1
|
Oliveira LS, Oliveira-Silva JM, Almeida-Souza HO, Martins MM, Chiminazo CB, Fonseca R, Souza CVED, Aissa AF, Bastos LM, Ionta M, Almeida Lima GDD, Castro-Gamero AM. HDAC6 inhibition through WT161 synergizes with temozolomide, induces apoptosis, reduces cell motility, and decreases β-catenin levels in glioblastoma cells. Invest New Drugs 2025; 43:223-242. [PMID: 39954199 DOI: 10.1007/s10637-025-01508-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Glioblastoma multiforme (GBM) accounts for 70% of all primary malignancies of the central nervous system. Current treatment strategies involve surgery followed by chemotherapy with temozolomide (TMZ); however, the median survival after treatment is approximately 15 months. Many GBM cases develop resistance to TMZ, resulting in a poor prognosis for patients, which underscores the urgent need for novel therapeutic approaches. One promising avenue is the inhibition of histone deacetylase 6 (HDAC6), an enzyme that deacetylates α-tubulin and is increasingly recognized as a potential pharmacological target in cancer. In GBM specifically, HDAC6 overexpression has been linked to poor prognosis and chemoresistance. In this study, we demonstrate that HDAC6 protein levels are elevated in GBM and evaluate the effects of the novel selective HDAC6 inhibitor, WT161, on U251, U87, and T98G cells to assess its potential to revert the malignant phenotype. Our results show a significant increase in acetylated α-tubulin levels, suppression of cell growth, cell cycle arrest at the G2/M phase, and decreased clonogenicity of 2D-cultured GBM cells. Additionally, WT161 acted synergistically with TMZ, induced apoptosis and enhanced TMZ-induced apoptosis. Notably, HDAC6 inhibition resulted in reduced cell migration and invasion, associated with decreased β-catenin levels. When cultured in 3D conditions, WT161-treated T98G spheroids were sensitized to TMZ and exhibited reduced migration. Finally, HDAC6 inhibition altered the metabolome, particularly affecting metabolites associated with lipid peroxidation. In conclusion, our data reveal, for the first time, the efficacy of the selective HDAC6 inhibitor WT161 in a preclinical GBM setting.
Collapse
Affiliation(s)
- Leilane Sales Oliveira
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - João Marcos Oliveira-Silva
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Hebreia Oliveira Almeida-Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Carolina Berraut Chiminazo
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | | | - Alexandre Ferro Aissa
- Division of Genetics, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Luciana Machado Bastos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Graziela Domingues de Almeida Lima
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
2
|
Mbogo I, Kawano C, Nakamura R, Tsuchiya Y, Villar-Briones A, Hirao Y, Yasuoka Y, Hayakawa E, Tomii K, Watanabe H. A transphyletic study of metazoan β-catenin protein complexes. ZOOLOGICAL LETTERS 2024; 10:20. [PMID: 39623505 PMCID: PMC11613877 DOI: 10.1186/s40851-024-00243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/06/2024]
Abstract
Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.
Collapse
Affiliation(s)
- Ivan Mbogo
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Sysmex Corporation, Ltd. 1-5-1, Chuo-ku, Kobe, 651-0073, Japan
| | - Chihiro Kawano
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ryotaro Nakamura
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuko Tsuchiya
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Project Planning and Implementation Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yoshitoshi Hirao
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eisuke Hayakawa
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4, Kawazu, Iizuka, 820-8502, Fukuoka, Japan
| | - Kentaro Tomii
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
3
|
Sadlecki P, Walentowicz-Sadlecka M. Molecular landscape of borderline ovarian tumours: A systematic review. Open Med (Wars) 2024; 19:20240976. [PMID: 38859878 PMCID: PMC11163159 DOI: 10.1515/med-2024-0976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 06/12/2024] Open
Abstract
Borderline ovarian tumours (BOTs) show intriguing characteristics distinguishing them from other ovarian tumours. The aim of the systematic review was to analyse the spectrum of molecular changes found in BOTs and discuss their significance in the context of the overall therapeutic approach. The systematic review included articles published between 2000 and 2023 in the databases: PubMed, EMBASE, and Cochrane. After a detailed analysis of the available publications, we qualified for the systematic review: 28 publications on proto-oncogenes: BRAF, KRAS, NRAS, ERBB2, and PIK3CA, 20 publications on tumour suppressor genes: BRCA1/2, ARID1A, CHEK2, PTEN, 4 on adhesion molecules: CADM1, 8 on proteins: B-catenin, claudin-1, and 5 on glycoproteins: E-Cadherin. In addition, in the further part of the systematic review, we included eight publications on microsatellite instability and three describing loss of heterozygosity in BOT. Molecular changes found in BOTs can vary on a case-by-case basis, identifying carcinogenic mutations through molecular analysis and developing targeted therapies represent significant advancements in the diagnosis and treatment of ovarian malignancies. Molecular studies have contributed significantly to our understanding of BOT pathogenesis, but substantial research is still required to elucidate the relationship between ovarian neoplasms and extraneous disease, identify accurate prognostic indicators, and develop targeted therapeutic approaches.
Collapse
Affiliation(s)
- Pawel Sadlecki
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Medical Department, University of Science and Technology, Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, Regional Polyclinical Hospital, Grudziadz, Poland
| |
Collapse
|
4
|
Xu Y, Yu Y, Yan R, Ke X, Qu Y. Modulating β-catenin homeostasis for cancer therapy. Trends Cancer 2024; 10:507-518. [PMID: 38521655 DOI: 10.1016/j.trecan.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
β-Catenin is a well-established driver of many cancers; however, there are challenges in developing agents targeting β-catenin for clinical use. Recent progress has indicated that most of the pathological changes in β-catenin may be commonly caused by loss of protein homeostasis. Modulation of β-catenin homeostasis, especially by hyperactivation of β-catenin, potentially leads to robust antitumor outcomes. Here, we comprehensively dissect the protein homeostasis of β-catenin in terms of time, compartmentalization, supramolecular assemblies, and dynamics, with emphasis on changes in β-catenin homeostasis upon oncogenic mutations. We propose that altered β-catenin homeostasis could be deleterious for β-catenin-dependent cancers and that modulation of β-catenin homeostasis offers a novel avenue for targeting β-catenin for cancer therapy.
Collapse
Affiliation(s)
- Yu Xu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Ying Yu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Rong Yan
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xisong Ke
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| | - Yi Qu
- Center for Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China.
| |
Collapse
|
5
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
6
|
Nucleation of the destruction complex on the centrosome accelerates degradation of β-catenin and regulates Wnt signal transmission. Proc Natl Acad Sci U S A 2022; 119:e2204688119. [PMID: 36037369 PMCID: PMC9457612 DOI: 10.1073/pnas.2204688119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) governs a variety of mesoscale cellular processes. However, less is known about how cells utilize LLPS to drive cellular function. Here, we examined the destruction complex (DC), an organelle which controls Wnt signaling and whose components phase separate. Through a combination of advanced microscopy, CRISPR, computational modeling, and optogenetics, we find that the DC is nucleated by the centrosome and that this nucleation drives efficient signal transduction. Our work not only uncovers a biological function for LLPS but also highlights nucleation as a general method for controlling the function of intracellular condensates. Finally, our findings suggest a thermodynamic coupling between Wnt signal transduction and the cell cycle which could lead to insights into Wnt-driven cancers. Wnt signal transduction is controlled by the destruction complex (DC), a condensate comprising scaffold proteins and kinases that regulate β-catenin stability. Overexpressed DC scaffolds undergo liquid–liquid phase separation (LLPS), but DC mesoscale organization at endogenous expression levels and its role in β-catenin processing were previously unknown. Here, we find that DC LLPS is nucleated by the centrosome. Through a combination of CRISPR-engineered custom fluorescent tags, finite element simulations, and optogenetic tools that allow for manipulation of DC concentration and multivalency, we find that centrosomal nucleation drives processing of β-catenin by colocalizing DC components to a single reaction crucible. Enriching GSK3β partitioning on the centrosome controls β-catenin processing and prevents Wnt-driven embryonic stem cell differentiation to mesoderm. Our findings demonstrate the role of nucleators in controlling biomolecular condensates and suggest tight integration between Wnt signal transduction and the cell cycle.
