1
|
Tang C, Li L, Zhu C, Xu Q, An Z, Xu S, Lin C. GPR137-RAB8A activation promotes ovarian cancer development via the Hedgehog pathway. J Exp Clin Cancer Res 2025; 44:22. [PMID: 39856733 PMCID: PMC11761205 DOI: 10.1186/s13046-025-03275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) progression is one of the commonest cause of female cancer death. While treatments in clinic includes primary surgery and targeted chemotherapy, curative and survival trends in OC have not significantly improved. Thus, further investigation of the mechanisms regarding OC carcinogenesis and discovery of novel targets is of great importance. METHODS Human ovarian tissue specimens, RNA sequencing, GEPIA database and bioinformatics analyses were used to analyze the gene correlation, and to identify and validate potential downstream candidates. The biological effects of GPR137-RAB8A-Hedgehog(HH) were investigated using in vitro and in vivo models and methods including qRT-PCR, RNA stability assay, RNA immunoprecipitation assay, GLI-luciferase reporter assay, nucleo-cytoplasmic separation assay, membrane-cytoplasmic separation assay, western blot, co-immunoprecipitation, immunofluorescence staining, cell counting kit-8 assay, wound healing assay, matrigel invasion assay, colony formation assay, xenografts assay, in situ transplantation tumor model of ovarian cancer in nude mice, and immunohistochemistry staining. RESULTS GPR137 expression was significantly higher in collected clinical OC tissues, compared with the adjacent normal tissues. Consistently, suppression of GPR137 inhibited human SK-OV-3 and A2780 OC cell proliferation, migration, invasion, and colony formation, whereas overexpression of GPR137 in human OC HO8910 cell exerted the opposite effects on cell biological behaviors. Mechanistically, RAB8A was identified as a downstream target of GPR137, and GPR137 promotes RAB8A expression by promoting RAB8A mRNA stability. By RNA-sequencing and experiments in vitro using multiple ovarian cancer cell models as well as in vivo using subcutaneous xenografts assay and in situ transplantation ovarian cancer model in nude mice, we further demonstrated that RAB8A positively mediated OC progression through activating HH signaling pathway by disassociating the protein-protein complex formation of GLI and SuFu (Suppressor of Fused), which reciprocally enhanced GPR137 activity, forming a regulation loop between HH signaling and GPR137. CONCLUSIONS Collectively, this study depicts the role of GPR137-RAB8A-HH cascade in the development of OC, deepening our understanding of tumor biomechanics regarding OC progression and providing novel targets for OC therapy in future.
Collapse
Affiliation(s)
- Chao Tang
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China.
| | - Lin Li
- Department of Urology, Third Affiliated Hospital, Naval Medical University, Shanghai, 201805, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2 Road, Shanghai, 200025, China
| | - Qiang Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Zihao An
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Shouying Xu
- National Clinical Research Center for Child Health of Children's Hospital, Zhejiang University School of Medicine, No. 3333, Binsheng Rd, Hangzhou, 310052, People's Republic of China
| | - Chao Lin
- Department of Neurosurgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Xiang W, Li L, Qin M, Li L, Yu H, Wang F, Ni S, Shen A, Lu H, Ni H, Wang Y. Diminished nuclear-localized β-adrenoceptor signalling activates YAP to promote kidney fibrosis in diabetic nephropathy. Br J Pharmacol 2024. [PMID: 39359016 DOI: 10.1111/bph.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD), which is characterized by mesangial matrix expansion that involves dysfunctional mesangial cells (MCs). However, the underlying mechanisms remain unclear. This study aims to delineate the spatiotemporal contribution of adrenergic signalling in diabetic kidney fibrosis to reveal potential therapeutic targets. EXPERIMENTAL APPROACH A model of diabetic nephropathy was induced by in db/db mice. Gene expression in kidneys was profiled by RNA-seq analyses, western blot and immunostaining. Subcellular-localized fluorescence resonance energy transfer (FRET) biosensors determined adrenergic signalling microdomains in MCs. Effects of oral rolipram, a phosphodiesterase 4 (PDE4) inhibitor, on the model were measured. KEY RESULTS Our model exhibited impaired kidney function with elevated expression of adrenergic and fibrotic genes, including Adrb1, PDEs, Acta2 and Tgfβ. RNA-seq analysis revealed that MCs with dysregulated YAP pathway were crucial to the extracellular matrix secretion in kidneys from diabetic nephropathy patients. In cultured MCs, TGF-β promoted profibrotic gene transcription, which was regulated by nuclear-localized β-adrenoceptor signalling. Mechanistically, TGF-β treatment diminished nuclear-specific cAMP signalling in MCs and reduced PKA-dependent phosphorylation of YAP, leading to its activation. In parallel, db/db mouse kidneys showed increased expressions of PDE4B and PDE4D. Treatment with oral rolipram alleviated kidney fibrosis in db/db mice. CONCLUSION AND IMPLICATIONS Diabetic nephropathy impaired nuclear-localized β1-adrenoceptor-cAMP signalling microdomain through upregulating PDE4 expression, promoting fibrosis in MCs via PKA dephosphorylation-dependent YAP activation. Our results suggest PDE4 inhibition as a promising strategy for alleviating kidney fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lei Li
