel genes play important roles in evolutionary processes, including adaptation and speciation events. Different techniques are available to identify genes and classify them as novel. Their classification as novel is usually based on their similarity to known genes, or lack thereof, detected by comparative genomics or against databases. Computational approaches are further prime methods that can be based on existing models or leveraging biological evidences from experiments. Identification of novel genes remains however a challenging task. With the constant software and technologies updates, no gold standard, and no available benchmark, evaluation and characterization of genomic novelty is a vibrant field. In this review, the classical and state-of-the-art tools for gene prediction are introduced. The current methods for novel gene detection are presented; the methodological strategies and their limits are discussed along with perspective approaches for further studies.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Tristan Bitard-Feildel
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| | - Ludovic Mallet
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Huefferstrasse 1, Muenster, Germany
| |
Collapse
|
32
|
França GS, Vibranovski MD, Galante PAF. Host gene constraints and genomic context impact the expression and evolution of human microRNAs. Nat Commun 2016; 7:11438. [PMID: 27109497 PMCID: PMC4848552 DOI: 10.1038/ncomms11438] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence has shown that recent miRNAs tend to emerge within coding genes. Here we conjecture that human miRNA evolution is tightly influenced by the genomic context, especially by host genes. Our findings show a preferential emergence of intragenic miRNAs within old genes. We found that miRNAs within old host genes are significantly more broadly expressed than those within young ones. Young miRNAs within old genes are more broadly expressed than their intergenic counterparts, suggesting that young miRNAs have an initial advantage by residing in old genes, and benefit from their hosts' expression control and from the exposure to diverse cellular contexts and target genes. Our results demonstrate that host genes may provide stronger expression constraints to intragenic miRNAs in the long run. We also report associated functional implications, highlighting the genomic context and host genes as driving factors for the expression and evolution of human miRNAs. Recent miRNAs tend to emerge within coding genes. Here, by analysing miRNA expression data from six species and comparing genomes from 13 species, the authors report that host genes may provide stronger expression constraints to intragenic miRNAs in the long run.
Collapse
Affiliation(s)
- Gustavo S França
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Maria D Vibranovski
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, Rua do Matao 277, 05508-090 São Paulo, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, Rua Daher Cutait 69, 01308-060 São Paulo, Brazil
| |
Collapse
|
33
|
Baird A, Costantini T, Coimbra R, Eliceiri BP. Injury, inflammation and the emergence of human-specific genes. Wound Repair Regen 2016; 24:602-6. [PMID: 26874655 PMCID: PMC5021143 DOI: 10.1111/wrr.12422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/08/2016] [Indexed: 12/22/2022]
Abstract
In light of the central role of inflammation in normal wound repair and regeneration, we hypothesize that the preponderance of human‐specific genes expressed in human inflammatory cells is commensurate with the genetic versatility of inflammatory response and the emergence of injuries associated with uniquely hominid behaviors, like a bipedal posture and the use of tools, weapons and fire. The hypothesis underscores the need to study human‐specific signaling pathways in experimental models of injury and infers that a selection of human‐specific genes, driven in part by the response to injury, may have facilitated the emergence of multifunctional genes expressed in other tissues.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Todd Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego School of Medicine, La Jolla, San Diego, California
| |
Collapse
|
34
|
Zhang C, Yang H, Yang H. Evolutionary Character of Alternative Splicing in Plants. Bioinform Biol Insights 2016; 9:47-52. [PMID: 26819552 PMCID: PMC4721685 DOI: 10.4137/bbi.s33716] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/24/2015] [Indexed: 12/21/2022] Open
Abstract
Alternative splicing (AS) is one of the most important ways to enhance the functional diversity of genes. Huge amounts of data have been produced by microarray, expressed sequence tag, and RNA-seq, and plenty of methods have been developed specifically for this task. The most frequently asked questions in previous research were as follows. What is the content rate of AS genes among the whole gene set? How many AS types are presented in the genome, and which type is dominant? How about the conservation ability of AS among different species? Which kinds of isoforms from some genes have the environmental response to help individual adaptation? Based on this background, we collected analysis results from 17 species to try to map out the landscape of AS studies in plants. We have noted the shortages of previous results, and we appeal to all scientists working in the AS field to make a standard protocol so that analyses between different projects are comparable.