Collapse
|
7
|
Yu JE, Kim S, Hwang J, Hong JT, Hwang J, Soung N, Cha‐Molstad H, Kwon YT, Kim BY, Lee KH. Phosphorylation of β-catenin Ser60 by polo-like kinase 1 drives the completion of cytokinesis. EMBO Rep 2021; 22:e51503. [PMID: 34585824 PMCID: PMC8647012 DOI: 10.15252/embr.202051503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
β-Catenin is a multifunctional protein and participates in numerous processes required for embryonic development, cell proliferation, and homeostasis through various molecular interactions and signaling pathways. To date, however, there is no direct evidence that β-catenin contributes to cytokinesis. Here, we identify a novel p-S60 epitope on β-catenin generated by Plk1 kinase activity, which can be found at the actomyosin contractile ring of early telophase cells and at the midbody of late telophase cells. Depletion of β-catenin leads to cytokinesis-defective phenotypes, which eventually result in apoptotic cell death. In addition, phosphorylation of β-catenin Ser60 by Plk1 is essential for the recruitment of Ect2 to the midbody, activation of RhoA, and interaction between β-catenin, Plk1, and Ect2. Time-lapse image analysis confirmed the importance of β-catenin phospho-Ser60 in furrow ingression and the completion of cytokinesis. Taken together, we propose that phosphorylation of β-catenin Ser60 by Plk1 in cooperation with Ect2 is essential for the completion of cytokinesis. These findings may provide fundamental knowledge for the research of cytokinesis failure-derived human diseases.
Collapse
Affiliation(s)
- Ji Eun Yu
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Sun‐Ok Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Jeong‐Ah Hwang
- Department of PhysiologyResearch Institute of Medical SciencesCollege of MedicineChungnam National UniversityDaejeonKorea
| | - Jin Tae Hong
- Department of Drug Discovery and DevelopmentCollege of PharmacyChungbuk National UniversityCheongjuKorea
| | - Joonsung Hwang
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Nak‐Kyun Soung
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Hyunjoo Cha‐Molstad
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical SciencesCollege of MedicineSeoul National UniversitySeoulKorea
| | - Bo Yeon Kim
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
- Department of Biomolecular ScienceUniversity of Science and TechnologyDaejeonKorea
| | - Kyung Ho Lee
- Anticancer Agent Research CenterKorea Research Institute of Bioscience and Biotechnology (KRIBB)OchangChungbukKorea
| |
Collapse
|
8
|
Rivera-Rivera Y, Marina M, Jusino S, Lee M, Velázquez JV, Chardón-Colón C, Vargas G, Padmanabhan J, Chellappan SP, Saavedra HI. The Nek2 centrosome-mitotic kinase contributes to the mesenchymal state, cell invasion, and migration of triple-negative breast cancer cells. Sci Rep 2021; 11:9016. [PMID: 33907253 PMCID: PMC8079711 DOI: 10.1038/s41598-021-88512-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Nek2 (NIMA-related kinase 2) is a serine/threonine-protein kinase that localizes to centrosomes and kinetochores, controlling centrosome separation, chromosome attachments to kinetochores, and the spindle assembly checkpoint. These processes prevent centrosome amplification (CA), mitotic dysfunction, and chromosome instability (CIN). Our group and others have suggested that Nek2 maintains high levels of CA/CIN, tumor growth, and drug resistance. We identified that Nek2 overexpression correlates with poor survival of breast cancer. However, the mechanisms driving these phenotypes are unknown. We now report that overexpression of Nek2 in MCF10A cells drives CA/CIN and aneuploidy. Besides, enhanced levels of Nek2 results in larger 3D acinar structures, but could not initiate tumors in a p53+/+ or a p53-/- xenograft model. Nek2 overexpression induced the epithelial-to-mesenchymal transition (EMT) while its downregulation reduced the expression of the mesenchymal marker vimentin. Furthermore, either siRNA-mediated downregulation or INH6's chemical inhibition of Nek2 in MDA-MB-231 and Hs578t cells showed important EMT changes and decreased invasion and migration. We also showed that Slug and Zeb1 are involved in Nek2 mediated EMT, invasion, and migration. Besides its role in CA/CIN, Nek2 contributes to breast cancer progression through a novel EMT mediated mechanism.
Collapse
Affiliation(s)
- Yainyrette Rivera-Rivera
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Mihaela Marina
- MediTech Media, Two Ravinia Drive, Suite 605, Atlanta, GA, 30346, USA
| | - Shirley Jusino
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Miyoung Lee
- Department of Pediatrics, Aflac Cancer and Blood Disorder Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jaleisha Vélez Velázquez
- Department of Biology, University of Puerto Rico-Ponce, 2151 Santiago de los Caballeros Avenue, Ponce, 00716, Puerto Rico
| | - Camille Chardón-Colón
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Geraldine Vargas
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico
| | - Jaya Padmanabhan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Harold I Saavedra
- Division of Pharmacology and Cancer Biology, Department of Basic Sciences, Ponce Health Sciences University/Ponce Research Institute, PO Box 7004, Ponce, 00716-2348, Puerto Rico.
| |
Collapse
|
9
|
The Impact of Drosophila Awd/NME1/2 Levels on Notch and Wg Signaling Pathways. Int J Mol Sci 2020; 21:ijms21197257. [PMID: 33019537 PMCID: PMC7582475 DOI: 10.3390/ijms21197257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/18/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023] Open
Abstract
Awd, the Drosophila homologue of NME1/2 metastasis suppressors, plays key roles in many signaling pathways. Mosaic analysis of the null awdJ2A4 allele showed that loss of awd gene function blocks Notch signaling and the expression of its target genes including the Wingless (Wg/Wnt1) morphogen. We also showed that RNA interference (RNAi)-mediated awd silencing (awdi) in larval wing disc leads to chromosomal instability (CIN) and to Jun amino-terminal kinases (JNK)-mediated cell death. Here we show that this cell death is independent of p53 activity. Based on our previous finding showing that forced survival of awdi-CIN cells leads to aneuploidy without the hyperproliferative effect, we investigated the Wg expression in awdi wing disc cells. Interestingly, the Wg protein is expressed in its correct dorso-ventral domain but shows an altered cellular distribution which impairs its signaling. Further, we show that RNAi-mediated knock down of awd in wing discs does not affect Notch signaling. Thus, our analysis of the hypomorphic phenotype arising from awd downregulation uncovers a dose-dependent effect of Awd in Notch and Wg signaling.
Collapse
|
10
|
Pal A, Ashworth JC, Collier P, Probert C, Jones S, Leza EP, Meakin ML, A. Ritchie A, Onion D, Clarke PA, Allegrucci C, Grabowska AM. A 3D Heterotypic Breast Cancer Model Demonstrates a Role for Mesenchymal Stem Cells in Driving a Proliferative and Invasive Phenotype. Cancers (Basel) 2020; 12:E2290. [PMID: 32824003 PMCID: PMC7465555 DOI: 10.3390/cancers12082290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023] Open
Abstract
Previous indirect 2D co-culture studies have demonstrated that mesenchymal stem cells (MSCs) promote breast cancer (BC) progression through secretion of paracrine factors including growth factors, cytokines and chemokines. In order to investigate this aspect of the tumour microenvironment in a more relevant 3D co-culture model, spheroids incorporating breast cancer cells (BCCs), both cell lines and primary BCCs expanded as patient-derived xenografts, and MSCs were established. MSCs in co-cultures were shown to enhance proliferation of estrogen receptor (ER)/progesterone receptor (PR)-positive BCCs. In addition, co-culture resulted in downregulation of E-cadherin in parallel with upregulation of the epithelial-mesenchymal transition (EMT)-relation transcription factor, SNAIL. Cytoplasmic relocalization of ski-related novel protein N (SnON), a negative regulator of transforming growth factor-beta (TGF-β) signalling, and of β-catenin, involved in a number of pathways including Wnt signalling, was also observed in BCCs in co-cultures in contrast to monocultures. In addition, the β-catenin inhibitor, 3-[[(4-methylphenyl)sulfonyl]amino]-benzoic acid methyl ester (MSAB), mediated reduced growth and invasion in the co-cultures. This study highlights the potential role for SnON as a biomarker for BC invasiveness, and the importance of interactions between TGF-β and Wnt signalling, involving SnON. Such pathways may contribute towards identifying possible targets for therapeutic intervention in BC patients.