- School of Public Health, Xi'an Jiao Tong University, Xi'an, China
| | - Manman Qin
- Mass Spectrometry Laboratory for BioSample analysis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hualong Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fangyuan Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyuan Ni
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Haocheng Lu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, Shenzhen, China
| |
Collapse
|
3
|
The Adhesion G-Protein-Coupled Receptor GPR115/ADGRF4 Regulates Epidermal Differentiation and Associates with Cytoskeletal KRT1. Cells 2022; 11:cells11193151. [PMID: 36231117 PMCID: PMC9563031 DOI: 10.3390/cells11193151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Among the 33 human adhesion G-protein-coupled receptors (aGPCRs), a unique subfamily of GPCRs, only ADGRF4, encoding GPR115, shows an obvious skin-dominated transcriptomic profile, but its expression and function in skin is largely unknown. Here, we report that GPR115 is present in a small subset of basal and in most suprabasal, noncornified keratinocytes of the stratified epidermis, supporting epidermal transcriptomic data. In psoriatic skin, characterized by hyperproliferation and delayed differentiation, the expression of GPR115 and KRT1/10, the fundamental suprabasal keratin dimer, is delayed. The deletion of ADGRF4 in HaCaT keratinocytes grown in an organotypic mode abrogates KRT1 and reduces keratinocyte stratification, indicating a role of GPR115 in epidermal differentiation. Unexpectedly, endogenous GPR115, which is not glycosylated and is likely not proteolytically processed, localizes intracellularly along KRT1/10-positive keratin filaments in a regular pattern. Our data demonstrate a hitherto unknown function of GPR115 in the regulation of epidermal differentiation and KRT1.
Collapse
|
4
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
5
|
Leysen H, Walter D, Christiaenssen B, Vandoren R, Harputluoğlu İ, Van Loon N, Maudsley S. GPCRs Are Optimal Regulators of Complex Biological Systems and Orchestrate the Interface between Health and Disease. Int J Mol Sci 2021; 22:ijms222413387. [PMID: 34948182 PMCID: PMC8708147 DOI: 10.3390/ijms222413387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/06/2023] Open
Abstract
GPCRs arguably represent the most effective current therapeutic targets for a plethora of diseases. GPCRs also possess a pivotal role in the regulation of the physiological balance between healthy and pathological conditions; thus, their importance in systems biology cannot be underestimated. The molecular diversity of GPCR signaling systems is likely to be closely associated with disease-associated changes in organismal tissue complexity and compartmentalization, thus enabling a nuanced GPCR-based capacity to interdict multiple disease pathomechanisms at a systemic level. GPCRs have been long considered as controllers of communication between tissues and cells. This communication involves the ligand-mediated control of cell surface receptors that then direct their stimuli to impact cell physiology. Given the tremendous success of GPCRs as therapeutic targets, considerable focus has been placed on the ability of these therapeutics to modulate diseases by acting at cell surface receptors. In the past decade, however, attention has focused upon how stable multiprotein GPCR superstructures, termed receptorsomes, both at the cell surface membrane and in the intracellular domain dictate and condition long-term GPCR activities associated with the regulation of protein expression patterns, cellular stress responses and DNA integrity management. The ability of these receptorsomes (often in the absence of typical cell surface ligands) to control complex cellular activities implicates them as key controllers of the functional balance between health and disease. A greater understanding of this function of GPCRs is likely to significantly augment our ability to further employ these proteins in a multitude of diseases.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Deborah Walter
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Bregje Christiaenssen
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Romi Vandoren
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - İrem Harputluoğlu
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Department of Chemistry, Middle East Technical University, Çankaya, Ankara 06800, Turkey
| | - Nore Van Loon
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (B.C.); (R.V.); (İ.H.); (N.V.L.)
