1
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
2
|
Shao S, Chen Y, Deng H, Pan J. Quantitative proteomics reveals insights into the assembly of IFT trains and ciliary assembly. J Cell Sci 2024; 137:jcs262152. [PMID: 38853670 DOI: 10.1242/jcs.262152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Intraflagellar transport (IFT) is required for ciliary assembly. The IFT machinery comprises the IFT motors kinesin-2 and IFT dynein plus IFT-A and IFT-B complexes, which assemble into IFT trains in cilia. To gain mechanistic understanding of IFT and ciliary assembly, here, we performed an absolute quantification of IFT machinery in Chlamydomonas reinhardtii cilium. There are ∼756, ∼532, ∼276 and ∼350 molecules of IFT-B, IFT-A, IFT dynein and kinesin-2, respectively, per cilium. The amount of IFT-B is sufficient to sustain rapid ciliary growth in terms of tubulin delivery. The stoichiometric ratio of IFT-B:IFT-A:dynein is ∼3:2:1 whereas the IFT-B:IFT-A ratio in an IFT dynein mutant is 2:1, suggesting that there is a plastic interaction between IFT-A and IFT-B that can be influenced by IFT dynein. Considering diffusion of kinesin-2 during retrograde IFT, it is estimated that one kinesin-2 molecule drives eight molecules of IFT-B during anterograde IFT. These data provide new insights into the assembly of IFT trains and ciliary assembly.
Collapse
Affiliation(s)
- Shangjin Shao
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| | - Yuling Chen
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Core Facility Center for Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266000, China
| |
Collapse
|
3
|
Petriman NA, Loureiro‐López M, Taschner M, Zacharia NK, Georgieva MM, Boegholm N, Wang J, Mourão A, Russell RB, Andersen JS, Lorentzen E. Biochemically validated structural model of the 15-subunit intraflagellar transport complex IFT-B. EMBO J 2022; 41:e112440. [PMID: 36354106 PMCID: PMC9753473 DOI: 10.15252/embj.2022112440] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
Cilia are ubiquitous eukaryotic organelles impotant for cellular motility, signaling, and sensory reception. Cilium formation requires intraflagellar transport of structural and signaling components and involves 22 different proteins organized into intraflagellar transport (IFT) complexes IFT-A and IFT-B that are transported by molecular motors. The IFT-B complex constitutes the backbone of polymeric IFT trains carrying cargo between the cilium and the cell body. Currently, high-resolution structures are only available for smaller IFT-B subcomplexes leaving > 50% structurally uncharacterized. Here, we used Alphafold to structurally model the 15-subunit IFT-B complex. The model was validated using cross-linking/mass-spectrometry data on reconstituted IFT-B complexes, X-ray scattering in solution, diffraction from crystals as well as site-directed mutagenesis and protein-binding assays. The IFT-B structure reveals an elongated and highly flexible complex consistent with cryo-electron tomographic reconstructions of IFT trains. The IFT-B complex organizes into IFT-B1 and IFT-B2 parts with binding sites for ciliary cargo and the inactive IFT dynein motor, respectively. Interestingly, our results are consistent with two different binding sites for IFT81/74 on IFT88/70/52/46 suggesting the possibility of different structural architectures for the IFT-B1 complex. Our data present a structural framework to understand IFT-B complex assembly, function, and ciliopathy variants.
Collapse
Affiliation(s)
- Narcis A Petriman
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Marta Loureiro‐López
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Michael Taschner
- Department of Fundamental MicrobiologyUniversity of LausanneLausanneSwitzerland
| | - Nevin K Zacharia
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | | | - Niels Boegholm
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - Jiaolong Wang
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany
| | | | - Jens S Andersen
- Department for Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdense MDenmark
| | - Esben Lorentzen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhus CDenmark
| |
Collapse
|
4
|
Perlaza K, Mirvis M, Ishikawa H, Marshall W. The short flagella 1 (SHF1) gene in Chlamydomonas encodes a Crescerin TOG-domain protein required for late stages of flagellar growth. Mol Biol Cell 2021; 33:ar12. [PMID: 34818077 PMCID: PMC9236146 DOI: 10.1091/mbc.e21-09-0472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Length control of flagella represents a simple and tractable system to investigate the dynamics of organelle size. Models for flagellar length control in the model organism, Chlamydomonas reinhardtii have focused on the length-dependence of the intraflagellar transport (IFT) system which manages the delivery and removal of axonemal subunits at the tip of the flagella. One of these cargoes, tubulin, is the major axonemal subunit, and its frequency of arrival at the tip plays a central role in size control models. However, the mechanisms determining tubulin dynamics at the tip are still poorly understood. We discovered a loss-of-function mutation that leads to shortened flagella, and found that this was an allele of a previously described gene, SHF1, whose molecular identity had not previously been determined. We found that SHF1 encodes a Chlamydomonas ortholog of Crescerin, previously identified as a cilia-specific TOG-domain array protein that can bind tubulin via its TOG domains and increase tubulin polymerization rates. In this mutant, flagellar regeneration occurs with the same initial kinetics as wild-type cells, but plateaus at a shorter length. Using a computational model in which the flagellar microtubules are represented by a differential equation for flagellar length combined with a stochastic model for cytoplasmic microtubule dynamics, we found that our experimental results are best described by a model in which Crescerin/SHF1 binds tubulin dimers in the cytoplasm and transports them into the flagellum. We suggest that this TOG-domain protein is necessary to efficiently and preemptively increase intra-flagella tubulin levels to offset decreasing IFT cargo at the tip as flagellar assembly progresses.