Collapse
Affiliation(s)
- Amarnath Pal
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Jennifer C. Ashworth
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Pamela Collier
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Catherine Probert
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Sal Jones
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Eduardo Pernaut Leza
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Marian L. Meakin
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Alison A. Ritchie
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - David Onion
- Flow Cytometry Facility, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;
| | - Philip A Clarke
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| | - Cinzia Allegrucci
- SVMS, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna M. Grabowska
- Ex Vivo Cancer Pharmacology Centre, Division of Cancer and Stem Cells, Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.P.); (J.C.A.); (P.C.); (C.P.); (S.J.); (E.P.L.); (M.L.M.); (A.A.R.); (P.A.C.)
| |
Collapse
|
11
|
Osman MA, Antonisamy WJ, Yakirevich E. IQGAP1 control of centrosome function defines distinct variants of triple negative breast cancer. Oncotarget 2020; 11:2493-2511. [PMID: 32655836 PMCID: PMC7335670 DOI: 10.18632/oncotarget.27623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is a heterogenous and lethal disease that lacks diagnostic markers and therapeutic targets; as such common targets are highly sought after. IQGAP1 is a signaling scaffold implicated in TNBC, but its mechanism is unknown. Here we show that IQGAP1 localizes to the centrosome, interacts with and influences the expression level and localization of key centrosome proteins like BRCA1 and thereby impacts centrosome number. Genetic mutant analyses suggest that phosphorylation cycling of IQGAP1 is important to its subcellular localization and centrosome-nuclear shuttling of BRCA1; dysfunction of this process defines two alternate mechanisms associated with cell proliferation. TNBC cell lines and patient tumor tissues differentially phenocopy these mechanisms supporting clinical existence of molecularly distinct variants of TNBC defined by IQGAP1 pathways. These variants are defined, at least in part, by differential mis-localization or stabilization of IQGAP1-BRCA1 and rewiring of a novel Erk1/2-MNK1-JNK-Akt-β-catenin signaling signature. We discuss a model in which IQGAP1 modulates centrosome-nuclear crosstalk to regulate cell division and imparts on cancer. These findings have implications on cancer racial disparities and can provide molecular tools for classification of TNBC, presenting IQGAP1 as a common target amenable to personalized medicine.
Collapse
Affiliation(s)
- Mahasin A. Osman
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - William James Antonisamy
- Department of Medicine, Division of Oncology, Health Sciences Campus, University of Toledo, Toledo, OH 43614, USA
| | - Evgeny Yakirevich
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
12
|
Vora SM, Fassler JS, Phillips BT. Centrosomes are required for proper β-catenin processing and Wnt response. Mol Biol Cell 2020; 31:1951-1961. [PMID: 32583737 PMCID: PMC7525817 DOI: 10.1091/mbc.e20-02-0139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is central to metazoan development and routinely dysregulated in cancer. Wnt/β-catenin signaling initiates transcriptional reprogramming upon stabilization of the transcription factor β-catenin, which is otherwise posttranslationally processed by a destruction complex and degraded by the proteasome. Since various Wnt signaling components are enriched at centrosomes, we examined the functional contribution of centrosomes to Wnt signaling, β-catenin regulation, and posttranslational modifications. In HEK293 cells depleted of centrosomes we find that β-catenin synthesis and degradation rates are unaffected but that the normal accumulation of β-catenin in response to Wnt signaling is attenuated. This is due to accumulation of a novel high-molecular-weight form of phosphorylated β-catenin that is constitutively degraded in the absence of Wnt. Wnt signaling operates by inhibiting the destruction complex and thereby reducing destruction complex–phosphorylated β-catenin, but high-molecular-weight β-catenin is unexpectedly increased by Wnt signaling. Therefore these studies have identified a pool of β-catenin effectively shielded from regulation by Wnt. We present a model whereby centrosomes prevent inappropriate β-catenin modifications that antagonize normal stabilization by Wnt signals.
Collapse
Affiliation(s)
- Setu M Vora
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| | - Bryan T Phillips
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
| |
Collapse
|
13
|
Xie M, Cai L, Li J, Zhao J, Guo Y, Hou Z, Zhang X, Tian H, Li A, Miao Y. FAM110B Inhibits Non-Small Cell Lung Cancer Cell Proliferation and Invasion Through Inactivating Wnt/β-Catenin Signaling. Onco Targets Ther 2020; 13:4373-4384. [PMID: 32547070 PMCID: PMC7245470 DOI: 10.2147/ott.s247491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE FAM110B is a member of the FAM110 family (family with sequence similarity 110), which is a component of the centrosome associated proteins. Previous studies have shown that FAM110B may be involved in the process of cell cycle and may play a role in carcinogenesis and tumor progression. Using an online database, we found that FAM110B may predict favorable prognosis in non-small cell lung cancer (NSCLC). Therefore, the role of FAM110B playing in NSCLC needs to be further investigated. PATIENTS AND METHODS Online databases and immunohistochemistry were used to predict the expression and prognostic value of FAM110B in NSCLC samples. Immunofluorescence staining was used to investigate the subcellular distribution of FAM110B. Western blot, MTT, colony formation, and matrigel invasion assay were used to detect the expression and the effect of FAM110B on mediating proliferation and invasion in NSCLC cell lines. RESULTS In this study, immunohistochemistry results showed that FAM110B expression significantly correlated with early TNM staging (P=0.020) and negative regional lymph node metastasis (P=0.006). Kaplan-Meier survival analysis found that the median survival time of patients with positive FAM110B expression (56.181±2.348 months) was significantly longer than those with negative FAM110B expression (47.701±2.997 months, P=0.024). Moreover, overexpression of FAM110B inhibited the proliferation and invasion of A549, H1299, and LK2 cell lines. Conversely, FAM110B RNAi exerted opposite effects in the above cell lines. Furthermore, FAM110B overexpression downregulated the active β-catenin, phosphorylation of GSK-3β (p-GSK-3β), cyclin B1, cyclin D1, MMP2, and MMP7, and upregulated the phosphorylation of β-catenin (p-β-catenin) in A549 and H1299 cells. Besides, the FAM110B-induced depressions of p-GSK-3β and active β-catenin were reversed after being treated with Wnt/β-catenin inhibitor, XAV-939. CONCLUSION In summary, our results demonstrated that the overexpression of FAM110B restricts the proliferation and invasion of NSCLC cells by inhibiting Wnt/β-catenin signaling. Our study reveals the antitumor function of FAM110B in NSCLC and indicates that FAM110B is a potential therapeutic target.