Collapse
Affiliation(s)
- Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hong Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Huizhao Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
35
|
Baird A, Coimbra R, Dang X, Eliceiri BP, Costantini TW. Up-regulation of the human-specific CHRFAM7A gene in inflammatory bowel disease. BBA CLINICAL 2016; 5:66-71. [PMID: 27051591 PMCID: PMC4802402 DOI: 10.1016/j.bbacli.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022]
Abstract
Background: The α7-subunit of the α7-nicotinic acetylcholine receptor (α7-nAChR) is an obligatory intermediate for the anti-inflammatory effects of the vagus nerve. But in humans, there exists a second gene called CHRFAM7A that encodes a dominant negative α7-nAChR inhibitor. Here, we investigated whether their expression was altered in inflammatory bowel disease (IBD) and colon cancer. Methods: Quantitative RT-PCR measured gene expression of human α7-nAChR gene (CHRNA7), CHRFAM7A, TBC3D1, and actin in biopsies of normal large and small intestine, and compared to their expression in biopsies of ulcerative colitis, Crohn's disease, and colon cancer. Results: qRT-PCR showed that CHRFAM7A and CHRNA7 gene expression was significantly (p < .02) up-regulated in IBD (N = 64). Gene expression was unchanged in colon cancer. Further analyses revealed that there were differences in ulcerative colitis and Crohn's Disease. Colon biopsies of ulcerative colitis (N = 33) confirmed increased expression of CHRFAM7A and decreased in CHRNA7 expression (p < 0.001). Biopsies of Crohn's disease (N = 31), however, showed only small changes in CHRFAM7A expression (p < 0.04) and no change in CHRNA7. When segregated by tissue source, both CHRFAM7A up-regulation (p < 0.02) and CHRNA7 down-regulation (p < 0.001) were measured in colon, but not in small intestine. Conclusion: The human-specific CHRFAM7A gene is up-regulated, and its target, CHRNA7, down-regulated, in IBD. Differences between ulcerative colitis and Crohn's disease tie to location of disease. Significance: The appearance of IBD in modern humans may be consequent to the emergence of CHRFAM7A, a human-specific α7-nAChR antagonist. CHRFAM7A could present a new, unrecognized target for development of IBD therapeutics. CHRFAM7A is a pro-inflammatory and human-specific gene not found in other species. CHRFAM7A expression is elevated in certain IBD, but its target CHRNA7 decreased. Changes in CHRFAM7A and CHRNA7 expression are disease- and tissue site specific. Some IBDs may be examples of “off-target disease sequelae” of human evolution. Animal modeling of human disease do not test contributions of human-specific genes.
Collapse
Affiliation(s)
- Andrew Baird
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Raul Coimbra
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Xitong Dang
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA, USA; The Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Sichuan Medical University, Luzhou, China
| | - Brian P Eliceiri
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Todd W Costantini
- Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol 2015; 16:188. [PMID: 26353816 PMCID: PMC4563886 DOI: 10.1186/s13059-015-0754-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023] Open
Abstract
Background Bread wheat is not only an important crop, but its large (17 Gb), highly repetitive, and hexaploid genome makes it a good model to study the organization and evolution of complex genomes. Recently, we produced a high quality reference sequence of wheat chromosome 3B (774 Mb), which provides an excellent opportunity to study the evolutionary dynamics of a large and polyploid genome, specifically the impact of single gene duplications. Results We find that 27 % of the 3B predicted genes are non-syntenic with the orthologous chromosomes of Brachypodium distachyon, Oryza sativa, and Sorghum bicolor, whereas, by applying the same criteria, non-syntenic genes represent on average only 10 % of the predicted genes in these three model grasses. These non-syntenic genes on 3B have high sequence similarity to at least one other gene in the wheat genome, indicating that hexaploid wheat has undergone massive small-scale interchromosomal gene duplications compared to other grasses. Insertions of non-syntenic genes occurred at a similar rate along the chromosome, but these genes tend to be retained at a higher frequency in the distal, recombinogenic regions. The ratio of non-synonymous to synonymous substitution rates showed a more relaxed selection pressure for non-syntenic genes compared to syntenic genes, and gene ontology analysis indicated that non-syntenic genes may be enriched in functions involved in disease resistance. Conclusion Our results highlight the major impact of single gene duplications on the wheat gene complement and confirm the accelerated evolution of the Triticeae lineage among grasses. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0754-6) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Wu DD, Ye LQ, Li Y, Sun YB, Shao Y, Chen C, Zhu Z, Zhong L, Wang L, Irwin DM, Zhang YE, Zhang YP. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing. J Mol Cell Biol 2015; 7:314-25. [DOI: 10.1093/jmcb/mjv043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
