1
|
Hure V, Piron-Prunier F, Yehouessi T, Vitte C, Kornienko AE, Adam G, Nordborg M, Déléris A. Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3. Genome Biol 2025; 26:11. [PMID: 39833858 PMCID: PMC11745025 DOI: 10.1186/s13059-024-03466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation. RESULTS In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants. These H3K27me3-marked TEs not only comprise degenerate relics but also seemingly intact copies that display the epigenetic features of responsive PcG target genes as well as an active H3K27me3 regulation. We also show that H3K27me3 can be deposited on newly inserted transgenic TE sequences in a TE-specific manner indicating that silencing is determined in cis. Finally, a comparison of Arabidopsis natural accessions reveals the existence of a category of TEs-which we refer to as "bifrons"-that are marked by DNA methylation or H3K27me3 depending on the accession. This variation can be linked to intrinsic TE features and to trans-acting factors and reveals a change in epigenetic status across the TE lifespan. CONCLUSIONS Our study sheds light on an alternative mode of TE silencing associated with H3K27me3 instead of DNA methylation in flowering plants. It also suggests dynamic switching between the two epigenetic marks at the species level, a new paradigm that might extend to other multicellular eukaryotes.
Collapse
Affiliation(s)
- Valentin Hure
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Florence Piron-Prunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Tamara Yehouessi
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France
| | - Clémentine Vitte
- Université Paris-Saclay, Institut National de la Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), CNRS, AgroParisTech, Génétique Quantitative et Evolution (GQE), Gif-Sur-Yvette, 91190, France
| | - Aleksandra E Kornienko
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Gabrielle Adam
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Gif-Sur-Yvette, 91190, France
| | - Magnus Nordborg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Angélique Déléris
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.
| |
Collapse
|
2
|
Fan K, Pfister E, Weng Z. Toward a comprehensive catalog of regulatory elements. Hum Genet 2023; 142:1091-1111. [PMID: 36935423 DOI: 10.1007/s00439-023-02519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/03/2023] [Indexed: 03/21/2023]
Abstract
Regulatory elements are the genomic regions that interact with transcription factors to control cell-type-specific gene expression in different cellular environments. A precise and complete catalog of functional elements encoded by the human genome is key to understanding mammalian gene regulation. Here, we review the current state of regulatory element annotation. We first provide an overview of assays for characterizing functional elements, including genome, epigenome, transcriptome, three-dimensional chromatin interaction, and functional validation assays. We then discuss computational methods for defining regulatory elements, including peak-calling and other statistical modeling methods. Finally, we introduce several high-quality lists of regulatory element annotations and suggest potential future directions.
Collapse
Affiliation(s)
- Kaili Fan
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Edith Pfister
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, 368 Plantation Street, ASC5-1069, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|
4
|
Liu P, Zhang H, Della Valle F, Orlando V. Dynamic Interactome of PRC2-EZH1 Complex Using Tandem-Affinity Purification and Quantitative Mass Spectrometry. Methods Mol Biol 2023; 2655:101-116. [PMID: 37212992 DOI: 10.1007/978-1-0716-3143-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Polycomb repressive complex 2 (PRC2) is a well-characterized chromatin regulator of transcription programs acting through H3K27me3 deposition. In mammals, there are two main versions of PRC2 complexes: PRC2-EZH2, which is prevalent in cycling cells, and PRC2-EZH1 where EZH1 replaces EZH2 in post-mitotic tissues. Stoichiometry of PRC2 complex is dynamically modulated during cellular differentiation and various stress conditions. Therefore, unraveling unique architecture of PRC2 complexes under specific biological context through comprehensive and quantitative characterization could provide insight into the underlying mechanistic molecular mechanism in regulation of transcription process. In this chapter, we describe an efficient method which combines tandem-affinity purification (TAP) with label-free quantitative proteomics strategy for studying PRC2-EZH1 complex architecture alterations and identifying novel protein regulators in post-mitotic C2C12 skeletal muscle cells.