Collapse
Affiliation(s)
- Menghua Xie
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lin Cai
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jingduo Li
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Jing Zhao
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yingxue Guo
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zaiyu Hou
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiupeng Zhang
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Hua Tian
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ailin Li
- Department of Radiotherapy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yuan Miao
- Department of Pathology, The College of Basic Medical Sciences and The First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
14
|
Weiner AT, Seebold DY, Torres-Gutierrez P, Folker C, Swope RD, Kothe GO, Stoltz JG, Zalenski MK, Kozlowski C, Barbera DJ, Patel MA, Thyagarajan P, Shorey M, Nye DMR, Keegan M, Behari K, Song S, Axelrod JD, Rolls MM. Endosomal Wnt signaling proteins control microtubule nucleation in dendrites. PLoS Biol 2020; 18:e3000647. [PMID: 32163403 PMCID: PMC7067398 DOI: 10.1371/journal.pbio.3000647] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Dendrite microtubules are polarized with minus-end-out orientation in Drosophila neurons. Nucleation sites concentrate at dendrite branch points, but how they localize is not known. Using Drosophila, we found that canonical Wnt signaling proteins regulate localization of the core nucleation protein γTubulin (γTub). Reduction of frizzleds (fz), arrow (low-density lipoprotein receptor-related protein [LRP] 5/6), dishevelled (dsh), casein kinase Iγ, G proteins, and Axin reduced γTub-green fluorescent protein (GFP) at branch points, and two functional readouts of dendritic nucleation confirmed a role for Wnt signaling proteins. Both dsh and Axin localized to branch points, with dsh upstream of Axin. Moreover, tethering Axin to mitochondria was sufficient to recruit ectopic γTub-GFP and increase microtubule dynamics in dendrites. At dendrite branch points, Axin and dsh colocalized with early endosomal marker Rab5, and new microtubule growth initiated at puncta marked with fz, dsh, Axin, and Rab5. We propose that in dendrites, canonical Wnt signaling proteins are housed on early endosomes and recruit nucleation sites to branch points.
Collapse
Affiliation(s)
- Alexis T. Weiner
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dylan Y. Seebold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pedro Torres-Gutierrez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christin Folker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Rachel D. Swope
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory O. Kothe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jessica G. Stoltz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Madeleine K. Zalenski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christopher Kozlowski
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dylan J. Barbera
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mit A. Patel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Pankajam Thyagarajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Shorey
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Derek M. R. Nye
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Keegan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kana Behari
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Melissa M. Rolls
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
15
|
Li Y, Chen L, Feng L, Zhu M, Shen Q, Fang Y, Liu X, Zhang X. NEK2 promotes proliferation, migration and tumor growth of gastric cancer cells via regulating KDM5B/H3K4me3. Am J Cancer Res 2019; 9:2364-2378. [PMID: 31815040 PMCID: PMC6895449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
The mechanisms of how Never in Mitosis (NIMA) Related Kinase 2 (NEK2) coordinates altered signaling to malignant gastric cancer (GC) transformation remain unclear. Overexpression of NEK2 and KDM5B were observed in GC cell lines with high sensitivity to NEK2 inhibitors. Here we investigated the biological behaviors of NEK2 and the possible mechanisms of regulative effects of NEK2 on KDM5B in GC cell lines both in vitro and in vivo. The results showed that NEK2 and KDM5B were highly expressed in most of the 10 GC cell lines. NEK2 knockdown in MGC-803 cells led to suppression of cell proliferation and migration in vitro and tumor growth in vivo, while NEK2 overexpression in BGC-823 cells exhibited the reverse biological effect. When NEK2 was inhibited by NEK2 inhibitors or shNEK2, cellular KDM5B level decreased and H3K4me3 level increased, while overexpression of NEK2 resulted in enhanced KDM5B expression and decreased H3K4me3 level. Though direct interaction between NEK2 and KDM5B was excluded, NEK2 could regulate KDM5B/H3K4me3 expression through β-catenin/Myc both in vitro and in vivo, which was double confirmed by c-myc and KDM5B inhibitor experiments. Taken together, our study showed that NEK2 was highly expressed in GC cell lines and related to promoting cell proliferation, migration and tumor growth. A NEK2/β-catenin/Myc/KDM5B/H3K4me3 signaling pathway may contribute to the important carcinogenic role of NEK2-mediated malignant behaviors in GC.
Collapse
Affiliation(s)
- Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lijuan Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Lixing Feng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Mengli Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| | - Qiang Shen
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Yanfen Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
- Division of Anti-Tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghai 201203, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal UniversityShanghai 200062, China
| |
Collapse
|
16
|
Bornens M. [Cell polarity and the innovation of the primary cilium/centrosome organ in Metazoa]. Med Sci (Paris) 2019; 35:452-461. [PMID: 31115328 DOI: 10.1051/medsci/2019092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is inherited from ancestral unicellular organisms. We assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception and that the integration of these two activities corresponds to an evolutionary constrained cell function. While conserving the ancestral flagellum, Metazoans have co-opted a primary cilium/centrosome organ from it, ensuring similar functions, but in different cells, or in the same cell at different moments. We propose that the remodeling necessary to reach a new higher-level unit of selection in multi-cellular organisms, has been triggered by conflicts among individual cell polarities to reach an organismic polarity. We shall provisionally conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans has far reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, Université de recherche Paris-Sciences-et-Lettres, CNRS - UMR 144, 26, rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
17
|
Xu W, Gao P, Zhang Y, Piao L, Dong D. microRNA-138 induces cell survival and reduces WNT/β-catenin signaling of osteoarthritis chondrocytes through NEK2. IUBMB Life 2019; 71:1355-1366. [PMID: 31034758 DOI: 10.1002/iub.2050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by joint pain, stiffness, and function degeneration with high incidence. Recent studies have been inspired based on the association between microRNAs (miRs) and therapeutic research of OA. Hence, the present study evaluates the effects of miR-138 on chondrocyte proliferation, differentiation, and apoptosis through the WNT/β-catenin signaling pathway in mice with OA by binding to NIMA-related kinase 2 (NEK2). Appropriate dataset was selected from the Gene Expression Omnibus database, and differentially expressed genes and potential miRNAs that could regulate NEK2 were explored. A mouse model of OA was established. The expressions of miR-138, NEK2, β-catenin, GSK3β, Bcl-2, Bcl-2-associated X protein (Bax), p53, MMP-13, Col2, and Aggrecan and the phosphorylation levels of β-catenin were determined by the reverse transcription quantitative polymerase chain reaction and Western blot analysis. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and flow cytometry were employed to detect cell proliferation and apoptosis, respectively. The potential functional role of NEK2 was revealed to be related to the WNT/β-catenin signaling pathway, and miR-138 was the putative regulator of NEK2. miR-138 expression was downregulated while expressions of NEK2 and β-catenin as well as the phosphorylation levels of β-catenin were upregulated in mice with OA. The chondrocytes treated with miR-138 mimic and siRNA-NEK2 exhibited reduced expressions of NEK2, β-catenin, MMP-13, Bax, and p53 and elevated expressions of Col2, Aggrecan, and Bcl-2 as well as phosphorylation levels of β-catenin along with enhanced chondrocytes' proliferation and suppressed cell apoptosis. Overexpression of miR-138 induces cell survival and reduces WNT/β-catenin signaling of OA chondrocytes through NEK2. © 2019 IUBMB Life, 71(9):1355-1366, 2019.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Peihong Gao
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yan Zhang
- Jilin Province Population Life Science and Technology Research Institute, Changchun, People's Republic of China
| | - Li Piao
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Dong Dong
- Department of Radiology, The First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Pedone E, Marucci L. Role of β-Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes (Basel) 2019; 10:genes10020176. [PMID: 30823613 PMCID: PMC6410200 DOI: 10.3390/genes10020176] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Cells have developed numerous adaptation mechanisms to external cues by controlling signaling-pathway activity, both qualitatively and quantitatively. The Wnt/β-catenin pathway is a highly conserved signaling pathway involved in many biological processes, including cell proliferation, differentiation, somatic cell reprogramming, development, and cancer. The activity of the Wnt/β-catenin pathway and the temporal dynamics of its effector β-catenin are tightly controlled by complex regulations. The latter encompass feedback loops within the pathway (e.g., a negative feedback loop involving Axin2, a β-catenin transcriptional target) and crosstalk interactions with other signaling pathways. Here, we provide a review shedding light on the coupling between Wnt/β-catenin activation levels and fluctuations across processes and cellular systems; in particular, we focus on development, in vitro pluripotency maintenance, and cancer. Possible mechanisms originating Wnt/β-catenin dynamic behaviors and consequently driving different cellular responses are also reviewed, and new avenues for future research are suggested.
