1
|
Yu Y, Jin C, Fu R, Han L, Fu B, Li Q, Cheng Y, Leng J. Splenic comparative transcriptome analysis reveals the immunological mode of undomesticated Gayal (Bos frontalis) for adapting to harsh environments. BMC Genomics 2025; 26:514. [PMID: 40394466 PMCID: PMC12093757 DOI: 10.1186/s12864-025-11718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 05/15/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND The utilization of transcriptome technology in the identification of pivotal regulatory genes associated with immunity is of paramount importance. Previous studies have shown that undomesticated gayal (Bos frontalis) may have higher humoral responses which is comparable to yaks. However, research on immune function of gayal is limited, and comparisons with different breeds are rarely reported. The objective of this study was to inspect the immune status and compare splenic differential expression genes (DEGs) through comparative transcriptome analysis of gayal and domesticated local cattle (Yunan yellow cattle). RESULTS Serum immunological status investigation showed the better humoral immune status and lower levels of pro-inflammatory cytokines of gayal when compared to the local cattle. Spleen RNA-seq showed that 708 DEGs (365 up- and 343 down-regulated genes) were obtained between the gayal and local cattle. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis showed that immune system pathways, immune disease pathways, and chemotaxis-related molecular function of gayal were significantly enriched, whereas T cell-related cellular component and biological process were downregulated in the gayal. Correlation analysis shown that CD1, CD36, CD38, CD179a, CD179b, CXCL8, IGCGAMMA, IGH, IGHG1, IGLL1, IL1R2, SERPINB, and SERPINB4 had positive correlations with splenic IgA, IgD, IgE, IgG, and IgM, respectively (R > 0.5, P < 0.05). ANPEP, BVD1.23, CD1E, CD3D, CD3E, CD3G, CD5, CD8 A, HBB, IDO1, LCK, MGC126945, MHC1, TRAV, TRBV, and ZAP70 had negative correlations with splenic IgA, IgD, IgE, IgG, and IgM, respectively (R < -0.5, P < 0.05). CONCLUSIONS Our results reveal the immunological mode of gayal with high-level humoral immunity and enhanced splenic immunoglobulin gene expression and B cell differentiation, which may enable gayal to adapt to the harsh environments.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research On Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Zuluaga P, Zurera-Egea C, Fuster D, Hernandez-Rubio A, Teniente-Serra A, Martínez-Cáceres E, Muga R. Changes in CD4 + T cells subsets in patients with alcohol-related cirrhosis. Clin Exp Med 2025; 25:31. [PMID: 39755990 DOI: 10.1007/s10238-024-01548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4+subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment. Patients without evidence of liver disease were the control group (CG). We analyzed naïve, memory, TEMRA, Th1, Th2, Th17, early activated, and late activated subsets. During the follow-up, TEMRA T cells were increased (1.2 ± 1.1% vs. 2.1 ± 1.1%, p = 0.03) in AC-patients (n = 5) and Th17 cells were decreased (14.1 ± 4.3% vs. 12.3 ± 6.4%, p = 0.03) in the CG (n = 22). Late activated cells were associated with a decrease in memory cells in both the groups. This association was stronger in AC-patients (r = - 0.90, p = 0.04). The proportion of memory cells was correlated with an increased of Th1/Th2/Th17 cells in the CG (r = 0.70, r = 0.68, r = 0.63; p < 0.01, respectively), whereas in AC-patients was correlated with a decrease in Th17 cells (r = - 0.90, p = 0.03). AC-patients showed an increase in the proportion of TEMRA T cells, loss of heterogeneity and decreased CD4+ differentiation.