Collapse
Affiliation(s)
- Peng Liu
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia.
| | - Huoming Zhang
- King Abdullah University of Science and Technology, Core Labs, Thuwal, Kingdom of Saudi Arabia
| | - Francesco Della Valle
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia
| | - Valerio Orlando
- King Abdullah University of Science and Technology, Biological and Environmental Sciences and Engineering Division, KAUST Environmental Epigenetics Research Program, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Heywood HK, Thorpe SD, Jeropoulos RM, Caton PW, Lee DA. Modulation of sirtuins during monolayer chondrocyte culture influences cartilage regeneration upon transfer to a 3D culture environment. Front Bioeng Biotechnol 2022; 10:971932. [PMID: 36561039 PMCID: PMC9763269 DOI: 10.3389/fbioe.2022.971932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
This study examined the role of sirtuins in the regenerative potential of articular chondrocytes. Sirtuins (SIRT1-7) play a key role in regulating cartilage homeostasis. By inhibiting pro-inflammatory pathways responsible for cartilage degradation and promoting the expression of key matrix components, sirtuins have the potential to drive a favourable balance between anabolic and catabolic processes critical to regenerative medicine. When subjected to osmolarity and glucose concentrations representative of the in vivo niche, freshly isolated bovine chondrocytes exhibited increases in SIRT1 but not SIRT3 gene expression. Replicating methods adopted for the in vitro monolayer expansion of chondrocytes for cartilage regenerative therapies, we found that SIRT1 gene expression declined during expansion. Manipulation of sirtuin activity during in vitro expansion by supplementation with the SIRT1-specific activator SRT1720, nicotinamide mononucleotide, or the pan-sirtuin inhibitor nicotinamide, significantly influenced cartilage regeneration in subsequent 3D culture. Tissue mass, cellularity and extracellular matrix content were reduced in response to sirtuin inhibition during expansion, whilst sirtuin activation enhanced these measures of cartilage tissue regeneration. Modulation of sirtuin activity during monolayer expansion influenced H3K27me3, a heterochromatin mark with an important role in development and differentiation. Unexpectedly, treatment of primary chondrocytes with sirtuin activators in 3D culture reduced their matrix synthesis. Thus, modulating sirtuin activity during the in vitro monolayer expansion phase may represent a distinct opportunity to enhance the outcome of cartilage regenerative medicine techniques.
Collapse
Affiliation(s)
- Hannah K. Heywood
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom,UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Renos M. Jeropoulos
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul W. Caton
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom,*Correspondence: David A. Lee,
| |
Collapse
|
6
|
EZH2 endorses cell plasticity to non-small cell lung cancer cells facilitating mesenchymal to epithelial transition and tumour colonization. Oncogene 2022; 41:3611-3624. [PMID: 35680984 DOI: 10.1038/s41388-022-02375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022]
Abstract
Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial-mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.
Collapse
|
7
|
Whiteley SL, Wagner S, Holleley CE, Deveson IW, Marshall Graves JA, Georges A. Truncated jarid2 and kdm6b transcripts are associated with temperature-induced sex reversal during development in a dragon lizard. SCIENCE ADVANCES 2022; 8:eabk0275. [PMID: 35442724 PMCID: PMC9020659 DOI: 10.1126/sciadv.abk0275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/04/2022] [Indexed: 05/23/2023]
Abstract
Sex determination and differentiation in reptiles are complex. In the model species, Pogona vitticeps, high incubation temperature can cause male to female sex reversal. To elucidate the epigenetic mechanisms of thermolabile sex, we used an unbiased genome-wide assessment of intron retention during sex reversal. The previously implicated chromatin modifiers (jarid2 and kdm6b) were two of three genes to display sex reversal-specific intron retention. In these species, embryonic intron retention resulting in C-terminally truncated jarid2 and kdm6b isoforms consistently occurs at low temperatures. High-temperature sex reversal is uniquely characterized by a high prevalence of N-terminally truncated isoforms of jarid2 and kdm6b, which are not present at low temperatures, or in two other reptiles with temperature-dependent sex determination. This work verifies that chromatin-modifying genes are involved in highly conserved temperature responses and can also be transcribed into isoforms with new sex-determining roles.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Bruce, Australia
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Bruce, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | | | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, Australia
| |
Collapse
|
8
|
Vijayanathan M, Trejo-Arellano MG, Mozgová I. Polycomb Repressive Complex 2 in Eukaryotes-An Evolutionary Perspective. EPIGENOMES 2022; 6:3. [PMID: 35076495 PMCID: PMC8788455 DOI: 10.3390/epigenomes6010003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.