Collapse
Affiliation(s)
- Elisa Pedone
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
| | - Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1UB, UK.
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK.
- BrisSynBio, Bristol, BS8 1TQ, UK.
| |
Collapse
|
19
|
Schaefer KN, Peifer M. Wnt/Beta-Catenin Signaling Regulation and a Role for Biomolecular Condensates. Dev Cell 2019; 48:429-444. [PMID: 30782412 PMCID: PMC6386181 DOI: 10.1016/j.devcel.2019.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022]
Abstract
Wnt/β-Catenin signaling plays key roles in tissue homeostasis and cell fate decisions in embryonic and post-embryonic development across the animal kingdom. As a result, pathway mutations are associated with developmental disorders and many human cancers. The multiprotein destruction complex keeps signaling off in the absence of Wnt ligands and needs to be downregulated for pathway activation. We discuss new insights into destruction complex activity and regulation, highlighting parallels to the control of other cell biological processes by biomolecular condensates that form by phase separation to suggest that the destruction complex acts as a biomolecular condensate in Wnt pathway regulation.
Collapse
Affiliation(s)
- Kristina N Schaefer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
20
|
Abstract
The cytoskeleton is crucially important for the assembly of cell-cell junctions and the homeostatic regulation of their functions. Junctional proteins act, in turn, as anchors for cytoskeletal filaments, and as regulators of cytoskeletal dynamics and signalling proteins. The cross-talk between junctions and the cytoskeleton is critical for the morphogenesis and physiology of epithelial and other tissues, but is not completely understood. Microtubules are implicated in the delivery of junctional proteins to cell-cell contact sites, in the differentiation and spatial organization of the cytoplasm, and in the stabilization of the barrier and adhesive functions of junctions. Here we focus on the relationships between microtubules and junctions of vertebrate epithelial cells. We highlight recent discoveries on the molecular underpinnings of microtubule-junction interactions, and report new data about the interaction of cingulin and paracingulin with microtubules. We also propose a possible new role of junctions as “molecular sinks” for microtubule-associated signalling proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| | - Sandra Citi
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| |
Collapse
|
21
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
22
|
Nardi F, Fitchev P, Franco OE, Ivanisevic J, Scheibler A, Hayward SW, Brendler CB, Welte MA, Crawford SE. PEDF regulates plasticity of a novel lipid-MTOC axis in prostate cancer-associated fibroblasts. J Cell Sci 2018; 131:jcs.213579. [PMID: 29792311 DOI: 10.1242/jcs.213579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Prostate tumors make metabolic adaptations to ensure adequate energy and amplify cell cycle regulators, such as centrosomes, to sustain their proliferative capacity. It is not known whether cancer-associated fibroblasts (CAFs) undergo metabolic re-programming. We postulated that CAFs augment lipid storage and amplify centrosomal or non-centrosomal microtubule-organizing centers (MTOCs) through a pigment epithelium-derived factor (PEDF)-dependent lipid-MTOC signaling axis. Primary human normal prostate fibroblasts (NFs) and CAFs were evaluated for lipid content, triacylglycerol-regulating proteins, MTOC number and distribution. CAFs were found to store more neutral lipids than NFs. Adipose triglyceride lipase (ATGL) and PEDF were strongly expressed in NFs, whereas CAFs had minimal to undetectable levels of PEDF or ATGL protein. At baseline, CAFs demonstrated MTOC amplification when compared to 1-2 perinuclear MTOCs consistently observed in NFs. Treatment with PEDF or blockade of lipogenesis suppressed lipid content and MTOC number. In summary, our data support that CAFs have acquired a tumor-like phenotype by re-programming lipid metabolism and amplifying MTOCs. Normalization of MTOCs by restoring PEDF or by blocking lipogenesis highlights a previously unrecognized plasticity in centrosomes, which is regulated through a new lipid-MTOC axis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Francesca Nardi
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Philip Fitchev
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Omar E Franco
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Jelena Ivanisevic
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Adrian Scheibler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Simon W Hayward
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Charles B Brendler
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| | - Michael A Welte
- Department of Biology, University of Rochester, Rochester, NY 14627, United States
| | - Susan E Crawford
- Department of Surgery, NorthShore University Research Institute, Affiliate of University of Chicago Pritzker School of Medicine, Evanston, IL 60201, United States
| |
Collapse
|
23
|
Bhardwaj D, Náger M, Visa A, Sallán MC, Coopman PJ, Cantí C, Herreros J. Phosphorylated Tyr142 β‐catenin localizes to centrosomes and is regulated by Syk. J Cell Biochem 2018; 119:3632-3640. [DOI: 10.1002/jcb.26571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 11/28/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Deepshikha Bhardwaj
- Department of Basic Medical SciencesUniversity of Lleida. IRBLleidaLleidaSpain
| | - Mireia Náger
- Department of Basic Medical SciencesUniversity of Lleida. IRBLleidaLleidaSpain
| | - Anna Visa
- Department of Experimental MedicineUniversity of Lleida. IRBLleidaLleidaSpain
| | - Marta C. Sallán
- Department of Experimental MedicineUniversity of Lleida. IRBLleidaLleidaSpain
| | - Peter J. Coopman
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194Université Montpellier, ICM, CNRSMontpellierFrance
| | - Carles Cantí
- Department of Experimental MedicineUniversity of Lleida. IRBLleidaLleidaSpain
| | - Judit Herreros
- Department of Basic Medical SciencesUniversity of Lleida. IRBLleidaLleidaSpain
| |
Collapse
|
24
|
Yang K, Tylkowski MA, Hüber D, Contreras CT, Hoyer-Fender S. ODF2/Cenexin maintains centrosome cohesion by restricting β-catenin accumulation. J Cell Sci 2018; 131:jcs.220954. [DOI: 10.1242/jcs.220954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
The centrosome, as the main microtubule organizing center, safeguards chromosome segregation by constituting the bipolar spindle. Centrosome aberrations are causally related to chromosome segregation disorders, both characterizing cancer cells. Thus, restriction to only one centrosome per cell, and cell cycle dependent duplication is mandatory. Duplicated centrosomes remain physically connected to function as a single entity, until onset of mitosis when centrosome disjunction is licensed by disassembly of linker proteins and accumulation of β-catenin. The crucial role β-catenin plays in centrosome disjunction inevitably demands for restricting its premature accumulation. ODF2/Cenexin is an essential centrosomal component but its relevance for the interphase centrosome has not been elucidated. We show here, that ODF2/Cenexin plays a central role in centrosome cohesion. Depletion of ODF2/Cenexin induces premature centrosome splitting and formation of tripolar spindles that are likely caused by the observed accumulation of centrosomal β-catenin. Our data collectively indicate that ODF2/Cenexin restricts β-catenin accumulation at the centrosome thus preventing premature centrosome disjunction.
