1
|
Araki R, Suga T, Hoki Y, Imadome K, Sunayama M, Kamimura S, Fujita M, Abe M. iPS cell generation-associated point mutations include many C > T substitutions via different cytosine modification mechanisms. Nat Commun 2024; 15:4946. [PMID: 38862540 PMCID: PMC11166658 DOI: 10.1038/s41467-024-49335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
Genomic aberrations are a critical impediment for the safe medical use of iPSCs and their origin and developmental mechanisms remain unknown. Here we find through WGS analysis of human and mouse iPSC lines that genomic mutations are de novo events and that, in addition to unmodified cytosine base prone to deamination, the DNA methylation sequence CpG represents a significant mutation-prone site. CGI and TSS regions show increased mutations in iPSCs and elevated mutations are observed in retrotransposons, especially in the AluY subfamily. Furthermore, increased cytosine to thymine mutations are observed in differentially methylated regions. These results indicate that in addition to deamination of cytosine, demethylation of methylated cytosine, which plays a central role in genome reprogramming, may act mutagenically during iPSC generation.
Collapse
Affiliation(s)
- Ryoko Araki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Tomo Suga
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Hoki
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kaori Imadome
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Misato Sunayama
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Kamimura
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Fujita
- Stem Cell Biology Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masumi Abe
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan.
| |
Collapse
|
2
|
Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieroń AL. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 2023; 11:1205122. [PMID: 37456734 PMCID: PMC10348904 DOI: 10.3389/fbioe.2023.1205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Diak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Gutmajster
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Trybus
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Rozwadowska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L. Sieroń
- Formerly Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Cox BJ, Naismith K. Here and there a trophoblast, a transcriptional evaluation of trophoblast cell models. Cell Mol Life Sci 2022; 79:584. [PMID: 36346530 PMCID: PMC11803051 DOI: 10.1007/s00018-022-04589-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
A recent explosion of methods to produce human trophoblast and stem cells (hTSCs) is fuelling a renewed interest in this tissue. The trophoblast is critical to reproduction by facilitating implantation, maternal physiological adaptations to pregnancy and the growth of the fetus through transport of nutrients between the mother and fetus. More broadly, the trophoblast has phenotypic properties that make it of interest to other fields. Its angiogenic and invasive properties are similar to tumours and could identify novel drug targets, and its ability to regulate immunological tolerance of the allogenic fetus could lead to improvements in transplantations. Within this review, we integrate and assess transcriptomic data of cell-based models of hTSC alongside in vivo samples to identify the utility and applicability of these models. We also integrate single-cell RNA sequencing data sets of human blastoids, stem cells and embryos to identify how these models may recapitulate early trophoblast development.
Collapse
Affiliation(s)
- Brian J Cox
- Department of Physiology, University of Toronto, 1 King's College Circle, MS 3360, Toronto, ON, M6J2J2, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
| | - Kendra Naismith
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
4
|
Moon JE, Lawrence JB. Chromosome silencing in vitro reveals trisomy 21 causes cell-autonomous deficits in angiogenesis and early dysregulation in Notch signaling. Cell Rep 2022; 40:111174. [PMID: 35947952 PMCID: PMC9505374 DOI: 10.1016/j.celrep.2022.111174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/24/2021] [Accepted: 07/18/2022] [Indexed: 11/28/2022] Open
Abstract
Despite the prevalence of Down syndrome (DS), little is known regarding the specific cell pathologies that underlie this multi-system disorder. To understand which cell types and pathways are more directly affected by trisomy 21 (T21), we used an inducible-XIST system to silence one chromosome 21 in vitro. T21 caused the dysregulation of Notch signaling in iPSCs, potentially affecting cell-type programming. Further analyses identified dysregulation of pathways important for two cell types: neurogenesis and angiogenesis. Angiogenesis is essential to many bodily systems, yet is understudied in DS; therefore, we focused next on whether T21 affects endothelial cells. An in vitro assay for microvasculature formation revealed a cellular pathology involving delayed tube formation in response to angiogenic signals. Parallel transcriptomic analysis of endothelia further showed deficits in angiogenesis regulators. Results indicate a direct cell-autonomous impact of T21 on endothelial function, highlighting the importance of angiogenesis, with wide-reaching implications for development and disease progression. Moon and Lawrence examine the immediate effects of trisomy 21 silencing and find angiogenesis and neurogenesis pathways, including Notch signaling, affected as early as pluripotency. In endothelial cells, functional analyses show that trisomy delays the angiogenic response for microvessel formation and transcriptomics show a parallel impact on angiogenic regulators and signal-response and cytoskeleton processes.