|
38
|
Costantini TW, Dang X, Yurchyshyna MV, Coimbra R, Eliceiri BP, Baird A. A Human-Specific α7-Nicotinic Acetylcholine Receptor Gene in Human Leukocytes: Identification, Regulation and the Consequences of CHRFAM7A Expression. Mol Med 2015; 21:323-36. [PMID: 25860877 DOI: 10.2119/molmed.2015.00018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/02/2015] [Indexed: 12/30/2022] Open
Abstract
The human genome contains a variant form of the α7-nicotinic acetylcholine receptor (α7nAChR) gene that is uniquely human. This CHRFAM7A gene arose during human speciation and recent data suggests that its expression alters ligand tropism of the normally homopentameric human α7-AChR ligand-gated cell surface ion channel that is found on the surface of many different cell types. To understand its possible significance in regulating inflammation in humans, we investigated its expression in normal human leukocytes and leukocyte cell lines, compared CHRFAM7A expression to that of the CHRNA7 gene, mapped its promoter and characterized the effects of stable CHRFAM7A overexpression. We report here that CHRFAM7A is highly expressed in human leukocytes but that the levels of both CHRFAM7A and CHRNA7 mRNAs were independent and varied widely. To this end, mapping of the CHRFAM7A promoter in its 5'-untranslated region (UTR) identified a unique 1-kb sequence that independently regulates CHRFAM7A gene expression. Because overexpression of CHRFAM7A in THP1 cells altered the cell phenotype and modified the expression of genes associated with focal adhesion (for example, FAK, P13K, Akt, rho, GEF, Elk1, CycD), leukocyte transepithelial migration (Nox, ITG, MMPs, PKC) and cancer (kit, kitL, ras, cFos cyclinD1, Frizzled and GPCR), we conclude that CHRFAM7A is biologically active. Most surprisingly however, stable CHRFAM7A overexpression in THP1 cells upregulated CHRNA7, which, in turn, led to increased binding of the specific α7nAChR ligand, bungarotoxin, on the THP1 cell surface. Taken together, these data confirm the close association between CHRFAM7A and CHRNA7 expression, establish a biological consequence to CHRFAM7A expression in human leukocytes and support the possibility that this human-specific gene might contribute to, and/or gauge, a human-specific response to inflammation.
Collapse
Affiliation(s)
- Todd W Costantini
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Xitong Dang
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America.,Cardiovascular Research Center, Luzhou Medical College, Luzhou, Sichuan, China
| | - Maryana V Yurchyshyna
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Raul Coimbra
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| | - Andrew Baird
- Department of Surgery, University of California San Diego Health Sciences, San Diego, California, United States of America
| |
Collapse
|
39
|
Guillén Y, Rius N, Delprat A, Williford A, Muyas F, Puig M, Casillas S, Ràmia M, Egea R, Negre B, Mir G, Camps J, Moncunill V, Ruiz-Ruano FJ, Cabrero J, de Lima LG, Dias GB, Ruiz JC, Kapusta A, Garcia-Mas J, Gut M, Gut IG, Torrents D, Camacho JP, Kuhn GCS, Feschotte C, Clark AG, Betrán E, Barbadilla A, Ruiz A. Genomics of ecological adaptation in cactophilic Drosophila. Genome Biol Evol 2014; 7:349-66. [PMID: 25552534 PMCID: PMC4316639 DOI: 10.1093/gbe/evu291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cactophilic Drosophila species provide a valuable model to study gene–environment interactions and ecological adaptation. Drosophila buzzatii and Drosophila mojavensis are two cactophilic species that belong to the repleta group, but have very different geographical distributions and primary host plants. To investigate the genomic basis of ecological adaptation, we sequenced the genome and developmental transcriptome of D. buzzatii and compared its gene content with that of D. mojavensis and two other noncactophilic Drosophila species in the same subgenus. The newly sequenced D. buzzatii genome (161.5 Mb) comprises 826 scaffolds (>3 kb) and contains 13,657 annotated protein-coding genes. Using RNA sequencing data of five life-stages we found expression of 15,026 genes, 80% protein-coding genes, and 20% noncoding RNA genes. In total, we detected 1,294 genes putatively under positive selection. Interestingly, among genes under positive selection in the D. mojavensis lineage, there is an excess of genes involved in metabolism of heterocyclic compounds that are abundant in Stenocereus cacti and toxic to nonresident Drosophila species. We found 117 orphan genes in the shared D. buzzatii–D. mojavensis lineage. In addition, gene duplication analysis identified lineage-specific expanded families with functional annotations associated with proteolysis, zinc ion binding, chitin binding, sensory perception, ethanol tolerance, immunity, physiology, and reproduction. In summary, we identified genetic signatures of adaptation in the shared D. buzzatii–D. mojavensis lineage, and in the two separate D. buzzatii and D. mojavensis lineages. Many of the novel lineage-specific genomic features are promising candidates for explaining the adaptation of these species to their distinct ecological niches.