Collapse
Affiliation(s)
- Kefei Yang
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Marco Andreas Tylkowski
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Daniela Hüber
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Constanza Tapia Contreras
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Justus-von-Liebig-Weg 11, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
25
|
McClelland Descalzo DL, Satoorian TS, Walker LM, Sparks NRL, Pulyanina PY, Zur Nieden NI. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports 2017; 7:55-68. [PMID: 27411103 PMCID: PMC4945584 DOI: 10.1016/j.stemcr.2016.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Embryonic stem cells (ESCs), which are derived from a peri-implantation embryo, are routinely cultured in medium containing diabetic glucose (Glc) concentrations. While pregnancy in women with pre-existing diabetes may result in small embryos, whether such high Glc levels affect ESC growth remains uncovered. We show here that long-term exposure of ESCs to diabetic Glc inhibits their proliferation, thereby mimicking in vivo findings. Molecularly, Glc exposure increased oxidative stress and activated Forkhead box O3a (FOXO3a), promoting increased expression and activity of the ROS-removal enzymes superoxide dismutase and catalase and the cell-cycle inhibitors p21cip1 and p27kip1. Diabetic Glc also promoted β-catenin nuclear localization and the formation of a complex with FOXO3a that localized to the promoters of Sod2, p21cip1, and potentially p27kip1. Our results demonstrate an adaptive response to increases in oxidative stress induced by diabetic Glc conditions that promote ROS removal, but also result in a decrease in proliferation. Exposure of ESCs to diabetic glucose (Glc) induces oxidative stress ESCs fight oxidative stress via FOXO3a-mediated transcription of Sod2 FOXO3a activation promotes p21cip1 and p27kip1 expression and cell-cycle inhibition Glc regulates FOXO3a/β-catenin co-occupation of the p21 and Sod2 promoters
Collapse
Affiliation(s)
- Darcie L McClelland Descalzo
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Tiffany S Satoorian
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Lauren M Walker
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole R L Sparks
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Polina Y Pulyanina
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole I Zur Nieden
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA.
| |
Collapse
|
26
|
Harrison LE, Bleiler M, Giardina C. A look into centrosome abnormalities in colon cancer cells, how they arise and how they might be targeted therapeutically. Biochem Pharmacol 2017; 147:1-8. [PMID: 29128368 DOI: 10.1016/j.bcp.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 02/06/2023]
Abstract
Cancer cells have long been noted for alterations in centrosome structure, number, and function. Colorectal cancers are interesting in this regard since two frequently mutated genes, APC and CTNNB1 (β-catenin), encode proteins that directly interact with the centrosome and affect its ability to direct microtubule growth and establish cell polarity. Colorectal cancers also frequently display centrosome over-duplication and clustering. Efforts have been directed toward understanding how supernumerary centrosomes cluster and whether disrupting this clustering may be a way to induce aberrant/lethal mitoses of cancer cells. Given the important role of the centrosome in establishing spindle polarity and regulating some apoptotic signaling pathways, other approaches to centrosome targeting may be fruitful as well. Basic information on the nature and extent of centrosome defects in colorectal cancer, including why they over-duplicate and whether this over-duplication compensates for their functional defects, could provide a framework for the development of novel approaches for the therapeutic targeting of colorectal cancer.
Collapse
Affiliation(s)
- Lauren E Harrison
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Marina Bleiler
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States
| | - Charles Giardina
- Department of Molecular and Cell Biology, 91 North Eagleville Road, U3125, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
27
|
Pandey S, Talukdar I, Jain BP, Tanti GK, Goswami SK. GSK3β and ERK regulate the expression of 78 kDa SG2NA and ectopic modulation of its level affects phases of cell cycle. Sci Rep 2017; 7:7555. [PMID: 28790387 PMCID: PMC5548716 DOI: 10.1038/s41598-017-08085-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Striatin and SG2NA are essential constituents of the multi-protein STRIPAK assembly harbouring protein phosphatase PP2A and several kinases. SG2NA has several isoforms generated by mRNA splicing and editing. While the expression of striatin is largely restricted to the striatum in brain, that of SG2NAs is ubiquitous. In NIH3T3 cells, only the 78 kDa isoform is expressed. When cells enter into the S phase, the level of SG2NA increases; reaches maximum at the G2/M phase and declines thereafter. Downregulation of SG2NA extends G1 phase and its overexpression extends G2. Ectopic expression of the 35 kDa has no effects on the cell cycle. Relative abundance of phospho-SG2NA is high in the microsome and cytosol and the nucleus but low in the mitochondria. Okadoic acid, an inhibitor of PP2A, increases the level of SG2NA which is further enhanced upon inhibition of proteasomal activity. Phospho-SG2NA is thus more stable than the dephosphorylated form. Inhibition of GSK3β by LiCl reduces its level, but the inhibition of ERK by PD98059 increases it. Thus, ERK decreases the level of phospho-SG2NA by inhibiting GSK3β. In cells depleted from SG2NA by shRNA, the levels of pGSK3β and pERK are reduced, suggesting that these kinases and SG2NA regulate each other's expression.
Collapse
Affiliation(s)
- Shweta Pandey
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Indrani Talukdar
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | - Buddhi P Jain
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University, Motihari, 845401, Bihar, India
| | - Goutam K Tanti
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, 110067, New Delhi, India.
| |
Collapse
|
28
|
Panagiotou ES, Sanjurjo Soriano C, Poulter JA, Lord EC, Dzulova D, Kondo H, Hiyoshi A, Chung BHY, Chu YWY, Lai CH, Tafoya ME, Karjosukarso D, Collin RW, Topping J, Downey LM, Ali M, Inglehearn CF, Toomes C. Defects in the Cell Signaling Mediator β-Catenin Cause the Retinal Vascular Condition FEVR. Am J Hum Genet 2017; 100:960-968. [PMID: 28575650 DOI: 10.1016/j.ajhg.2017.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder characterized by the abnormal development of the retinal vasculature. The majority of mutations identified in FEVR are found within four genes that encode the receptor complex (FZD4, LRP5, and TSPAN12) and ligand (NDP) of a molecular pathway that controls angiogenesis, the Norrin-β-catenin signaling pathway. However, half of all FEVR-affected case subjects do not harbor mutations in these genes, indicating that further mutated genes remain to be identified. Here we report the identification of mutations in CTNNB1, the gene encoding β-catenin, as a cause of FEVR. We describe heterozygous mutations (c.2142_2157dup [p.His720∗] and c.2128C>T [p.Arg710Cys]) in two dominant FEVR-affected families and a de novo mutation (c.1434_1435insC [p.Glu479Argfs∗18]) in a simplex case subject. Previous studies have reported heterozygous de novo CTNNB1 mutations as a cause of syndromic intellectual disability (ID) and autism spectrum disorder, and somatic mutations are linked to many cancers. However, in this study we show that Mendelian inherited CTNNB1 mutations can cause non-syndromic FEVR and that FEVR can be a part of the syndromic ID phenotype, further establishing the role that β-catenin signaling plays in the development of the retinal vasculature.
Collapse
|
29
|
Lai XB, Nie YQ, Huang HL, Li YF, Cao CY, Yang H, Shen B, Feng ZQ. NIMA-related kinase 2 regulates hepatocellular carcinoma cell growth and proliferation. Oncol Lett 2017; 13:1587-1594. [PMID: 28454295 PMCID: PMC5403431 DOI: 10.3892/ol.2017.5618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 10/27/2016] [Indexed: 12/29/2022] Open
Abstract
NIMA-related kinase 2 (Nek2) is often upregulated in human cancer and is important in regulating the cell cycle and gene expression, and maintaining centrosomal structure and function. The present study aimed to investigate the expression pattern, clinical significance, and biological function of Nek2 in hepatocellular carcinoma (HCC). mRNA and protein levels of Nek2 were examined in HCC and corresponding normal liver tissues. The MTT and soft agar colony formation assays, and flow cytometry were employed to assess the roles of Nek2 in cell proliferation and growth. In addition, western blot analysis was performed to assess the expression of cell cycle- and proliferation-related proteins. The results revealed that Nek2 was upregulated in HCC tissues and cell lines. The clinical significance of Nek2 expression was also analyzed. Inhibiting Nek2 expression by siRNA suppressed cell proliferation, growth, and colony formation in hepatocellular carcinoma cell line HepG2 cells, induced cell cycle arrest in the G2/M phase by retarding the S-phase, and promoted apoptosis. Furthermore, Nek2 depletion downregulated β-catenin expression in HepG2 cells and diminished expression of Myc proto-oncogene protein (c-Myc), cyclins D1, B1, and E and cyclin-dependent kinase 1, whilst increasing protein levels of p27. This demonstrates that overexpression of Nek2 is associated with the malignant evolution of HCC. Targeting Nek2 may inhibit HCC cell growth and proliferation through the regulation of β-catenin by the Wnt/β-catenin pathway and therefore may be developed as a novel therapeutic strategy to treat HCC.