Collapse
Affiliation(s)
- Jennifer E Moon
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Department of Pediatrics, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
5
|
Nikitina TV, Kashevarova AA, Gridina MM, Lopatkina ME, Khabarova AA, Yakovleva YS, Menzorov AG, Minina YA, Pristyazhnyuk IE, Vasilyev SA, Fedotov DA, Serov OL, Lebedev IN. Complex biology of constitutional ring chromosomes structure and (in)stability revealed by somatic cell reprogramming. Sci Rep 2021; 11:4325. [PMID: 33619287 PMCID: PMC7900208 DOI: 10.1038/s41598-021-83399-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Human ring chromosomes are often unstable during mitosis, and daughter cells can be partially or completely aneuploid. We studied the mitotic stability of four ring chromosomes, 8, 13, 18, and 22, in long-term cultures of skin fibroblasts and induced pluripotent stem cells (iPSCs) by GTG karyotyping and aCGH. Ring chromosome loss and secondary aberrations were observed in all fibroblast cultures except for r(18). We found monosomy, fragmentation, and translocation of indexed chromosomes. In iPSCs, aCGH revealed striking differences in mitotic stability both between iPSC lines with different rings and, in some cases, between cell lines with the same ring chromosome. We registered the spontaneous rescue of karyotype 46,XY,r(8) to 46,XY in all six iPSC lines through ring chromosome loss and intact homologue duplication with isoUPD(8)pat occurrence, as proven by SNP genotype distribution analysis. In iPSCs with other ring chromosomes, karyotype correction was not observed. Our results suggest that spontaneous correction of the karyotype with ring chromosomes in iPSCs is not universal and that pluripotency is compatible with a wide range of derivative karyotypes. We conclude that marked variability in the frequency of secondary rearrangements exists in both fibroblast and iPSC cultures, expanding the clinical significance of the constitutional ring chromosome.
Collapse
Affiliation(s)
- T V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.
| | - A A Kashevarova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - M M Gridina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - M E Lopatkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - A A Khabarova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - Yu S Yakovleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - A G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Yu A Minina
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - I E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia
| | - S A Vasilyev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia
| | - D A Fedotov
- Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| | - O L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Ushaika Street 10, Tomsk, 634050, Russia.,Department of Medical Genetics, Siberian State Medical University, Tomsk, 634050, Russia
| |
Collapse
|
6
|
Panopoulos AD, D'Antonio M, Benaglio P, Williams R, Hashem SI, Schuldt BM, DeBoever C, Arias AD, Garcia M, Nelson BC, Harismendy O, Jakubosky DA, Donovan MKR, Greenwald WW, Farnam K, Cook M, Borja V, Miller CA, Grinstein JD, Drees F, Okubo J, Diffenderfer KE, Hishida Y, Modesto V, Dargitz CT, Feiring R, Zhao C, Aguirre A, McGarry TJ, Matsui H, Li H, Reyna J, Rao F, O'Connor DT, Yeo GW, Evans SM, Chi NC, Jepsen K, Nariai N, Müller FJ, Goldstein LSB, Izpisua Belmonte JC, Adler E, Loring JF, Berggren WT, D'Antonio-Chronowska A, Smith EN, Frazer KA. iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports 2017; 8:1086-1100. [PMID: 28410642 PMCID: PMC5390244 DOI: 10.1016/j.stemcr.2017.03.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 11/18/2022] Open
Abstract
Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines.