- Correspondence:
| |
Collapse
|
6
|
Li Y, Cui ZJ. Photodynamic Activation of Cholecystokinin 1 Receptor with Different Genetically Encoded Protein Photosensitizers and from Varied Subcellular Sites. Biomolecules 2020; 10:1423. [PMID: 33050050 PMCID: PMC7601527 DOI: 10.3390/biom10101423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cholecystokinin 1 receptor (CCK1R) is activated by singlet oxygen (1O2) generated in photodynamic action with sulphonated aluminum phthalocyanine (SALPC) or genetically encoded protein photosensitizer (GEPP) KillerRed or mini singlet oxygen generator (miniSOG). A large number of GEPP with varied 1O2 quantum yields have appeared recently; therefore, in the present work, the efficacy of different GEPP to photodynamically activate CCK1R was examined, as monitored by Fura-2 calcium imaging. KillerRed, miniSOG, miniSOG2, singlet oxygen protein photosensitizer (SOPP), flavin-binding fluorescent protein from Methylobacterium radiotolerans with point mutation C71G (Mr4511C71G), and flavin-binding fluorescent protein from Dinoroseobacter shibae (DsFbFP) were expressed at the plasma membrane (PM) in AR4-2J cells, which express endogenous CCK1R. Light irradiation (KillerRed: white light 85.3 mW‧cm-2, 4' and all others: LED 450 nm, 85 mW·cm-2, 1.5') of GEPPPM-expressing AR4-2J was found to all trigger persistent calcium oscillations, a hallmark of permanent photodynamic CCK1R activation; DsFbFP was the least effective, due to poor expression. miniSOG was targeted to PM, mitochondria (MT) or lysosomes (LS) in AR4-2J in parallel experiments; LED light irradiation was found to all induce persistent calcium oscillations. In miniSOGPM-AR4-2J cells, light emitting diode (LED) light irradiation-induced calcium oscillations were readily inhibited by CCK1R antagonist devazepide 2 nM; miniSOGMT-AR4-2J cells were less susceptible, but miniSOGLS-AR4-2J cells were not inhibited. In conclusion, different GEPPPM could all photodynamically activate CCK1R. Intracellular GEPP photodynamic action may prove particularly suited to study intracellular GPCR.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
7
|
Figlewicz DP, Witkamp RF. FATTY ACIDS AS CELL SIGNALS IN INGESTIVE BEHAVIORS. Physiol Behav 2020; 223:112985. [PMID: 32473927 DOI: 10.1016/j.physbeh.2020.112985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/04/2020] [Accepted: 05/23/2020] [Indexed: 12/17/2022]
|
8
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
9
|
Santos-Otte P, Leysen H, van Gastel J, Hendrickx JO, Martin B, Maudsley S. G Protein-Coupled Receptor Systems and Their Role in Cellular Senescence. Comput Struct Biotechnol J 2019; 17:1265-1277. [PMID: 31921393 PMCID: PMC6944711 DOI: 10.1016/j.csbj.2019.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Aging is a complex biological process that is inevitable for nearly all organisms. Aging is the strongest risk factor for development of multiple neurodegenerative disorders, cancer and cardiovascular disorders. Age-related disease conditions are mainly caused by the progressive degradation of the integrity of communication systems within and between organs. This is in part mediated by, i) decreased efficiency of receptor signaling systems and ii) an increasing inability to cope with stress leading to apoptosis and cellular senescence. Cellular senescence is a natural process during embryonic development, more recently it has been shown to be also involved in the development of aging disorders and is now considered one of the major hallmarks of aging. G-protein-coupled receptors (GPCRs) comprise a superfamily of integral membrane receptors that are responsible for cell signaling events involved in nearly every physiological process. Recent advances in the molecular understanding of GPCR signaling complexity have expanded their therapeutic capacity tremendously. Emerging data now suggests the involvement of GPCRs and their associated proteins in the development of cellular senescence. With the proven efficacy of therapeutic GPCR targeting, it is reasonable to now consider GPCRs as potential platforms to control cellular senescence and the consequently, age-related disorders.
Collapse
Key Words
- ADP-ribosylation factor GTPase-activating protein, (Arf-GAP)
- AT1R blockers, (ARB)
- Aging
- Angiotensin II, (Ang II)
- Ataxia telangiectasia mutated, (ATM)
- Cellular senescence
- G protein-coupled receptor kinase interacting protein 2 (GIT2)
- G protein-coupled receptor kinase interacting protein 2, (GIT2)
- G protein-coupled receptor kinase, (GRK)
- G protein-coupled receptors (GPCRs)
- G protein-coupled receptors, (GPCRs)
- Hutchinson–Gilford progeria syndrome, (HGPS)
- Lysophosphatidic acid, (LPA)
- Regulator of G-protein signaling, (RGS)
- Relaxin family receptor 3, (RXFP3)
- active state, (R*)
- angiotensin type 1 receptor, (AT1R)
- angiotensin type 2 receptor, (AT2R)
- beta2-adrenergic receptor, (β2AR)
- cyclin-dependent kinase 2, (CDK2)
- cyclin-dependent kinase inhibitor 1, (cdkn1A/p21)
- endothelial cell differentiation gene, (Edg)
- inactive state, (R)
- latent semantic indexing, (LSI)
- mitogen-activated protein kinase, (MAPK)
- nuclear factor kappa-light-chain-enhancer of activated B cells, (NF- κβ)
- protein kinases, (PK)
- purinergic receptors family, (P2Y)
- renin-angiotensin system, (RAS)
- retinoblastoma, (RB)
- senescence associated secretory phenotype, (SASP)
- stress-induced premature senescence, (SIPS)
- transcription factor E2F3, (E2F3)
- transmembrane, (TM)
- tumor suppressor gene PTEN, (PTEN)
- tumor suppressor protein 53, (p53)
- vascular smooth muscle cells, (VSMC)
- β-Arrestin
Collapse
Affiliation(s)
- Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, 01062 Dresden, Germany
| | - Hanne Leysen
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Jaana van Gastel
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Jhana O. Hendrickx
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Bronwen Martin
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, University of Antwerp, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
10
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|