Collapse
Affiliation(s)
- Xiao-Bo Lai
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Ying-Fei Li
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Chuang-Yu Cao
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Bo Shen
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - Zhi-Qiang Feng
- Department of Gastroenterology and Hepatology, The First Municipal People's Hospital of Guangzhou, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
30
|
Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G, Boutros M. Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal 2017; 10:10/461/eaah6829. [PMID: 28074006 DOI: 10.1126/scisignal.aah6829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.
Collapse
Affiliation(s)
- Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| | - Dyah L Dewi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Jennifer Hundshammer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Gerrit Erdmann
- NMI TT Naturwissenschaftliches und Medizinisches Institut Technologie Transfer GmbH Pharmaservices, Berlin 13353, Germany
| | - Grainne Kerr
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
31
|
Martins T, Meghini F, Florio F, Kimata Y. The APC/C Coordinates Retinal Differentiation with G1 Arrest through the Nek2-Dependent Modulation of Wingless Signaling. Dev Cell 2016; 40:67-80. [PMID: 28041905 PMCID: PMC5225405 DOI: 10.1016/j.devcel.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/20/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022]
Abstract
The cell cycle is coordinated with differentiation during animal development. Here we report a cell-cycle-independent developmental role for a master cell-cycle regulator, the anaphase-promoting complex or cyclosome (APC/C), in the regulation of cell fate through modulation of Wingless (Wg) signaling. The APC/C controls both cell-cycle progression and postmitotic processes through ubiquitin-dependent proteolysis. Through an RNAi screen in the developing Drosophila eye, we found that partial APC/C inactivation severely inhibits retinal differentiation independently of cell-cycle defects. The differentiation inhibition coincides with hyperactivation of Wg signaling caused by the accumulation of a Wg modulator, Drosophila Nek2 (dNek2). The APC/C degrades dNek2 upon synchronous G1 arrest prior to differentiation, which allows retinal differentiation through local suppression of Wg signaling. We also provide evidence that decapentaplegic signaling may posttranslationally regulate this APC/C function. Thus, the APC/C coordinates cell-fate determination with the cell cycle through the modulation of developmental signaling pathways. APC/C inactivation disrupts retinal differentiation in the Drosophila eye APC/C inactivation causes the ectopic activation of Wg signaling APC/CFzr downregulates a Wg modulator, dNek2, by proteolysis upon G1 arrest Local dNek2 degradation ensures the coordination of retinal differentiation
Collapse
Affiliation(s)
- Torcato Martins
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | - Francesco Meghini
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Francesca Florio
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Yuu Kimata
- Cell Cycle Development Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| |
Collapse
|
32
|
14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression. Sci Rep 2016; 6:26580. [PMID: 27253419 PMCID: PMC4890593 DOI: 10.1038/srep26580] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering.
Collapse
|
33
|
Chimge NO, Little GH, Baniwal SK, Adisetiyo H, Xie Y, Zhang T, O'Laughlin A, Liu ZY, Ulrich P, Martin A, Mhawech-Fauceglia P, Ellis MJ, Tripathy D, Groshen S, Liang C, Li Z, Schones DE, Frenkel B. RUNX1 prevents oestrogen-mediated AXIN1 suppression and β-catenin activation in ER-positive breast cancer. Nat Commun 2016; 7:10751. [PMID: 26916619 PMCID: PMC4773428 DOI: 10.1038/ncomms10751] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Recent high-throughput studies revealed recurrent RUNX1 mutations in breast cancer, specifically in oestrogen receptor-positive (ER+) tumours. However, mechanisms underlying the implied RUNX1-mediated tumour suppression remain elusive. Here, by depleting mammary epithelial cells of RUNX1 in vivo and in vitro, we demonstrate combinatorial regulation of AXIN1 by RUNX1 and oestrogen. RUNX1 and ER occupy adjacent elements in AXIN1's second intron, and RUNX1 antagonizes oestrogen-mediated AXIN1 suppression. Accordingly, RNA-seq and immunohistochemical analyses demonstrate an ER-dependent correlation between RUNX1 and AXIN1 in tumour biopsies. RUNX1 loss in ER+ mammary epithelial cells increases β-catenin, deregulates mitosis and stimulates cell proliferation and expression of stem cell markers. However, it does not stimulate LEF/TCF, c-Myc or CCND1, and it does not accelerate G1/S cell cycle phase transition. Finally, RUNX1 loss-mediated deregulation of β-catenin and mitosis is ameliorated by AXIN1 stabilization in vitro, highlighting AXIN1 as a potential target for the management of ER+ breast cancer. The tumour suppressor RUNX1 is often lost or mutated in oestrogen receptor-positive breast cancers. In this study, the authors demonstrate that the loss of RUNX1 unleashes oestrogen-mediated inhibition of AXIN1, a negative regulator of β-catenin, resulting in β-catenin signalling-mediated cancer cell proliferation and mitosis deregulation.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Gillian H Little
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Sanjeev K Baniwal
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Helty Adisetiyo
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Tian Zhang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Andie O'Laughlin
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Zhi Y Liu
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Peaches Ulrich
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Anthony Martin
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Paulette Mhawech-Fauceglia
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Matthew J Ellis
- Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Chengyu Liang
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dustin E Schones
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, California 91010, USA
| | - Baruch Frenkel
- Institute for Genetic Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Department of Orthopedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA.,Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
34
|
Shahbazi MN, Perez-Moreno M. Connections between cadherin-catenin proteins, spindle misorientation, and cancer. Tissue Barriers 2015; 3:e1045684. [PMID: 26451345 DOI: 10.1080/21688370.2015.1045684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 10/25/2022] Open
Abstract
Cadherin-catenin mediated adhesion is an important determinant of tissue architecture in multicellular organisms. Cancer progression and maintenance is frequently associated with loss of their expression or functional activity, which not only leads to decreased cell-cell adhesion, but also to enhanced tumor cell proliferation and loss of differentiated characteristics. This review is focused on the emerging implications of cadherin-catenin proteins in the regulation of polarized divisions through their connections with the centrosomes, cytoskeleton, tissue tension and signaling pathways; and illustrates how alterations in cadherin-catenin levels or functional activity may render cells susceptible to transformation through the loss of their proliferation-differentiation balance.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development, and Neuroscience; University of Cambridge ; Cambridge, UK
| | - Mirna Perez-Moreno
- Epithelial Cell Biology Group; Cancer Cell Biology Program; Spanish National Cancer Research Centre ; Madrid, Spain
| |
Collapse
|
35
|
Vertii A, Bright A, Delaval B, Hehnly H, Doxsey S. New frontiers: discovering cilia-independent functions of cilia proteins. EMBO Rep 2015; 16:1275-87. [PMID: 26358956 DOI: 10.15252/embr.201540632] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders.
Collapse
Affiliation(s)
- Anastassiia Vertii
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Alison Bright
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Heidi Hehnly
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Stephen Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
36
|
Khan KA, Dô F, Marineau A, Doyon P, Clément JF, Woodgett JR, Doble BW, Servant MJ. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol 2015; 35:3029-43. [PMID: 26100021 PMCID: PMC4525315 DOI: 10.1128/mcb.00344-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/27/2015] [Accepted: 06/17/2015] [Indexed: 11/20/2022] Open
Abstract
Induction of an antiviral innate immune response relies on pattern recognition receptors, including retinoic acid-inducible gene 1-like receptors (RLR), to detect invading pathogens, resulting in the activation of multiple latent transcription factors, including interferon regulatory factor 3 (IRF3). Upon sensing of viral RNA and DNA, IRF3 is phosphorylated and recruits coactivators to induce type I interferons (IFNs) and selected sets of IRF3-regulated IFN-stimulated genes (ISGs) such as those for ISG54 (Ifit2), ISG56 (Ifit1), and viperin (Rsad2). Here, we used wild-type, glycogen synthase kinase 3α knockout (GSK-3α(-/-)), GSK-3β(-/-), and GSK-3α/β double-knockout (DKO) embryonic stem (ES) cells, as well as GSK-3β(-/-) mouse embryonic fibroblast cells in which GSK-3α was knocked down to demonstrate that both isoforms of GSK-3, GSK-3α and GSK-3β, are required for this antiviral immune response. Moreover, the use of two selective small-molecule GSK-3 inhibitors (CHIR99021 and BIO-acetoxime) or ES cells reconstituted with the catalytically inactive versions of GSK-3 isoforms showed that GSK-3 activity is required for optimal induction of antiviral innate immunity. Mechanistically, GSK-3 isoform activation following Sendai virus infection results in phosphorylation of β-catenin at S33/S37/T41, promoting IRF3 DNA binding and activation of IRF3-regulated ISGs. This study identifies the role of a GSK-3/β-catenin axis in antiviral innate immunity.