Collapse
Affiliation(s)
- Athanasia D Panopoulos
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roy Williams
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA; Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sherin I Hashem
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard M Schuldt
- Zentrum für Integrative Psychiatrie, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany
| | - Christopher DeBoever
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Angelo D Arias
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Melvin Garcia
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bradley C Nelson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivier Harismendy
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - David A Jakubosky
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Margaret K R Donovan
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - William W Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - KathyJean Farnam
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan Cook
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Borja
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carl A Miller
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan D Grinstein
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frauke Drees
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jonathan Okubo
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Yuriko Hishida
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Veronica Modesto
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carl T Dargitz
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rachel Feiring
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Chang Zhao
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aitor Aguirre
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas J McGarry
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - He Li
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joaquin Reyna
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fangwen Rao
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel T O'Connor
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sylvia M Evans
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Neil C Chi
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Franz-Josef Müller
- Zentrum für Integrative Psychiatrie, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Eric Adler
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeanne F Loring
- Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - W Travis Berggren
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Erin N Smith
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Clinical potential of human-induced pluripotent stem cells : Perspectives of induced pluripotent stem cells. Cell Biol Toxicol 2016; 33:99-112. [PMID: 27900567 DOI: 10.1007/s10565-016-9370-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Abstract
The recent establishment of induced pluripotent stem (iPS) cells promises the development of autologous cell therapies for degenerative diseases, without the ethical concerns associated with human embryonic stem (ES) cells. Initially, iPS cells were generated by retroviral transduction of somatic cells with core reprogramming genes. To avoid potential genotoxic effects associated with retroviral transfection, more recently, alternative non-viral gene transfer approaches were developed. Before a potential clinical application of iPS cell-derived therapies can be planned, it must be ensured that the reprogramming to pluripotency is not associated with genome mutagenesis or epigenetic aberrations. This may include direct effects of the reprogramming method or "off-target" effects associated with the reprogramming or the culture conditions. Thus, a rigorous safety testing of iPS or iPS-derived cells is imperative, including long-term studies in model animals. This will include not only rodents but also larger mammalian model species to allow for assessing long-term stability of the transplanted cells, functional integration into the host tissue, and freedom from undifferentiated iPS cells. Determination of the necessary cell dose is also critical; it is assumed that a minimum of 1 billion transplantable cells is required to achieve a therapeutic effect. This will request medium to long-term in vitro cultivation and dozens of cell divisions, bearing the risk of accumulating replication errors. Here, we review the clinical potential of human iPS cells and evaluate which are the most suitable approaches to overcome or minimize risks associated with the application of iPS cell-derived cell therapies.
Collapse
|
8
|
Kim T, Plona K, Wynshaw-Boris A. A novel system for correcting large-scale chromosomal aberrations: ring chromosome correction via reprogramming into induced pluripotent stem cell (iPSC). Chromosoma 2016; 126:457-463. [PMID: 27882407 DOI: 10.1007/s00412-016-0621-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 01/20/2023]
Abstract
Approximately 1 in 500 newborns are born with chromosomal abnormalities that include trisomies, translocations, large deletions, and duplications. There is currently no therapeutic approach for correcting such chromosomal aberrations in vivo or in vitro. When we attempted to produce induced pluripotent stem cell (iPSC) models from patient-derived fibroblasts that contained ring chromosomes, we found that the ring chromosomes were eliminated and replaced by duplicated normal copies of chromosomes through a mechanism of uniparental isodisomy (Bershteyn et al. 2014, Nature 507:99). The discovery of this previously unforeseen system for aberrant chromosome correction during reprogramming enables us for the first time to model and understand this process of cell-autonomous correction of ring chromosomes during human patient somatic cell reprograming to iPSCs. This knowledge could lead to a potential therapeutic strategy to correct common large-scale chromosomal aberrations, termed "chromosome therapy".