Collapse
Affiliation(s)
- Paola Zuluaga
- Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, Ctra. Canyet, Badalona, Spain.
| | - Coral Zurera-Egea
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona, Bellaterra, Spain
| | - Daniel Fuster
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, Ctra. Canyet, Badalona, Spain
| | - Anna Hernandez-Rubio
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, Ctra. Canyet, Badalona, Spain
| | - Aina Teniente-Serra
- Department of Immunology, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Eva Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Roberto Muga
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Internal Medicine, Hospital Universitari Germans Trias I Pujol, Ctra. Canyet, Badalona, Spain
| |
Collapse
|
3
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
4
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
5
|
Díaz-Basilio F, Vergara-Mendoza M, Romero-Rodríguez J, Hernández-Rizo S, Escobedo-Calvario A, Fuentes-Romero LL, Pérez-Patrigeon S, Murakami-Ogasawara A, Gomez-Palacio M, Reyes-Terán G, Jiang W, Vázquez-Pérez JA, Marín-Hernández Á, Romero-Rodríguez DP, Gutiérrez-Ruiz MC, Viveros-Rogel M, Espinosa E. The ecto-enzyme CD38 modulates CD4T cell immunometabolic responses and participates in HIV pathogenesis. J Leukoc Biol 2024; 116:440-455. [PMID: 38466822 DOI: 10.1093/jleuko/qiae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Despite abundant evidence correlating T cell CD38 expression and HIV infection pathogenesis, its role as a CD4T cell immunometabolic regulator remains unclear. We find that CD38's extracellular glycohydrolase activity restricts metabolic reprogramming after T cell receptor (TCR)-engaging stimulation in Jurkat T CD4 cells, together with functional responses, while reducing intracellular nicotinamide adenine dinucleotide and nicotinamide mononucleotide concentrations. Selective elimination of CD38's ectoenzyme function licenses them to decrease the oxygen consumption rate/extracellular acidification rate ratio upon TCR signaling and to increase cycling, proliferation, survival, and CD40L induction. Pharmacological inhibition of ecto-CD38 catalytic activity in TM cells from chronic HIV-infected patients rescued TCR-triggered responses, including differentiation and effector functions, while reverting abnormally increased basal glycolysis, cycling, and spontaneous proinflammatory cytokine production. Additionally, ecto-CD38 blockage normalized basal and TCR-induced mitochondrial morphofunctionality, while increasing respiratory capacity in cells from HIV+ patients and healthy individuals. Ectoenzyme CD38's immunometabolic restriction of TCR-involving stimulation is relevant to CD4T cell biology and to the deleterious effects of CD38 overexpression in HIV disease.
Collapse
Affiliation(s)
- Fernando Díaz-Basilio
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
- PECEM Graduate Program, Faculty of Medicine, National Autonomous University of Mexico, Circuito Escolar, Ciudad Universitaria, Coyoacán, 04510 Mexico City, Mexico
| | - Moisés Vergara-Mendoza
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Jessica Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Sharik Hernández-Rizo
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Alejandro Escobedo-Calvario
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Luis-León Fuentes-Romero
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Santiago Pérez-Patrigeon
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María Gomez-Palacio
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Center for Research in Infectious Diseases (CIENI), National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Ashley Ave. BSB- 214C, Charleston, SC 29425, United States
| | - Joel-Armando Vázquez-Pérez
- Laboratory for Emergent Diseases and COPD, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - Álvaro Marín-Hernández
- Department of Biochemistry, National Institute of Cardiology Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Dámaris-Priscila Romero-Rodríguez
- Flow Cytometry Core Facility, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| | - María-Concepción Gutiérrez-Ruiz
- Laboratory for Cellular Physiology and Translational Medicine, Department of Health Sciences, Autonomous Metropolitan University, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Tlalpan, 14080 Mexico City, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Enrique Espinosa
- Laboratory of Integrative Immunology, National Institute of Respiratory Diseases Ismael Cosío Villegas, Calzada de Tlalpan 4502, Tlalpan, 14080 Mexico City, Mexico
| |
Collapse
|
6
|
Benoni B, Potužník J, Škríba A, Benoni R, Trylcova J, Tulpa M, Spustová K, Grab K, Mititelu MB, Pačes J, Weber J, Stanek D, Kowalska J, Bednarova L, Keckesova Z, Vopalensky P, Gahurova L, Cahova H. HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA. ACS Chem Biol 2024; 19:1243-1249. [PMID: 38747804 PMCID: PMC11197007 DOI: 10.1021/acschembio.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD) is a critical component of the cellular metabolism and also serves as an alternative 5' cap on various RNAs. However, the function of the NAD RNA cap is still under investigation. We studied NAD capping of RNAs in HIV-1-infected cells because HIV-1 is responsible for the depletion of the NAD/NADH cellular pool and causing intracellular pellagra. By applying the NAD captureSeq protocol to HIV-1-infected and uninfected cells, we revealed that four snRNAs (e.g., U1) and four snoRNAs lost their NAD cap when infected with HIV-1. Here, we provide evidence that the presence of the NAD cap decreases the stability of the U1/HIV-1 pre-mRNA duplex. Additionally, we demonstrate that reducing the quantity of NAD-capped RNA by overexpressing the NAD RNA decapping enzyme DXO results in an increase in HIV-1 infectivity. This suggests that NAD capping is unfavorable for HIV-1 and plays a role in its infectivity.