Collapse
Affiliation(s)
- Karina Perlaza
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Mary Mirvis
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| | - Wallace Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
5
|
Ciliary Signalling and Mechanotransduction in the Pathophysiology of Craniosynostosis. Genes (Basel) 2021; 12:genes12071073. [PMID: 34356089 PMCID: PMC8306115 DOI: 10.3390/genes12071073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
Craniosynostosis (CS) is the second most prevalent inborn craniofacial malformation; it results from the premature fusion of cranial sutures and leads to dimorphisms of variable severity. CS is clinically heterogeneous, as it can be either a sporadic isolated defect, more frequently, or part of a syndromic phenotype with mendelian inheritance. The genetic basis of CS is also extremely heterogeneous, with nearly a hundred genes associated so far, mostly mutated in syndromic forms. Several genes can be categorised within partially overlapping pathways, including those causing defects of the primary cilium. The primary cilium is a cellular antenna serving as a signalling hub implicated in mechanotransduction, housing key molecular signals expressed on the ciliary membrane and in the cilioplasm. This mechanical property mediated by the primary cilium may also represent a cue to understand the pathophysiology of non-syndromic CS. In this review, we aimed to highlight the implication of the primary cilium components and active signalling in CS pathophysiology, dissecting their biological functions in craniofacial development and in suture biomechanics. Through an in-depth revision of the literature and computational annotation of disease-associated genes we categorised 18 ciliary genes involved in CS aetiology. Interestingly, a prevalent implication of midline sutures is observed in CS ciliopathies, possibly explained by the specific neural crest origin of the frontal bone.
Collapse
|
6
|
Bauer D, Ishikawa H, Wemmer KA, Hendel NL, Kondev J, Marshall WF. Analysis of biological noise in the flagellar length control system. iScience 2021; 24:102354. [PMID: 33898946 PMCID: PMC8059064 DOI: 10.1016/j.isci.2021.102354] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Any proposed mechanism for organelle size control should be able to account not only for average size but also for the variation in size. We analyzed cell-to-cell variation and within-cell variation of length for the two flagella in Chlamydomonas, finding that cell-to-cell variation is dominated by cell size, whereas within-cell variation results from dynamic fluctuations. Fluctuation analysis suggests tubulin assembly is not directly coupled with intraflagellar transport (IFT) and that the observed length fluctuations reflect tubulin assembly and disassembly events involving large numbers of tubulin dimers. Length variation is increased in long-flagella mutants, an effect consistent with theoretical models for flagellar length regulation. Cells with unequal flagellar lengths show impaired swimming but improved gliding, raising the possibility that cells have evolved mechanisms to tune biological noise in flagellar length. Analysis of noise at the level of organelle size provides a way to probe the mechanisms determining cell geometry.
Collapse
Affiliation(s)
- David Bauer
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Hiroaki Ishikawa
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Kimberly A. Wemmer
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Nathan L. Hendel
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| | - Jane Kondev
- Department of Physics, Brandeis University, Abelson-Bass-Yalem Building, 97-301, Waltham, MA, USA
| | - Wallace F. Marshall
- Department of Biochemistry & Biophysics, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, 600 16th St., San Francisco, CA, USA
| |
Collapse
|
7
|
Ishida Y, Kobayashi T, Chiba S, Katoh Y, Nakayama K. Molecular basis of ciliary defects caused by compound heterozygous IFT144/WDR19 mutations found in cranioectodermal dysplasia. Hum Mol Genet 2021; 30:213-225. [PMID: 33517396 DOI: 10.1093/hmg/ddab034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Primary cilia contain specific proteins to achieve their functions as cellular antennae. Ciliary protein trafficking is mediated by the intraflagellar transport (IFT) machinery containing the IFT-A and IFT-B complexes. Mutations in genes encoding the IFT-A subunits (IFT43, IFT121/WDR35, IFT122, IFT139/TTC21B, IFT140 and IFT144/WDR19) often result in skeletal ciliopathies, including cranioectodermal dysplasia (CED). We here characterized the molecular and cellular defects of CED caused by compound heterozygous mutations in IFT144 [the missense variant IFT144(L710S) and the nonsense variant IFT144(R1103*)]. These two variants were distinct with regard to their interactions with other IFT-A subunits and with the IFT-B complex. When exogenously expressed in IFT144-knockout (KO) cells, IFT144(L710S) as well as IFT144(WT) rescued both moderately compromised ciliogenesis and the abnormal localization of ciliary proteins. As the homozygous IFT144(L710S) mutation was found to cause autosomal recessive retinitis pigmentosa, IFT144(L710S) is likely to be hypomorphic at the cellular level. In striking contrast, the exogenous expression of IFT144(R1103*) in IFT144-KO cells exacerbated the ciliogenesis defects. The expression of IFT144(R1103*) together with IFT144(WT) restored the abnormal phenotypes of IFT144-KO cells. However, the coexpression of IFT144(R1103*) with the hypomorphic IFT144(L710S) variant in IFT144-KO cells, which mimics the genotype of compound heterozygous CED patients, resulted in severe ciliogenesis defects. Taken together, these observations demonstrate that compound heterozygous mutations in IFT144 cause severe ciliary defects via a complicated mechanism, where one allele can cause severe ciliary defects when combined with a hypomorphic allele.