Collapse
Affiliation(s)
- Yolanda Guillén
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Núria Rius
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Alejandra Delprat
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | | | - Francesc Muyas
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Marta Puig
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| | - Sònia Casillas
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Miquel Ràmia
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Raquel Egea
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Barbara Negre
- EMBL/CRG Research Unit in Systems Biology, Centre for Genomic Regulation (CRG), Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gisela Mir
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain The Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Jordi Camps
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - Valentí Moncunill
- Barcelona Supercomputing Center (BSC), Edifici TG (Torre Girona), Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Josefa Cabrero
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | - Leonardo G de Lima
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme B Dias
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jeronimo C Ruiz
- Informática de Biossistemas, Centro de Pesquisas René Rachou-Fiocruz Minas, Belo Horizonte, MG, Brazil
| | - Aurélie Kapusta
- Department of Human Genetics, University of Utah School of Medicine
| | - Jordi Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Barcelona, Spain
| | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico (CNAG), Parc Científic de Barcelona, Torre I, Barcelona, Spain
| | - David Torrents
- Barcelona Supercomputing Center (BSC), Edifici TG (Torre Girona), Barcelona, Spain and Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan P Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | - Gustavo C S Kuhn
- Instituto de Ciências Biológicas, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington
| | - Antonio Barbadilla
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Spain
| | - Alfredo Ruiz
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
40
|
Extensive copy-number variation of young genes across stickleback populations. PLoS Genet 2014; 10:e1004830. [PMID: 25474574 PMCID: PMC4256280 DOI: 10.1371/journal.pgen.1004830] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022] Open
Abstract
Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation. After a locus is duplicated in a genome, individuals from a population instantaneously differ in the number of copies of this locus producing a copy-number variation (CNV). Over time, the joint effects of selection and other evolutionary forces will act to either eliminate the extra genetic copy or retain it. Depending on this evolutionary interplay, young duplications, including newly duplicated genes, can persist for millions of years as CNVs. CNVs may especially be prevalent between populations that have colonized and adapted to disparate environments in which selective pressures differ. Using whole genome sequences from several populations of three-spined sticklebacks that inhabit different environments, we find that a third of young duplicated genes are CNVs. These young CNV genes are enriched with environmental response functions and evolving rapidly at the molecular level, making them promising candidates for a role in the rapid ecological adaptation to novel environments.
Collapse
|
41
|
Zhang YE, Long M. New genes contribute to genetic and phenotypic novelties in human evolution. Curr Opin Genet Dev 2014; 29:90-6. [PMID: 25218862 PMCID: PMC4631527 DOI: 10.1016/j.gde.2014.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/31/2022]
Abstract
New genes in human genomes have been found relevant in evolution and biology of humans. It was conservatively estimated that the human genome encodes more than 300 human-specific genes and 1000 primate-specific genes. These new arrivals appear to be implicated in brain function and male reproduction. Surprisingly, increasing evidence indicates that they may also bring negative pleiotropic effects, while assuming various possible biological functions as sources of phenotypic novelties, suggesting a non-progressive route for functional evolution. Similar to these fixed new genes, polymorphic new genes were found to contribute to functional evolution within species, for example, with respect to digestion or disease resistance, revealing that new genes can acquire new or diverged functions in its initial stage as prototypic genes. These progresses have provided new opportunities to explore the genetic basis of human biology and human evolutionary history in a new dimension.