Collapse
Affiliation(s)
- Mallika Vijayanathan
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - María Guadalupe Trejo-Arellano
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
| | - Iva Mozgová
- Biology Centre, Institute of Plant Molecular Biology, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic; (M.V.); (M.G.T.-A.)
- Faculty of Science, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| |
Collapse
|
9
|
Yu D, Iwamura Y, Satou Y, Oda-Ishii I. Tbx15/18/22 shares a binding site with Tbx6-r.b to maintain expression of a muscle structural gene in ascidian late embryos. Dev Biol 2021; 483:1-12. [PMID: 34963554 DOI: 10.1016/j.ydbio.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.c, has been uncovered; Myl.c expression is directed initially by transcription factor Tbx6-r.b at the 64-cell stage and then by the combined actions of Tbx6-r.b and Mrf from the gastrula to early tailbud stages. In the present study, we showed that transcription of Myl.c continued in late tailbud embryos and larvae, although a fusion protein of Tbx6-r.b and GFP was hardly detectable in late tailbud embryos. A knockdown experiment, reporter assay, and in vitro binding assay indicated that an essential cis-regulatory element of Myl.c that bound Tbx6-r.b in early embryos bound Tbx15/18/22 in late embryos to maintain expression of Myl.c. We also found that Tbx15/18/22 was controlled by Mrf, which constitutes a regulatory loop with Tbx6-r.b. Therefore, our data indicated that Tbx15/18/22 was activated initially under control of this regulatory loop as in the case of Myl.c, and then Tbx15/18/22 maintained the expression of Myl.c after Tbx6-r.b had disappeared. RNA-sequencing of Tbx15/18/22 morphant embryos revealed that many muscle structural genes were regulated similarly by Tbx15/18/22. Thus, the present study revealed the mechanisms of maintenance of transcription of muscle structural genes in late embryos in which Tbx15/18/22 takes the place of Tbx6-r.b.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
10
|
El Said NH, Della Valle F, Liu P, Paytuví-Gallart A, Adroub S, Gimenez J, Orlando V. Malat-1-PRC2-EZH1 interaction supports adaptive oxidative stress dependent epigenome remodeling in skeletal myotubes. Cell Death Dis 2021; 12:850. [PMID: 34531374 PMCID: PMC8445987 DOI: 10.1038/s41419-021-04082-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
PRC2-mediated epigenetic function involves the interaction with long non-coding RNAs (lncRNAs). Although the identity of some of these RNAs has been elucidated in the context of developmental programs, their counterparts in postmitotic adult tissue homeostasis remain uncharacterized. To this aim, we used terminally differentiated postmitotic skeletal muscle cells in which oxidative stress induces the dynamic activation of PRC2-Ezh1 through Embryonic Ectoderm Develpment (EED) shuttling to the nucleus. We identify lncRNA Malat-1 as a necessary partner for PRC2-Ezh1-dependent response to oxidative stress. We show that in this pathway, PRC2-EZH1 dynamic assembly, and in turn stress induced skeletal muscle targeted genes repression, depends specifically on Malat-1. Our study reports about PRC2-RNA interactions in the physiological context of adaptive oxidative stress response and identifies the first lncRNA involved in PRC2-Ezh1 function.