Collapse
Affiliation(s)
- Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Kobayashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuhei Chiba
- Department of Genetic Disease Research, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Kobayashi T, Ishida Y, Hirano T, Katoh Y, Nakayama K. Cooperation of the IFT-A complex with the IFT-B complex is required for ciliary retrograde protein trafficking and GPCR import. Mol Biol Cell 2021; 32:45-56. [PMID: 33175651 PMCID: PMC8098818 DOI: 10.1091/mbc.e20-08-0556] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Cilia sense and transduce extracellular signals via specific receptors. The intraflagellar transport (IFT) machinery mediates not only bidirectional protein trafficking within cilia but also the import/export of ciliary proteins across the ciliary gate. The IFT machinery is known to comprise two multisubunit complexes, namely, IFT-A and IFT-B; however, little is known about how the two complexes cooperate to mediate ciliary protein trafficking. We here show that IFT144-IFT122 from IFT-A and IFT88-IFT52 from IFT-B make major contributions to the interface between the two complexes. Exogenous expression of the IFT88(Δα) mutant, which has decreased binding to IFT-A, partially restores the ciliogenesis defect of IFT88-knockout (KO) cells. However, IFT88(Δα)-expressing IFT88-KO cells demonstrate a defect in IFT-A entry into cilia, aberrant accumulation of IFT-B proteins at the bulged ciliary tips, and impaired import of ciliary G protein-coupled receptors (GPCRs). Furthermore, overaccumulated IFT proteins at the bulged tips appeared to be released as extracellular vesicles. These phenotypes of IFT88(Δα)-expressing IFT88-KO cells resembled those of IFT144-KO cells. These observations together indicate that the IFT-A complex cooperates with the IFT-B complex to mediate the ciliary entry of GPCRs as well as retrograde trafficking of the IFT machinery from the ciliary tip.
Collapse
Affiliation(s)
- Takuya Kobayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomoaki Hirano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Vitre B, Guesdon A, Delaval B. Non-ciliary Roles of IFT Proteins in Cell Division and Polycystic Kidney Diseases. Front Cell Dev Biol 2020; 8:578239. [PMID: 33072760 PMCID: PMC7536321 DOI: 10.3389/fcell.2020.578239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
Cilia are small organelles present at the surface of most differentiated cells where they act as sensors for mechanical or biochemical stimuli. Cilia assembly and function require the Intraflagellar Transport (IFT) machinery, an intracellular transport system that functions in association with microtubules and motors. If IFT proteins have long been studied for their ciliary roles, recent evidences indicate that their functions are not restricted to the cilium. Indeed, IFT proteins are found outside the ciliary compartment where they are involved in a variety of cellular processes in association with non-ciliary motors. Recent works also provide evidence that non-ciliary roles of IFT proteins could be responsible for the development of ciliopathies related phenotypes including polycystic kidney diseases. In this review, we will discuss the interactions of IFT proteins with microtubules and motors as well as newly identified non-ciliary functions of IFT proteins, focusing on their roles in cell division. We will also discuss the potential contribution of non-ciliary IFT proteins functions to the etiology of kidney diseases.
Collapse
|
10
|
Nakamura K, Noguchi T, Takahara M, Omori Y, Furukawa T, Katoh Y, Nakayama K. Anterograde trafficking of ciliary MAP kinase-like ICK/CILK1 by the intraflagellar transport machinery is required for intraciliary retrograde protein trafficking. J Biol Chem 2020; 295:13363-13376. [PMID: 32732286 PMCID: PMC7504932 DOI: 10.1074/jbc.ra120.014142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
ICK (also known as CILK1) is a mitogen-activated protein kinase-like kinase localized at the ciliary tip. Its deficiency is known to result in the elongation of cilia and causes ciliopathies in humans. However, little is known about how ICK is transported to the ciliary tip. We here show that the C-terminal noncatalytic region of ICK interacts with the intraflagellar transport (IFT)-B complex of the IFT machinery and participates in its transport to the ciliary tip. Furthermore, total internal reflection fluorescence microscopy demonstrated that ICK undergoes bidirectional movement within cilia, similarly to IFT particles. Analysis of ICK knockout cells demonstrated that ICK deficiency severely impairs the retrograde trafficking of IFT particles and ciliary G protein-coupled receptors. In addition, we found that in ICK knockout cells, ciliary proteins are accumulated at the bulged ciliary tip, which appeared to be torn off and released into the environment as an extracellular vesicle. The exogenous expression of various ICK constructs in ICK knockout cells indicated that the IFT-dependent transport of ICK, as well as its kinase activity and phosphorylation at the canonical TDY motif, is essential for ICK function. Thus, we unequivocally show that ICK transported to the ciliary tip is required for retrograde ciliary protein trafficking and consequently for normal ciliary function.