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kathleen Plona
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Osorio MJ, Rowitch DH, Tesar P, Wernig M, Windrem MS, Goldman SA. Concise Review: Stem Cell-Based Treatment of Pelizaeus-Merzbacher Disease. Stem Cells 2016; 35:311-315. [PMID: 27882623 DOI: 10.1002/stem.2530] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 06/25/2016] [Indexed: 01/16/2023]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an X-linked disorder caused by mutation in the proteolipid protein-1 (PLP1) gene, which encodes the proteolipid protein of myelinating oligodendroglia. PMD exhibits phenotypic variability that reflects its considerable genotypic heterogeneity, but all forms of the disease result in central hypomyelination, associated in most cases with early neurological dysfunction, progressive deterioration, and ultimately death. PMD may present as a connatal, classic and transitional forms, or as the less severe spastic paraplegia type 2 and PLP-null phenotypes. These disorders are most often associated with duplications of the PLP1 gene, but can also be caused by coding and noncoding point mutations as well as full or partial deletion of the gene. A number of genetically-distinct but phenotypically-similar disorders of hypomyelination exist which, like PMD, lack any effective therapy. Yet as relatively pure CNS hypomyelinating disorders, with limited involvement of the PNS and relatively little attendant neuronal pathology, PMD and similar hypomyelinating disorders are attractive therapeutic targets for neural stem cell and glial progenitor cell transplantation, efforts at which are now underway in a number of research centers. Stem Cells 2017;35:311-315.
Collapse
Affiliation(s)
- M Joana Osorio
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - David H Rowitch
- Departments of Pediatrics and Neurosurgery, UCSF School of Medicine and Broad Center for Regenerative Medicine, San Francisco, California, USA
| | - Paul Tesar
- Department of Genetics and Genome Sciences, Case Western Reserve School of Medicine, Cleveland, Ohio, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Martha S Windrem
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Steven A Goldman
- Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
10
|
Araki R, Sugiura M, Hoki Y, Sunayama M, Nakamura M, Kasama Y, Abe M. Induced pluripotent stem cell generation-associated point mutationsy. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Ryoko Araki
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Sugiura
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Yuko Hoki
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Misato Sunayama
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Miki Nakamura
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Yasuji Kasama
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | - Masumi Abe
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
11
|
Re A, Workman CT, Waldron L, Quattrone A, Brunak S. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells. Stem Cell Res 2014; 13:316-28. [PMID: 25173649 DOI: 10.1016/j.scr.2014.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/25/2014] [Accepted: 07/26/2014] [Indexed: 11/25/2022] Open
Abstract
The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs.
Collapse
Affiliation(s)
- Angela Re
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Via delle Regole 101, I38123 Trento, Italy; Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark
| | - Christopher T Workman
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark
| | - Levi Waldron
- City University of New York School of Public Health, Hunter College, 2180 3rd Avenue, NY 10035, USA
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Via delle Regole 101, I38123 Trento, Italy.