Collapse
Affiliation(s)
- Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution & State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, USA.
| |
Collapse
|
42
|
Yang H, He BZ, Ma H, Tsaur SC, Ma C, Wu Y, Ting CT, Zhang YE. Expression profile and gene age jointly shaped the genome-wide distribution of premature termination codons in a Drosophila melanogaster population. Mol Biol Evol 2014; 32:216-28. [PMID: 25371429 PMCID: PMC4271532 DOI: 10.1093/molbev/msu299] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Widespread premature termination codon mutations (PTCs) were recently observed in human and fly populations. We took advantage of the population resequencing data in the Drosophila Genetic Reference Panel to investigate how the expression profile and the evolutionary age of genes shaped the allele frequency distribution of PTCs. After generating a high-quality data set of PTCs, we clustered genes harboring PTCs into three categories: genes encoding low-frequency PTCs (≤ 1.5%), moderate-frequency PTCs (1.5-10%), and high-frequency PTCs (>10%). All three groups show narrow transcription compared with PTC-free genes, with the moderate- and high-PTC frequency groups showing a pronounced pattern. Moreover, nearly half (42%) of the PTC-encoding genes are not expressed in any tissue. Interestingly, the moderate-frequency PTC group is strongly enriched for genes expressed in midgut, whereas genes harboring high-frequency PTCs tend to have sex-specific expression. We further find that although young genes born in the last 60 My compose a mere 9% of the genome, they represent 16%, 30%, and 50% of the genes containing low-, moderate-, and high-frequency PTCs, respectively. Among DNA-based and RNA-based duplicated genes, the child copy is approximately twice as likely to contain PTCs as the parent copy, whereas young de novo genes are as likely to encode PTCs as DNA-based duplicated new genes. Based on these results, we conclude that expression profile and gene age jointly shaped the landscape of PTC-mediated gene loss. Therefore, we propose that new genes may need a long time to become stably maintained after the origination.
Collapse
Affiliation(s)
- Haiwang Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Z He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China FAS Center for Systems Biology & Howard Hughes Medical Institute, Harvard University
| | - Huijing Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shun-Chern Tsaur
- Department of Mathematics and Science, National Taiwan Normal University, New Taipei City, Taiwan, Republic of China
| | - Chenyu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chau-Ti Ting
- Department of Life Science, Genome and Systems Biology Degree Program, Institute of Ecology and Evolutionary Biology, Institute of Zoology, and Research Center for Developmental Biology and Regeneration Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yong E Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents & Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Gao G, Vibranovski MD, Zhang L, Li Z, Liu M, Zhang YE, Li X, Zhang W, Fan Q, VanKuren NW, Long M, Wei L. A long-term demasculinization of X-linked intergenic noncoding RNAs in Drosophila melanogaster. Genome Res 2014; 24:629-38. [PMID: 24407956 PMCID: PMC3975062 DOI: 10.1101/gr.165837.113] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have revealed key roles of noncoding RNAs in sex-related pathways, but little is known about the evolutionary forces acting on these noncoding RNAs. Profiling the transcriptome of Drosophila melanogaster with whole-genome tiling arrays found that 15% of male-biased transcribed fragments are intergenic noncoding RNAs (incRNAs), suggesting a potentially important role for incRNAs in sex-related biological processes. Statistical analysis revealed a paucity of male-biased incRNAs and coding genes on the X chromosome, suggesting that similar evolutionary forces could be affecting the genomic organization of both coding and noncoding genes. Expression profiling across germline and somatic tissues further suggested that both male meiotic sex chromosome inactivation (MSCI) and sexual antagonism could contribute to the chromosomal distribution of male-biased incRNAs. Comparative sequence analysis showed that the evolutionary age of male-biased incRNAs is a significant predictor of their chromosomal locations. In addition to identifying abundant sex-biased incRNAs in the fly genome, our work unveils a global picture of the complex interplay between noncoding RNAs and sexual chromosome evolution.