Collapse
Affiliation(s)
- Kentaro Nakamura
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tatsuro Noguchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mariko Takahara
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
11
|
Craft Van De Weghe J, Harris JA, Kubo T, Witman GB, Lechtreck KF. Diffusion rather than intraflagellar transport likely provides most of the tubulin required for axonemal assembly in Chlamydomonas. J Cell Sci 2020; 133:jcs.249805. [PMID: 32801124 DOI: 10.1242/jcs.249805] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Tubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP-β-tubulin by altering the IFT74N-IFT81N tubulin-binding module and the C-terminal E-hook of tubulin. E-hook-deficient GFP-β-tubulin was incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the tubulin-binding site of IFT81 was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook-deficient GFP-β-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP-β-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.
Collapse
Affiliation(s)
| | - J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Qu W, Yuan S, Quan C, Huang Q, Zhou Q, Yap Y, Shi L, Zhang D, Guest T, Li W, Yee SP, Zhang L, Cazin C, Hess RA, Ray PF, Kherraf ZE, Zhang Z. The essential role of intraflagellar transport protein IFT81 in male mice spermiogenesis and fertility. Am J Physiol Cell Physiol 2020; 318:C1092-C1106. [PMID: 32233951 DOI: 10.1152/ajpcell.00450.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intraflagellar transport (IFT) is an evolutionarily conserved mechanism that is indispensable for the formation and maintenance of cilia and flagella; however, the implications and functions of IFT81 remain unknown. In this study, we disrupted IFT81 expression in male germ cells starting from the spermatocyte stage. As a result, homozygous mutant males were completely infertile and displayed abnormal sperm parameters. In addition to oligozoospermia, spermatozoa presented dysmorphic and nonfunctional flagella. Histological examination of testes from homozygous mutant mice revealed abnormal spermiogenesis associated with sloughing of germ cells and the presence of numerous multinucleated giant germ cells (symblasts) in the lumen of seminiferous tubules and epididymis. Moreover, only few elongated spermatids and spermatozoa were seen in analyzed cross sections. Transmission electron microscopy showed a complete disorganization of the axoneme and para-axonemal structures such as the mitochondrial sheath, fibrous sheath, and outer dense fibers. In addition, numerous vesicles that contain unassembled microtubules were observed within developing spermatids. Acrosome structure analysis showed normal appearance, thus excluding a crucial role of IFT81 in acrosome biogenesis. These observations showed that IFT81 is an important member of the IFT process during spermatogenesis and that its absence is associated with abnormal flagellum formation leading to male infertility. The expression levels of several IFT components in testes, including IFT20, IFT25, IFT27, IFT57, IFT74, and IFT88, but not IFT140, were significantly reduced in homozygous mutant mice. Overall, our study demonstrates that IFT81 plays an essential role during spermatogenesis by modulating the assembly and elongation of the sperm flagella.
Collapse
Affiliation(s)
- Wei Qu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Shuo Yuan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Chao Quan
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qian Huang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Qi Zhou
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - Yitian Yap
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Lin Shi
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China.,Department of Physiology, Wayne State University, Detroit, Michigan
| | - David Zhang
- College of William & Mary, Williamsburg, Virginia
| | - Tamia Guest
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Wei Li
- Department of Physiology, Wayne State University, Detroit, Michigan
| | - Siu-Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Ling Zhang
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Caroline Cazin
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois
| | - Pierre F Ray
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zine-Eddine Kherraf
- Team Genetic, Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5309, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble Alpes, Grenoble, France
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, Michigan.,Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
14
|
Funabashi T, Katoh Y, Okazaki M, Sugawa M, Nakayama K. Interaction of heterotrimeric kinesin-II with IFT-B-connecting tetramer is crucial for ciliogenesis. J Cell Biol 2018; 217:2867-2876. [PMID: 29903877 PMCID: PMC6080941 DOI: 10.1083/jcb.201801039] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) is crucial for the assembly and maintenance of cilia and is mediated by IFT particles containing IFT-A and IFT-B complexes. IFT-B powered by heterotrimeric kinesin-II and IFT-A powered by the dynein-2 complex are responsible for anterograde and retrograde protein trafficking, respectively. However, little is known about the molecular basis of the trafficking of these IFT particles regulated by kinesin and dynein motors. Using the visible immunoprecipitation assay, we identified in this study a three-to-four protein interaction involving the kinesin-II trimer KIF3A-KIF3B-KAP3 and the IFT-B-connecting tetramer IFT38-IFT52-IFT57-IFT88; among the kinesin-II subunits, KIF3B contributed mainly to IFT-B binding. Furthermore, we showed that the ciliogenesis defect of KIF3B-knockout cells can be rescued by the exogenous expression of wild-type KIF3B but not by that of its mutant compromised with respect to IFT-B binding. Thus, interaction of heterotrimeric kinesin-II with the IFT-B-connecting tetramer is crucial for ciliogenesis via the powering of IFT particles to move in the anterograde direction.