| | - Søren Brunak
- Center for Biological Sequence Analysis, Technical University of Denmark, Kemitorvet, DK2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, DK2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Krutá M, Šeneklová M, Raška J, Salykin A, Zerzánková L, Pešl M, Bártová E, Franek M, Baumeisterová A, Košková S, Neelsen KJ, Hampl A, Dvořák P, Rotrekl V. Mutation frequency dynamics in HPRT locus in culture-adapted human embryonic stem cells and induced pluripotent stem cells correspond to their differentiated counterparts. Stem Cells Dev 2014; 23:2443-54. [PMID: 24836366 DOI: 10.1089/scd.2013.0611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The genomic destabilization associated with the adaptation of human embryonic stem cells (hESCs) to culture conditions or the reprogramming of induced pluripotent stem cells (iPSCs) increases the risk of tumorigenesis upon the clinical use of these cells and decreases their value as a model for cell biology studies. Base excision repair (BER), a major genomic integrity maintenance mechanism, has been shown to fail during hESC adaptation. Here, we show that the increase in the mutation frequency (MF) caused by the inhibition of BER was similar to that caused by the hESC adaptation process. The increase in MF reflected the failure of DNA maintenance mechanisms and the subsequent increase in MF rather than being due solely to the accumulation of mutants over a prolonged period, as was previously suggested. The increase in the ionizing-radiation-induced MF in adapted hESCs exceeded the induced MF in nonadapted hESCs and differentiated cells. Unlike hESCs, the overall DNA maintenance in iPSCs, which was reflected by the MF, was similar to that in differentiated cells regardless of the time spent in culture and despite the upregulation of several genes responsible for genome maintenance during the reprogramming process. Taken together, our results suggest that the changes in BER activity during the long-term cultivation of hESCs increase the mutagenic burden, whereas neither reprogramming nor long-term propagation in culture changes the MF in iPSCs.
Collapse
Affiliation(s)
- Miriama Krutá
- 1 Department of Biology, Faculty of Medicine, Masaryk University , Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bershteyn M, Hayashi Y, Desachy G, Hsiao EC, Sami S, Tsang KM, Weiss LA, Kriegstein AR, Yamanaka S, Wynshaw-Boris A. Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells. Nature 2014; 507:99-103. [PMID: 24413397 PMCID: PMC4030630 DOI: 10.1038/nature12923] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/29/2013] [Indexed: 12/18/2022]
Abstract
Ring chromosomes are structural aberrations commonly associated with birth defects, mental disabilities and growth retardation. Rings form after fusion of the long and short arms of a chromosome, and are sometimes associated with large terminal deletions. Owing to the severity of these large aberrations that can affect multiple contiguous genes, no possible therapeutic strategies for ring chromosome disorders have been proposed. During cell division, ring chromosomes can exhibit unstable behaviour leading to continuous production of aneuploid progeny with low viability and high cellular death rate. The overall consequences of this chromosomal instability have been largely unexplored in experimental model systems. Here we generated human induced pluripotent stem cells (iPSCs) from patient fibroblasts containing ring chromosomes with large deletions and found that reprogrammed cells lost the abnormal chromosome and duplicated the wild-type homologue through the compensatory uniparental disomy (UPD) mechanism. The karyotypically normal iPSCs with isodisomy for the corrected chromosome outgrew co-existing aneuploid populations, enabling rapid and efficient isolation of patient-derived iPSCs devoid of the original chromosomal aberration. Our results suggest a fundamentally different function for cellular reprogramming as a means of 'chromosome therapy' to reverse combined loss-of-function across many genes in cells with large-scale aberrations involving ring structures. In addition, our work provides an experimentally tractable human cellular system for studying mechanisms of chromosomal number control, which is of critical relevance to human development and disease.
Collapse
Affiliation(s)
- Marina Bershteyn
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco (UCSF), CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco (UCSF), CA, USA
| | - Yohei Hayashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Guillaume Desachy
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Edward C. Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism and Institute for Human Genetics, CA, UCSF
| | - Salma Sami
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | - Kathryn M. Tsang
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Lauren A. Weiss
- Department of Psychiatry, Institute for Human Genetics, UCSF, CA, USA
| | - Arnold R. Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco (UCSF), CA, USA
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Reprogramming Science, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Anthony Wynshaw-Boris
- Institute for Human Genetics and Department of Pediatrics, University of California San Francisco (UCSF), CA, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland OH, USA
| |
Collapse
|
14
|
Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2014; 13:149-59. [PMID: 23910082 DOI: 10.1016/j.stem.2013.07.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine. However, recent studies on the genetic and epigenetic variations in iPSCs have raised concerns that these variations may compromise the utility of iPSCs. In this Perspective, we review the current understanding of genetic and epigenetic variations in iPSCs, trace their causes, discuss the implications of these variations for iPSC applications, and propose approaches to cope with these variations.