Collapse
Affiliation(s)
- Nadine Hosny El Said
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Francesco Della Valle
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Peng Liu
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| | | | - Sabir Adroub
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Juliette Gimenez
- Epigenetics and Genome Reprogramming Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valerio Orlando
- Biological Environmental Science and Engineering Division, KAUST Environmental Epigenetics Program, King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
11
|
Whiteley SL, Holleley CE, Wagner S, Blackburn J, Deveson IW, Marshall Graves JA, Georges A. Two transcriptionally distinct pathways drive female development in a reptile with both genetic and temperature dependent sex determination. PLoS Genet 2021; 17:e1009465. [PMID: 33857129 PMCID: PMC8049264 DOI: 10.1371/journal.pgen.1009465] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
How temperature determines sex remains unknown. A recent hypothesis proposes that conserved cellular mechanisms (calcium and redox; 'CaRe' status) sense temperature and identify genes and regulatory pathways likely to be involved in driving sexual development. We take advantage of the unique sex determining system of the model organism, Pogona vitticeps, to assess predictions of this hypothesis. P. vitticeps has ZZ male: ZW female sex chromosomes whose influence can be overridden in genetic males by high temperatures, causing male-to-female sex reversal. We compare a developmental transcriptome series of ZWf females and temperature sex reversed ZZf females. We demonstrate that early developmental cascades differ dramatically between genetically driven and thermally driven females, later converging to produce a common outcome (ovaries). We show that genes proposed as regulators of thermosensitive sex determination play a role in temperature sex reversal. Our study greatly advances the search for the mechanisms by which temperature determines sex.
Collapse
Affiliation(s)
- Sarah L. Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Clare E. Holleley
- Australian National Wildlife Collection CSIRO National Research Collections Australia, Canberra, Australia
| | - Susan Wagner
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | - James Blackburn
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Ira W. Deveson
- Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent’s Clinical School, UNSW, Sydney, Australia
| | - Jennifer A. Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
- Latrobe University, Melbourne, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
12
|
Rougée M, Quadrana L, Zervudacki J, Hure V, Colot V, Navarro L, Deleris A. Polycomb mutant partially suppresses DNA hypomethylation-associated phenotypes in Arabidopsis. Life Sci Alliance 2020; 4:4/2/e202000848. [PMID: 33443101 PMCID: PMC7756957 DOI: 10.26508/lsa.202000848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
A mutation in Arabidopsis polycomb repressive complex 2 partially suppresses the transposon activity observed in a DNA methylation mutant, challenging expectations. In plants and mammals, DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3), which is deposited by the polycomb repressive complex 2, are considered as two specialized systems for the epigenetic silencing of transposable element (TE) and genes, respectively. Nevertheless, many TE sequences acquire H3K27me3 when DNA methylation is lost. Here, we show in Arabidopsis thaliana that the gain of H3K27me3 observed at hundreds of TEs in the ddm1 mutant defective in the maintenance of DNA methylation, essentially depends on CURLY LEAF (CLF), one of two partially redundant H3K27 methyltransferases active in vegetative tissues. Surprisingly, the complete loss of H3K27me3 in ddm1 clf double mutant plants was not associated with further reactivation of TE expression nor with a burst of transposition. Instead, ddm1 clf plants exhibited less activated TEs, and a chromatin recompaction as well as hypermethylation of linker DNA compared with ddm1. Thus, a mutation in polycomb repressive complex 2 does not aggravate the molecular phenotypes linked to ddm1 but instead partially suppresses them, challenging our assumptions of the relationship between two conserved epigenetic silencing pathways.