Collapse
Affiliation(s)
- Teruki Funabashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Misato Okazaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Maho Sugawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Hunter EL, Lechtreck K, Fu G, Hwang J, Lin H, Gokhale A, Alford LM, Lewis B, Yamamoto R, Kamiya R, Yang F, Nicastro D, Dutcher SK, Wirschell M, Sale WS. The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length. Mol Biol Cell 2018; 29:886-896. [PMID: 29467251 PMCID: PMC5896928 DOI: 10.1091/mbc.e17-12-0729] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 11/18/2022] Open
Abstract
We determined how the ciliary motor I1 dynein is transported. A specialized adapter, IDA3, facilitates I1 dynein attachment to the ciliary transporter called intraflagellar transport (IFT). Loading of IDA3 and I1 dynein on IFT is regulated by ciliary length.
Collapse
Affiliation(s)
- Emily L. Hunter
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Gang Fu
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Juyeon Hwang
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Lea M. Alford
- Department of Biology, Oglethorpe University, Atlanta, GA 30319
| | - Brian Lewis
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Osaka University, Osaka 560-0043, Japan
| | - Ritsu Kamiya
- Department of Biological Sciences, Chuo University, Tokyo 112-8551, Japan
| | - Fan Yang
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | - Daniela Nicastro
- Departments of Cell Biology and Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Maureen Wirschell
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216
| | | |
Collapse
|
16
|
Takahara M, Katoh Y, Nakamura K, Hirano T, Sugawa M, Tsurumi Y, Nakayama K. Ciliopathy-associated mutations of IFT122 impair ciliary protein trafficking but not ciliogenesis. Hum Mol Genet 2017; 27:516-528. [DOI: 10.1093/hmg/ddx421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/01/2017] [Indexed: 12/20/2022] Open
|
17
|
Nishijima Y, Hagiya Y, Kubo T, Takei R, Katoh Y, Nakayama K. RABL2 interacts with the intraflagellar transport-B complex and CEP19 and participates in ciliary assembly. Mol Biol Cell 2017; 28:1652-1666. [PMID: 28428259 PMCID: PMC5469608 DOI: 10.1091/mbc.e17-01-0017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022] Open
Abstract
RABL2 interacts with the intraflagellar transport-B (IFT-B) complex and CEP19 in a mutually exclusive manner. A point mutation of RABL2 found in sperm motility–defective mice abolishes its binding to IFT-B but not to CEP19. A RABL2-defective Chlamydomonas strain exhibits a nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary assembly. Proteins localized to the basal body and the centrosome play crucial roles in ciliary assembly and function. Although RABL2 and CEP19 are conserved in ciliated organisms and have been implicated in ciliary/flagellar functions, their roles are poorly understood. Here we show that RABL2 interacts with CEP19 and is recruited to the mother centriole and basal body in a CEP19-dependent manner and that CEP19 is recruited to the centriole probably via its binding to the centrosomal protein FGFR1OP. Disruption of the RABL2 gene in Chlamydomonas reinhardtii results in the nonflagellated phenotype, suggesting a crucial role of RABL2 in ciliary/flagellar assembly. We also show that RABL2 interacts, in its GTP-bound state, with the intraflagellar transport (IFT)-B complex via the IFT74–IFT81 heterodimer and that the interaction is disrupted by a mutation found in male infertile mice (Mot mice) with a sperm flagella motility defect. Intriguingly, RABL2 binds to CEP19 and the IFT74–IFT81 heterodimer in a mutually exclusive manner. Furthermore, exogenous expression of the GDP-locked or Mot-type RABL2 mutant in human cells results in mild defects in ciliary assembly. These results indicate that RABL2 localized to the basal body plays crucial roles in ciliary/flagellar assembly via its interaction with the IFT-B complex.
Collapse
Affiliation(s)
- Yuya Nishijima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Hagiya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tomohiro Kubo
- University of Yamanashi Graduate School of Medical Science, Chuo 409-3898, Japan
| | - Ryota Takei
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Taschner M, Mourão A, Awasthi M, Basquin J, Lorentzen E. Structural basis of outer dynein arm intraflagellar transport by the transport adaptor protein ODA16 and the intraflagellar transport protein IFT46. J Biol Chem 2017; 292:7462-7473. [PMID: 28298440 DOI: 10.1074/jbc.m117.780155] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Motile cilia are found on unicellular organisms such as the green alga Chlamydomonas reinhardtii, on sperm cells, and on cells that line the trachea and fallopian tubes in mammals. The motility of cilia relies on a number of large protein complexes including the force-generating outer dynein arms (ODAs). The transport of ODAs into cilia has been previously shown to require the transport adaptor ODA16, as well as the intraflagellar transport (IFT) protein IFT46, but the molecular mechanism by which ODAs are recognized and transported into motile cilia is still unclear. Here, we determined the high-resolution crystal structure of C. reinhardtii ODA16 (CrODA16) and mapped the binding to IFT46 and ODAs. The CrODA16 structure revealed a small 80-residue N-terminal domain and a C-terminal 8-bladed β-propeller domain that are both required for the association with the N-terminal 147 residues of IFT46. The dissociation constant of the IFT46-ODA16 complex was 200 nm, demonstrating that CrODA16 associates with the IFT complex with an affinity comparable with that of the individual IFT subunits. Furthermore, we show, using ODAs extracted from the axonemes of C. reinhardtii, that the C-terminal β-propeller but not the N-terminal domain of CrODA16 is required for the interaction with ODAs. These data allowed us to present an architectural model for ODA16-mediated IFT of ODAs.