Collapse
Affiliation(s)
- Gaoyang Liang
- Howard Hughes Medical Institute, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Sugiura M, Kasama Y, Araki R, Hoki Y, Sunayama M, Uda M, Nakamura M, Ando S, Abe M. Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports 2014; 2:52-63. [PMID: 24511470 PMCID: PMC3916761 DOI: 10.1016/j.stemcr.2013.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 01/26/2023] Open
Abstract
A large number of point mutations have been identified in induced pluripotent stem cell (iPSC) genomes to date. Whether these mutations are associated with iPSC generation is an important and controversial issue. In this study, we approached this critical issue in different ways, including an assessment of iPSCs versus embryonic stem cells (ESCs), and an investigation of variant allele frequencies and the heterogeneity of point mutations within a single iPSC clone. Through these analyses, we obtained strong evidence that iPSC-generation-associated point mutations occur frequently in a transversion-predominant manner just after the onset of cell lineage conversion. The heterogeneity of the point mutation profiles within an iPSC clone was also revealed and reflects the history of the emergence of each mutation. Further, our results suggest a possible approach for establishing iPSCs with fewer point mutations. iPSCs versus ESCs—an obvious difference in the frequency and mode of point mutations A large number of iPSC generation-associated, not preexisting, point mutations Heterogeneity of point mutation profiles in an iPSC clone No common point mutations among iPSC clones
Collapse
Affiliation(s)
- Mayumi Sugiura
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yasuji Kasama
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ryoko Araki
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yuko Hoki
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Misato Sunayama
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masahiro Uda
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Miki Nakamura
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Shunsuke Ando
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masumi Abe
- Transcriptome Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
16
|
Watanabe A, Amano N, Tokunaga Y, Poolsap U, Yamanaka S. Evaluation of safety of induced pluripotent stem cells by genome integrity. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
18
|
Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell 2013. [PMID: 23910082 DOI: 10.1016/j.stem.2013.07.001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability to reprogram somatic cells to induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine. However, recent studies on the genetic and epigenetic variations in iPSCs have raised concerns that these variations may compromise the utility of iPSCs. In this Perspective, we review the current understanding of genetic and epigenetic variations in iPSCs, trace their causes, discuss the implications of these variations for iPSC applications, and propose approaches to cope with these variations.
Collapse
Affiliation(s)
- Gaoyang Liang
- Howard Hughes Medical Institute, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Faiz M, Nagy A. Induced Pluripotent Stem Cells and Disorders of the Nervous System: Progress, Problems, and Prospects. Neuroscientist 2013; 19:567-577. [PMID: 23797497 DOI: 10.1177/1073858413493148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advances in cellular reprograming have shown that the delivery of specific transcription factors can result in the shift of one cell type to another. Brief forced expression of the four Yamanaka reprogramming factors (Klf4, Sox2, c-Myc, and Oct4) is able to convert many cell types into induced pluripotent stem cells, whereas some lineage specific transcription factors can convert cells from one type directly to another. Numerous strategies have already been developed for deriving neural cell types, with the hopes of better understanding/alleviating neurodegenerative disease. These cells facilitate drug discovery and constitute an autologous source of cells for brain repair, thus, avoiding rejection issues faced by allografts derived from embryonic stem cells. However, proper characterization of the various types of reprogrammed cells and an understanding of how these cells acquire neural fate is necessary before their translation into the clinic. Here, we review the progress, problems, and prospects with reprogrammed cell types with regards to neurodegenerative disease.
Collapse
Affiliation(s)
- Maryam Faiz
- 1Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Millard SM, Fisk NM. Mesenchymal stem cells for systemic therapy: Shotgun approach or magic bullets? Bioessays 2012. [DOI: 10.1002/bies.201200087] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|