Collapse
Affiliation(s)
- Martin Rougée
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, Sciences and Lettres (PSL) Research University, Paris, France
| | - Jérôme Zervudacki
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, Sciences and Lettres (PSL) Research University, Paris, France
| | - Valentin Hure
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, Sciences and Lettres (PSL) Research University, Paris, France
| | - Lionel Navarro
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, Sciences and Lettres (PSL) Research University, Paris, France
| | - Angélique Deleris
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
13
|
Vaziri A, Khabiri M, Genaw BT, May CE, Freddolino L, Dus M. Persistent epigenetic reprogramming of sweet taste by diet. SCIENCE ADVANCES 2020; 6:eabc8492. [PMID: 33177090 PMCID: PMC7673743 DOI: 10.1126/sciadv.abc8492] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 05/25/2023]
Abstract
Diets rich in sugar, salt, and fat alter taste perception and food preference, contributing to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here, we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of Drosophila melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.
Collapse
Affiliation(s)
- Anoumid Vaziri
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Morteza Khabiri
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Brendan T Genaw
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christina E May
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica Dus
- The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA.
- Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI 49109, USA
- Program in Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, MI, 48109, USA
- The Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI 49109, USA
| |
Collapse
|
14
|
Bock SL, Hale MD, Leri FM, Wilkinson PM, Rainwater TR, Parrott BB. Post-Transcriptional Mechanisms Respond Rapidly to Ecologically Relevant Thermal Fluctuations During Temperature-Dependent Sex Determination. Integr Org Biol 2020; 2:obaa033. [PMID: 33791571 PMCID: PMC7715621 DOI: 10.1093/iob/obaa033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
An organism's ability to integrate transient environmental cues experienced during development into molecular and physiological responses forms the basis for adaptive shifts in phenotypic trajectories. During temperature-dependent sex determination (TSD), thermal cues during discrete periods in development coordinate molecular changes that ultimately dictate sexual fate and contribute to patterns of inter- and intra-sexual variation. How these mechanisms interface with dynamic thermal environments in nature remain largely unknown. By deploying thermal loggers in wild nests of the American alligator (Alligator mississippiensis) over two consecutive breeding seasons, we observed that 80% of nests exhibit both male- and female-promoting thermal cues during the thermosensitive period, and of these nests, all exhibited both male- and female-promoting temperatures within the span of a single day. These observations raise a critical question-how are opposing environmental cues integrated into sexually dimorphic transcriptional programs across short temporal scales? To address this question, alligator embryos were exposed to fluctuating temperatures based on nest thermal profiles and sampled over the course of a daily thermal fluctuation. We examined the expression dynamics of upstream genes in the temperature-sensing pathway and find that post-transcriptional alternative splicing and transcript abundance of epigenetic modifier genes JARID2 and KDM6B respond rapidly to thermal fluctuations while transcriptional changes of downstream effector genes, SOX9 and DMRT1, occur on a delayed timescale. Our findings reveal how the basic mechanisms of TSD operate in an ecologically relevant context. We present a hypothetical hierarchical model based on our findings as well as previous studies, in which temperature-sensitive alternative splicing incrementally influences the epigenetic landscape to affect the transcriptional activity of key sex-determining genes.
Collapse
Affiliation(s)
- Samantha L Bock
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| | - Matthew D Hale
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Faith M Leri
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | | | - Thomas R Rainwater
- Tom Yawkey Wildlife Center, Georgetown, SC 29440, USA
- Belle W. Baruch Institute of Coastal Ecology & Forest Science, Clemson University, Georgetown, SC 29442, USA
| | - Benjamin B Parrott
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Savannah River Ecology Laboratory, Aiken, SC 29802, USA
| |
Collapse
|
15
|
Abstract
Predicting regulatory potential from primary DNA sequences or transcription factor binding patterns is not possible. However, the annotation of the genome by chromatin proteins, histone modifications, and differential compaction is largely sufficient to reveal the locations of genes and their differential activity states. The Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are the central players in this cell type-specific chromatin organization. PcG function was originally viewed as being solely repressive and irreversible, as observed at the homeotic loci in flies and mammals. However, it is now clear that modular and reversible PcG function is essential at most developmental genes. Focusing mainly on recent advances, we review evidence for how PcG and TrxG patterns change dynamically during cell type transitions. The ability to implement cell type-specific transcriptional programming with exquisite fidelity is essential for normal development.