Collapse
Affiliation(s)
- Michael Taschner
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - André Mourão
- the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Mayanka Awasthi
- the Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, and
| | - Jerome Basquin
- the Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- From the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark,
| |
Collapse
|
19
|
Pedersen LB. Tubulin transport in cilia: How many tubulin cargo-binding sites per IFT particle? (retrospective on DOI 10.1002/bies.201400007). Bioessays 2016; 39:1. [PMID: 27766640 DOI: 10.1002/bies.201600201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Taschner M, Lorentzen E. The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a028092. [PMID: 27352625 DOI: 10.1101/cshperspect.a028092] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT), the bidirectional movement of a multicomponent transport system between the ciliary base and tip. Since its initial discovery more than two decades ago, considerable effort has been invested in dissecting the molecular mechanisms of IFT in a variety of model organisms. Importantly, IFT was shown to be essential for mammalian development, and defects in this process cause a number of human pathologies known as ciliopathies. Here, we review current knowledge of IFT with a particular emphasis on the IFT machinery and specific mechanisms of ciliary cargo recognition and transport.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
21
|
Duran I, Taylor SP, Zhang W, Martin J, Forlenza KN, Spiro RP, Nickerson DA, Bamshad M, Cohn DH, Krakow D. Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 2016; 6:34232. [PMID: 27666822 PMCID: PMC5035930 DOI: 10.1038/srep34232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/13/2023] Open
Abstract
Short-rib polydactyly syndromes (SRPS) and Asphyxiating thoracic dystrophy (ATD) or Jeune Syndrome are recessively inherited skeletal ciliopathies characterized by profound skeletal abnormalities and are frequently associated with polydactyly and multiorgan system involvement. SRPS are produced by mutations in genes that participate in the formation and function of primary cilia and usually result from disruption of retrograde intraflagellar (IFT) transport of the cilium. Herein we describe a new spectrum of SRPS caused by mutations in the gene IFT81, a key component of the IFT-B complex essential for anterograde transport. In mutant chondrocytes, the mutations led to low levels of IFT81 and mutant cells produced elongated cilia, had altered hedgehog signaling, had increased post-translation modification of tubulin, and showed evidence of destabilization of additional anterograde transport complex components. These findings demonstrate the importance of IFT81 in the skeleton, its role in the anterograde transport complex, and expand the number of loci associated with SRPS.
Collapse
Affiliation(s)
- Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), University of Malaga, Malaga, 29071, Spain
| | - S Paige Taylor
- Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Wenjuan Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Jorge Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Kimberly N Forlenza
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Rhonda P Spiro
- Children's Healthcare of Atlanta, Atlanta, GA, 30342, USA
| | - Deborah A Nickerson
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Michael Bamshad
- University of Washington Center for Mendelian Genomics, University of Washington, Seattle, Washington, 98195, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Human Genetics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA.,Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, California, 90095, USA
| |
Collapse
|
22
|
Liang Y, Meng D, Zhu B, Pan J. Mechanism of ciliary disassembly. Cell Mol Life Sci 2016; 73:1787-802. [PMID: 26869233 PMCID: PMC11108551 DOI: 10.1007/s00018-016-2148-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/19/2022]
Abstract
As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated.
Collapse
Affiliation(s)
- Yinwen Liang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Meng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Kubo T, Brown JM, Bellve K, Craige B, Craft JM, Fogarty K, Lechtreck KF, Witman GB. Together, the IFT81 and IFT74 N-termini form the main module for intraflagellar transport of tubulin. J Cell Sci 2016; 129:2106-19. [PMID: 27068536 DOI: 10.1242/jcs.187120] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/03/2016] [Indexed: 11/20/2022] Open
Abstract
The assembly and maintenance of most cilia and flagella rely on intraflagellar transport (IFT). Recent in vitro studies have suggested that, together, the calponin-homology domain within the IFT81 N-terminus and the highly basic N-terminus of IFT74 form a module for IFT of tubulin. By using Chlamydomonas mutants for IFT81 and IFT74, we tested this hypothesis in vivo. Modification of the predicted tubulin-binding residues in IFT81 did not significantly affect basic anterograde IFT and length of steady-state flagella but slowed down flagellar regeneration, a phenotype similar to that seen in a strain that lacks the IFT74 N-terminus. In both mutants, the frequency of tubulin transport by IFT was greatly reduced. A double mutant that combined the modifications to IFT81 and IFT74 was able to form only very short flagella. These results indicate that, together, the IFT81 and IFT74 N-termini are crucial for flagellar assembly, and are likely to function as the main module for IFT of tubulin.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Biology Department, Salem State University, Salem, MA 01970, USA
| | - Karl Bellve
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Julie M Craft
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kevin Fogarty
- Biomedical Imaging Group, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
24
|