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences and Center for Bioinformatics, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhang C, Wang J, Marowsky NC, Long M, Wing RA, Fan C. High occurrence of functional new chimeric genes in survey of rice chromosome 3 short arm genome sequences. Genome Biol Evol 2013; 5:1038-48. [PMID: 23651622 PMCID: PMC3673630 DOI: 10.1093/gbe/evt071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In an effort to identify newly evolved genes in rice, we searched the genomes of Asian-cultivated rice Oryza sativa ssp. japonica and its wild progenitors, looking for lineage-specific genes. Using genome pairwise comparison of approximately 20-Mb DNA sequences from the chromosome 3 short arm (Chr3s) in six rice species, O. sativa, O. nivara, O. rufipogon, O. glaberrima, O. barthii, and O. punctata, combined with synonymous substitution rate tests and other evidence, we were able to identify potential recently duplicated genes, which evolved within the last 1 Myr. We identified 28 functional O. sativa genes, which likely originated after O. sativa diverged from O. glaberrima. These genes account for around 1% (28/3,176) of all annotated genes on O. sativa's Chr3s. Among the 28 new genes, two recently duplicated segments contained eight genes. Fourteen of the 28 new genes consist of chimeric gene structure derived from one or multiple parental genes and flanking targeting sequences. Although the majority of these 28 new genes were formed by single or segmental DNA-based gene duplication and recombination, we found two genes that were likely originated partially through exon shuffling. Sequence divergence tests between new genes and their putative progenitors indicated that new genes were most likely evolving under natural selection. We showed all 28 new genes appeared to be functional, as suggested by Ka/Ks analysis and the presence of RNA-seq, cDNA, expressed sequence tag, massively parallel signature sequencing, and/or small RNA data. The high rate of new gene origination and of chimeric gene formation in rice may demonstrate rice's broad diversification, domestication, its environmental adaptation, and the role of new genes in rice speciation.
Collapse
Affiliation(s)
- Chengjun Zhang
- Department of Ecology and Evolution, University of Chicago, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.
Collapse
Affiliation(s)
- Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637;
| | | | | | | |
Collapse
|
46
|
Araújo AR, Reis M, Rocha H, Aguiar B, Morales-Hojas R, Macedo-Ribeiro S, Fonseca NA, Reboiro-Jato D, Reboiro-Jato M, Fdez-Riverola F, Vieira CP, Vieira J. The Drosophila melanogaster methuselah gene: a novel gene with ancient functions. PLoS One 2013; 8:e63747. [PMID: 23696853 PMCID: PMC3655951 DOI: 10.1371/journal.pone.0063747] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 01/10/2023] Open
Abstract
The Drosophila melanogaster G protein-coupled receptor gene, methuselah (mth), has been described as a novel gene that is less than 10 million years old. Nevertheless, it shows a highly specific expression pattern in embryos, larvae, and adults, and has been implicated in larval development, stress resistance, and in the setting of adult lifespan, among others. Although mth belongs to a gene subfamily with 16 members in D. melanogaster, there is no evidence for functional redundancy in this subfamily. Therefore, it is surprising that a novel gene influences so many traits. Here, we explore the alternative hypothesis that mth is an old gene. Under this hypothesis, in species distantly related to D. melanogaster, there should be a gene with features similar to those of mth. By performing detailed phylogenetic, synteny, protein structure, and gene expression analyses we show that the D. virilis GJ12490 gene is the orthologous of mth in species distantly related to D. melanogaster. We also show that, in D. americana (a species of the virilis group of Drosophila), a common amino acid polymorphism at the GJ12490 orthologous gene is significantly associated with developmental time, size, and lifespan differences. Our results imply that GJ12490 orthologous genes are candidates for developmental time and lifespan differences in Drosophila in general.
Collapse
Affiliation(s)
- Ana Rita Araújo
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Micael Reis
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Helder Rocha
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Bruno Aguiar
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Nuno A. Fonseca
- Center of Research in Advanced Computing Systems (CRACS-INESC Porto), Universidade do Porto, Porto, Portugal
- EMBL-European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | | | | | | | - Cristina P. Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
47
|
Wu DD, Zhang YP. Evolution and function of de novo originated genes. Mol Phylogenet Evol 2013; 67:541-5. [DOI: 10.1016/j.ympev.2013.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 01/08/2023]
|
48
|
Abstract
A new study in this issue of Genome Biology sheds light on why some pseudogenes persist in rodent, and other mammalian, genomes. Please see related Research article by Marques et al http://genomebiology.com/2012/13/11/R102
Collapse
|
49
|
Abstract
A new study in this issue of Genome Biology sheds light on why some pseudogenes persist in rodent, and other mammalian, genomes.
Collapse
|