Collapse
Affiliation(s)
- Mitzi I Kuroda
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Hyuckjoon Kang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Sandip De
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Judith A Kassis
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
16
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
17
|
Geigges M, Arekatla G, Paro R. Priming exposures to lipopolysaccharides do not affect the induction of Polycomb target genes upon re-exposure. PLoS One 2020; 15:e0231498. [PMID: 32287290 PMCID: PMC7156044 DOI: 10.1371/journal.pone.0231498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
The Polycomb group (PcG) proteins are chromatin factors underlying the process of transcriptional memory to preserve developmental decisions and keep cellular identities. However, not only developmental signals need to be memorized and thus maintained during the life of an organism. For host protection against pathogens, also a memory of previous exposures to an immunogenic stimulus is crucial to mount a more protective immune response upon re-exposure. The antigen-specific adaptive immunity in vertebrates is an example of such a memory to previous immunogenic stimulation. Recently, adaptive characteristics were also attributed to innate immunity, which was classically seen to lack memory. However, the mechanistic details of an adaptive innate immune response are yet to be fully understood and chromatin-based epigenetic mechanisms seem to play an important role in this phenomenon. Possibly, PcG proteins can contribute to such an epigenetic innate immune memory. In this study, we analyzed whether the PcG system can mediate a transcriptional memory of exposure to lipopolysaccharides (LPS). To this end, various forms of LPS pre-treatment were applied to reporter cells and expression kinetics of PcG target genes were analyzed after a second LPS exposure. Neither single nor multiple LPS pre-treatment affected the induction of endogenous LPS-responsive transcripts upon re-exposure. Altogether, our extensive analyses did not provide any evidence for a PcG system-mediated memory of LPS stimulation.
Collapse
Affiliation(s)
- Marco Geigges
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
| | - Geethika Arekatla
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, Epigenomics Group, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Castelli MA, Whiteley SL, Georges A, Holleley CE. Cellular calcium and redox regulation: the mediator of vertebrate environmental sex determination? Biol Rev Camb Philos Soc 2020; 95:680-695. [DOI: 10.1111/brv.12582] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan A. Castelli
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Sarah L. Whiteley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| | - Clare E. Holleley
- CSIROAustralian National Wildlife Collection, GPO Box 1700 Canberra 2601 Australia
- Institute for Applied EcologyUniversity of Canberra Canberra 2617 Australia
| |
Collapse
|
19
|
Liu P, Shuaib M, Zhang H, Nadeef S, Orlando V. Ubiquitin ligases HUWE1 and NEDD4 cooperatively control signal-dependent PRC2-Ezh1α/β-mediated adaptive stress response pathway in skeletal muscle cells. Epigenetics Chromatin 2019; 12:78. [PMID: 31856907 PMCID: PMC6921592 DOI: 10.1186/s13072-019-0322-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND While the role of Polycomb group protein-mediated "cell memory" is well established in developmental contexts, little is known about their role in adult tissues and in particular in post-mitotic cells. Emerging evidence assigns a pivotal role in cell plasticity and adaptation. PRC2-Ezh1α/β signaling pathway from cytoplasm to chromatin protects skeletal muscle cells from oxidative stress. However, detailed mechanisms controlling degradation of cytoplasmic Ezh1β and assembly of canonical PRC2-Ezh1α repressive complex remain to be clarified. RESULTS Here, we report NEDD4 ubiquitin E3 ligase, as key regulator of Ezh1β. In addition, we report that ubiquitination and degradation of Ezh1β is controlled by another layer of regulation, that is, one specific phosphorylation of serine 560 located at Ezh1β-specific C terminal. Finally, we demonstrate that also Ezh1α needs to be stabilized under stress condition and this stabilization process requires decreased association pattern between another E3 ubiquitin ligase HUWE1. CONCLUSIONS Together, these results shed light on key components that regulate PRC2-Ezh1α/β pathway to direct modulation of epigenome plasticity and transcriptional output in skeletal muscle cells.