Taschner M, Weber K, Mourão A, Vetter M, Awasthi M, Stiegler M, Bhogaraju S, Lorentzen E. Intraflagellar transport proteins 172, 80, 57, 54, 38, and 20 form a stable tubulin-binding IFT-B2 complex. EMBO J 2016; 35:773-90. [PMID: 26912722 PMCID: PMC4818760 DOI: 10.15252/embj.201593164] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/21/2016] [Indexed: 12/31/2022] Open
Abstract
Intraflagellar transport (IFT) relies on the IFT complex and is required for ciliogenesis. The IFT‐B complex consists of 9–10 stably associated core subunits and six “peripheral” subunits that were shown to dissociate from the core structure at moderate salt concentration. We purified the six “peripheral” IFT‐B subunits of Chlamydomonas reinhardtii as recombinant proteins and show that they form a stable complex independently of the IFT‐B core. We suggest a nomenclature of IFT‐B1 (core) and IFT‐B2 (peripheral) for the two IFT‐B subcomplexes. We demonstrate that IFT88, together with the N‐terminal domain of IFT52, is necessary to bridge the interaction between IFT‐B1 and B2. The crystal structure of IFT52N reveals highly conserved residues critical for IFT‐B1/IFT‐B2 complex formation. Furthermore, we show that of the three IFT‐B2 subunits containing a calponin homology (CH) domain (IFT38, 54, and 57), only IFT54 binds αβ‐tubulin as a potential IFT cargo, whereas the CH domains of IFT38 and IFT57 mediate the interaction with IFT80 and IFT172, respectively. Crystal structures of IFT54 CH domains reveal that tubulin binding is mediated by basic surface‐exposed residues.
Collapse
Affiliation(s)
- Michael Taschner
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kristina Weber
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - André Mourão
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Melanie Vetter
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Mayanka Awasthi
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Marc Stiegler
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Sagar Bhogaraju
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Esben Lorentzen
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
25
|
Harris JA, Liu Y, Yang P, Kner P, Lechtreck KF. Single-particle imaging reveals intraflagellar transport-independent transport and accumulation of EB1 in Chlamydomonas flagella. Mol Biol Cell 2015; 27:295-307. [PMID: 26631555 PMCID: PMC4713132 DOI: 10.1091/mbc.e15-08-0608] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein-tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia.
Collapse
Affiliation(s)
- J Aaron Harris
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Yi Liu
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Pinfen Yang
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233
| | - Peter Kner
- College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
26
|
Lechtreck KF. IFT-Cargo Interactions and Protein Transport in Cilia. Trends Biochem Sci 2015; 40:765-778. [PMID: 26498262 PMCID: PMC4661101 DOI: 10.1016/j.tibs.2015.09.003] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
The motile and sensory functions of cilia and flagella are indispensable for human health. Cilia assembly requires a dedicated protein shuttle, intraflagellar transport (IFT), a bidirectional motility of multi-megadalton protein arrays along ciliary microtubules. IFT functions as a protein carrier delivering hundreds of distinct proteins into growing cilia. IFT-based protein import and export continue in fully grown cilia and are required for ciliary maintenance and sensing. Large ciliary building blocks might depend on IFT to move through the transition zone, which functions as a ciliary gate. Smaller, freely diffusing proteins, such as tubulin, depend on IFT to be concentrated or removed from cilia. As I discuss here, recent work provides insights into how IFT interacts with its cargoes and how the transport is regulated.
Collapse
Affiliation(s)
- Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, 635C Biological Science Building, 1000 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
27
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
28
|
Brown JM, Cochran DA, Craige B, Kubo T, Witman GB. Assembly of IFT trains at the ciliary base depends on IFT74. Curr Biol 2015; 25:1583-93. [PMID: 26051893 PMCID: PMC4482480 DOI: 10.1016/j.cub.2015.04.060] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
Intraflagellar transport (IFT) moves IFT trains carrying cargoes from the cell body into the flagellum and from the flagellum back to the cell body. IFT trains are composed of complexes IFT-A and IFT-B and cargo adaptors such as the BBSome. The IFT-B core proteins IFT74 and IFT81 interact directly through central and C-terminal coiled-coil domains, and recently it was shown that the N termini of these proteins form a tubulin-binding module important for ciliogenesis. To investigate the function of IFT74 and its domains in vivo, we have utilized Chlamydomonas reinhardtii ift74 mutants. In a null mutant, lack of IFT74 destabilized IFT-B, leading to flagella assembly failure. In this null background, expression of IFT74 lacking 130 amino acids (aa) of the charged N terminus stabilized IFT-B and promoted slow assembly of nearly full-length flagella. A further truncation (lacking aa 1-196, including part of coiled-coil 1) also stabilized IFT-B, but failure in IFT-A/IFT-B interaction within the pool at the base of the flagellum prevented entry of IFT-A into the flagellum and led to severely decreased IFT injection frequency and flagellar-assembly defects. Decreased IFT-A in these short flagella resulted in aggregates of stalled IFT-B in the flagella. We conclude that IFT74 is required to stabilize IFT-B; aa 197-641 are sufficient for this function in vivo. The N terminus of IFT74 may be involved in, but is not required for, tubulin entry into flagella. It is required for association of IFT-A and IFT-B at the base of the flagellum and flagellar import of IFT-A.