Collapse
Affiliation(s)
- Kashif Aziz Khan
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Florence Dô
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - Priscilla Doyon
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | | | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Bradley W Doble
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marc J Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
37
|
Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, Wigmore SJ, Sansom OJ, Forbes SJ. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest 2015; 125:1269-85. [PMID: 25689248 PMCID: PMC4362247 DOI: 10.1172/jci76452] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022] Open
Abstract
Cholangiocarcinoma (CC) is typically diagnosed at an advanced stage and is refractory to surgical intervention and chemotherapy. Despite a global increase in the incidence of CC, little progress has been made toward the development of treatments for this cancer. Here we utilized human tissue; CC cell xenografts; a p53-deficient transgenic mouse model; and a non-transgenic, chemically induced rat model of CC that accurately reflects both the inflammatory and regenerative background associated with human CC pathology. Using these systems, we determined that the WNT pathway is highly activated in CCs and that inflammatory macrophages are required to establish this WNT-high state in vivo. Moreover, depletion of macrophages or inhibition of WNT signaling with one of two small molecule WNT inhibitors in mouse and rat CC models markedly reduced CC proliferation and increased apoptosis, resulting in tumor regression. Together, these results demonstrate that enhanced WNT signaling is a characteristic of CC and suggest that targeting WNT signaling pathways has potential as a therapeutic strategy for CC.
Collapse
Affiliation(s)
- Luke Boulter
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
| | - Rachel V. Guest
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Timothy J. Kendall
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - David H. Wilson
- MRC Human Genetics Unit, Western General Hospital Campus, Edinburgh, United Kingdom
| | - Davina Wojtacha
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Andrew J. Robson
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Rachel A. Ridgway
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Kay Samuel
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
| | - Nico Van Rooijen
- Department of Molecular Biology, Vrije Universiteit, Amsterdam, Netherlands
| | - Simon T. Barry
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Stephen J. Wigmore
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| | - Owen J. Sansom
- The Beatson Institute for Cancer Research, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Stuart J. Forbes
- MRC Centre for Regenerative Medicine, Scottish Centre for Regenerative Medicine, Edinburgh, United Kingdom
- MRC Centre for Inflammation Research, Queens Medical Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Stolz A, Neufeld K, Ertych N, Bastians H. Wnt-mediated protein stabilization ensures proper mitotic microtubule assembly and chromosome segregation. EMBO Rep 2015; 16:490-9. [PMID: 25656539 DOI: 10.15252/embr.201439410] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling stimulates cell proliferation by promoting the G1/S transition of the cell cycle through β-catenin/TCF4-mediated gene transcription. However, Wnt signaling peaks in mitosis and contributes to the stabilization of proteins other than β-catenin, a pathway recently introduced as Wnt-dependent stabilization of proteins (Wnt/STOP). Here, we show that Wnt/STOP regulated by basal Wnt signaling during a normal cell cycle is required for proper spindle microtubule assembly and for faithful chromosome segregation during mitosis. Consequently, inhibition of basal Wnt signaling results in increased microtubule assembly rates, abnormal mitotic spindle formation and the induction of aneuploidy in human somatic cells.
Collapse
Affiliation(s)
- Ailine Stolz
- Section for Cellular Oncology, Institute of Molecular Oncology, Georg-August University Göttingen Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Kim Neufeld
- Section for Cellular Oncology, Institute of Molecular Oncology, Georg-August University Göttingen Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Norman Ertych
- Section for Cellular Oncology, Institute of Molecular Oncology, Georg-August University Göttingen Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Holger Bastians
- Section for Cellular Oncology, Institute of Molecular Oncology, Georg-August University Göttingen Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
39
|
Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. Dev Biol 2014; 395:287-98. [PMID: 25220153 DOI: 10.1016/j.ydbio.2014.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Wnt signaling and ciliogenesis are core features of embryonic development in a range of metazoans. Chibby (Cby), a basal-body associated protein, regulates β-catenin-mediated Wnt signaling in the mouse but not Drosophila. Here we present an analysis of Cby's embryonic expression and morphant phenotypes in Xenopus laevis. Cby RNA is supplied maternally, negatively regulated by Snail2 but not Twist1, preferentially expressed in the neuroectoderm, and regulates β-catenin-mediated gene expression. Reducing Cby levels reduced the density of multiciliated cells, the number of basal bodies per multiciliated cell, and the numbers of neural tube primary cilia; it also led to abnormal development of the neural crest, central nervous system, and pronephros, all defects that were rescued by a Cby-GFP chimera. Reduction of Cby led to an increase in Wnt8a and decreases in Gli2, Gli3, and Shh RNA levels. Many, but not all, morphant phenotypes were significantly reversed by the Wnt inhibitor SFRP2. These observations extend our understanding of Cby's role in mediating the network of interactions between ciliogenesis, signaling systems and tissue patterning.
Collapse
|
40
|
Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc Natl Acad Sci U S A 2014; 111:E1491-500. [PMID: 24706806 DOI: 10.1073/pnas.1400568111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Centrosomes are the microtubule-organizing centers of animal cells that organize interphase microtubules and mitotic spindles. Centrioles are the microtubule-based structures that organize centrosomes, and a defined set of proteins, including spindle assembly defective-4 (SAS4) (CPAP/CENPJ), is required for centriole biogenesis. The biological functions of centrioles and centrosomes vary among animals, and the functions of mammalian centrosomes have not been genetically defined. Here we use a null mutation in mouse Sas4 to define the cellular and developmental functions of mammalian centrioles in vivo. Sas4-null embryos lack centrosomes but survive until midgestation. As expected, Sas4(-/-) mutants lack primary cilia and therefore cannot respond to Hedgehog signals, but other developmental signaling pathways are normal in the mutants. Unlike mutants that lack cilia, Sas4(-/-) embryos show widespread apoptosis associated with global elevated expression of p53. Cell death is rescued in Sas4(-/-) p53(-/-) double-mutant embryos, demonstrating that mammalian centrioles prevent activation of a p53-dependent apoptotic pathway. Expression of p53 is not activated by abnormalities in bipolar spindle organization, chromosome segregation, cell-cycle profile, or DNA damage response, which are normal in Sas4(-/-) mutants. Instead, live imaging shows that the duration of prometaphase is prolonged in the mutants while two acentriolar spindle poles are assembled. Independent experiments show that prolonging spindle assembly is sufficient to trigger p53-dependent apoptosis. We conclude that a short delay in the prometaphase caused by the absence of centrioles activates a previously undescribed p53-dependent cell death pathway in the rapidly dividing cells of the mouse embryo.
Collapse
|
41
|
Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ. The evolutionary origin of epithelial cell-cell adhesion mechanisms. CURRENT TOPICS IN MEMBRANES 2013; 72:267-311. [PMID: 24210433 PMCID: PMC4118598 DOI: 10.1016/b978-0-12-417027-8.00008-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: (1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. (2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. (3) The α-catenin-binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. (4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin-binding (N-, M-) domains. (5) Allosteric regulation of α-catenin may have evolved for more complex regulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Phillip W. Miller
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - William I. Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305
| | | | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|