Collapse
Affiliation(s)
- Peng Liu
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Muhammad Shuaib
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Huoming Zhang
- Core Labs, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Seba Nadeef
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Valerio Orlando
- BESE Division, KAUST Environmental Epigenetics Program, King Abdullah University Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
20
|
Bianchi A, Manti PG, Lucini F, Lanzuolo C. Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss Muscular Dystrophy: tous pour un, un pour tous. Nucleus 2019; 9:276-290. [PMID: 29619865 PMCID: PMC5973142 DOI: 10.1080/19491034.2018.1460044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The alteration of the several roles that Lamin A/C plays in the mammalian cell leads to a broad spectrum of pathologies that – all together – are named laminopathies. Among those, the Emery Dreifuss Muscular Dystrophy (EDMD) is of particular interest as, despite the several known mutations of Lamin A/C, the genotype–phenotype correlation still remains poorly understood; this suggests that the epigenetic background of patients might play an important role during the time course of the disease. Historically, both a mechanical role of Lamin A/C and a regulative one have been suggested as the driving force of laminopathies; however, those two hypotheses are not mutually exclusive. Recent scientific evidence shows that Lamin A/C sustains the correct gene expression at the epigenetic level thanks to the Lamina Associated Domains (LADs) reorganization and the crosstalk with the Polycomb Group of Proteins (PcG). Furthermore, the PcG-dependent histone mark H3K27me3 increases under mechanical stress, finally pointing out the link between the mechano-properties of the nuclear lamina and epigenetics. Here, we summarize the emerging mechanisms that could explain the high variability seen in Emery Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Andrea Bianchi
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | | | - Federica Lucini
- b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy
| | - Chiara Lanzuolo
- a CNR Institute of Cell Biology and Neurobiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy.,b Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi , Milan , Italy.,c Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
21
|
The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 2019; 20:590-607. [PMID: 31399642 DOI: 10.1038/s41580-019-0159-6] [Citation(s) in RCA: 1309] [Impact Index Per Article: 218.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2019] [Indexed: 12/22/2022]
Abstract
DNA methylation is of paramount importance for mammalian embryonic development. DNA methylation has numerous functions: it is implicated in the repression of transposons and genes, but is also associated with actively transcribed gene bodies and, in some cases, with gene activation per se. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this Review, we discuss the mechanisms and functions of DNA methylation and demethylation in both mice and humans at CpG-rich promoters, gene bodies and transposable elements. We highlight the dynamic erasure and re-establishment of DNA methylation in embryonic, germline and somatic cell development. Finally, we provide insights into DNA methylation gained from studying genetic diseases.
Collapse
|
22
|
Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:38-44. [DOI: 10.1016/j.mrrev.2018.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022]
|
23
|
Baluška F, Miller, Jr WB. Senomic view of the cell: Senome versus Genome. Commun Integr Biol 2018; 11:1-9. [PMID: 30214674 PMCID: PMC6132427 DOI: 10.1080/19420889.2018.1489184] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/11/2018] [Indexed: 12/25/2022] Open
Abstract
In the legacy of Thomas Henry Huxley, and his 'epigenetic' philosophy of biology, cells are proposed to represent a trinity of three memory-storing media: Senome, Epigenome, and Genome that together comprise a cell-wide informational architecture. Our current preferential focus on the Genome needs to be complemented by a similar focus on the Epigenome and a here proposed Senome, representing the sum of all the sensory experiences of the cognitive cell and its sensing apparatus. Only then will biology be in a position to embrace the whole complexity of the eukaryotic cell, understanding its true nature which allows the communicative assembly of cells in the form of sentient multicellular organisms.
Collapse
|