Collapse
Affiliation(s)
- Jason M Brown
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA; Biology Department, Salem State University, 352 Lafayette Street, Salem, MA 01970, USA
| | - Deborah A Cochran
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Branch Craige
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Tomohiro Kubo
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - George B Witman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
29
|
Benmerah A, Durand B, Giles RH, Harris T, Kohl L, Laclef C, Meilhac SM, Mitchison HM, Pedersen LB, Roepman R, Swoboda P, Ueffing M, Bastin P. The more we know, the more we have to discover: an exciting future for understanding cilia and ciliopathies. Cilia 2015; 4:5. [PMID: 25974046 PMCID: PMC4378380 DOI: 10.1186/s13630-015-0014-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/23/2015] [Indexed: 11/10/2022] Open
Abstract
The Cilia 2014 conference was organised by four European networks: the Ciliopathy Alliance, the Groupement de Recherche CIL, the Nordic Cilia and Centrosome Network and the EU FP7 programme SYSCILIA. More than 400 delegates from 27 countries gathered at the Institut Pasteur conference centre in Paris, including 30 patients and patient representatives. The meeting offered a unique opportunity for exchange between different scientific and medical communities. Major highlights included new discoveries about the roles of motile and immotile cilia during development and homeostasis, the mechanism of cilium construction, as well as progress in diagnosis and possible treatment of ciliopathies. The contributions to the cilia field of flagellated infectious eukaryotes and of systems biology were also presented.
Collapse
Affiliation(s)
- Alexandre Benmerah
- INSERM U1163, Laboratoire des Maladies Rénales Héréditaires, 24 boulevard du Montparnasse, 75015 Paris, France ; Institut Imagine, Université Paris Descartes-Sorbonne Paris Cité, 24 boulevard du Montparnasse, 75015 Paris, France
| | - Bénédicte Durand
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Université Claude Bernard Lyon 1, 16 rue Dubois, Villeurbanne, Lyon, F69622 France
| | - Rachel H Giles
- Department of Nephrology, University Medical Centre Utrecht, 100 Heidelberglaan, Utrecht, 3584CX The Netherlands
| | - Tess Harris
- The Ciliopathy Alliance, 91 Royal College St, NW1 0SE, London
| | - Linda Kohl
- UMR7245 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier, 75005 Paris, France
| | - Christine Laclef
- Developmental Biology Laboratory UMR7622, UPMC Univ Paris 06, Sorbonne Université, 9 Quai Saint Bernard, F-75005 Paris, France ; Developmental Biology Laboratory UMR7622, CNRS, Institut de Biologie Paris Seine (IBPS), 9 Quai Saint Bernard, F-75005 Paris, France ; INSERM, ERL1156, 9 Quai Saint Bernard, F-75005 Paris, France
| | - Sigolène M Meilhac
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du docteur Roux, 75015 Paris, France ; CNRS URA2578, 25 rue du docteur Roux, 75015 Paris, France
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, OE Denmark
| | - Ronald Roepman
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein 25, P.O. Box 9101, 6525 Nijmegen, GA The Netherlands
| | - Peter Swoboda
- Department of Biosciences and Nutrition, Karolinska Institute, Hälsovägen 7, S-141 83 Huddinge, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tübingen, PO 2669, D-72016 Tübingen, Germany ; Research Unit of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85758 Neuherberg, Germany
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur and INSERM U1201, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
30
|
Craft JM, Harris JA, Hyman S, Kner P, Lechtreck KF. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism. ACTA ACUST UNITED AC 2015; 208:223-37. [PMID: 25583998 PMCID: PMC4298693 DOI: 10.1083/jcb.201409036] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In Chlamydomonas cilia, IFT concentrates soluble tubulin by regulating IFT train occupancy and thereby promotes elongation of axonemal microtubules. The assembly of the axoneme, the structural scaffold of cilia and flagella, requires translocation of a vast quantity of tubulin into the growing cilium, but the mechanisms that regulate the targeting, quantity, and timing of tubulin transport are largely unknown. In Chlamydomonas, GFP-tagged α-tubulin enters cilia as an intraflagellar transport (IFT) cargo and by diffusion. IFT-based transport of GFP-tubulin is elevated in growing cilia and IFT trains carry more tubulin. Cells possessing both nongrowing and growing cilia selectively target GFP-tubulin into the latter. The preferential delivery of tubulin boosts the concentration of soluble tubulin in the matrix of growing versus steady-state cilia. Cilia length mutants show abnormal kinetics of tubulin transport. We propose that cells regulate the extent of occupancy of IFT trains by tubulin cargoes. During ciliary growth, IFT concentrates soluble tubulin in cilia and thereby promotes elongation of the axonemal microtubules.
Collapse
Affiliation(s)
- Julie M Craft
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - J Aaron Harris
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Sebastian Hyman
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Peter Kner
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| | - Karl F Lechtreck
- Department of Cellular Biology and College of Engineering, University of Georgia, Athens, GA 30602
| |
Collapse
|