Collapse
Affiliation(s)
- Barbora Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- First
Faculty of Medicine, Charles University, Kateřinská 32, 121 08 Prague, Czechia
| | - Jiří
František Potužník
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Anton Škríba
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Roberto Benoni
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Jana Trylcova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Matouš Tulpa
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 121 08 Prague 2, Czechia
| | - Kristína Spustová
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Katarzyna Grab
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maria-Bianca Mititelu
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Faculty
of Science, Department of Cell Biology, Charles University, Viničná 7, 121 08 Prague 2, Czechia
| | - Jan Pačes
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Jan Weber
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - David Stanek
- Institute
of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czechia
| | - Joanna Kowalska
- Division
of Biophysics, Faculty of Physics, University
of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Lucie Bednarova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Zuzana Keckesova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Pavel Vopalensky
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| | - Lenka Gahurova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
- Department
of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005 České Budějovice, Czechia
| | - Hana Cahova
- Institute
of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí
2, 160 00 Prague
6, Czechia
| |
Collapse
|
7
|
Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Song S, Xie X, Yang S, Tang Y, Wang L, Zhang F. Mitochondrial disturbance related to increased caspase-1 of CD4 +T cells in HIV-1 infection. BMC Infect Dis 2024; 24:129. [PMID: 38267841 PMCID: PMC10809604 DOI: 10.1186/s12879-023-08485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1β, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.
Collapse
Affiliation(s)
- Fengting Yu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chengjie Ma
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xia Jin
- Human Viral Diseases and Vaccine Translation Research Unit, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Shujing Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Xie
- Department of Infectious Diseases, Peking University Ditan Teaching, Hospital, Beijing, China
| | - Siyuan Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yunxia Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| | - Fujie Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Masters MC, Landay AL, Robbins PD, Tchkonia T, Kirkland JL, Kuchel GA, Niedernhofer LJ, Palella FJ. Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. J Acquir Immune Defic Syndr 2022; 89:S34-S46. [PMID: 35015744 PMCID: PMC8751288 DOI: 10.1097/qai.0000000000002858] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
ABSTRACT The ability of virally suppressive antiretroviral therapy use to extend the life span of people with HIV (PWH) implies that the age of PWH will also increase. Among PWH, extended survival comes at a cost of earlier onset and increased rates of aging-associated comorbidities and geriatric syndromes, with persistent inflammation and immune dysregulation consequent to chronic HIV infection and to antiretroviral therapy use contributing to an overall decrease in health span. The geroscience hypothesis proposes that the root causes of most aging-related chronic diseases and conditions is the aging process itself. Hence, therapeutically targeting fundamental aging processes could have a greater impact on alleviating or delaying aging-associated comorbidities than addressing each disease individually. Extending the geroscience hypothesis to PWH, we speculate that targeting basic mechanisms of aging will improve overall health with age. Clinical features and pathophysiologic mechanisms of chronic diseases in PWH qualitatively resemble those seen in older adults without HIV. Therefore, drugs that target any of the pillars of aging, including metformin, rapamycin, and nicotinamide adenine dinucleotide precursors, may also slow the rate of onset of age-associated comorbidities and geriatric syndromes in PWH. Drugs that selectively induce apoptosis of senescent cells, termed senolytics, may also improve health span among PWH. Preliminary evidence suggests that senescent cell burden is increased in PWH, implying that senescent cells are an excellent therapeutic target for extending health span. Recently initiated clinical trials evaluating senolytics in age-related diseases offer insights into the design and potential implementation of similar trials for PWH.
Collapse
Affiliation(s)
- Mary C. Masters
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Chicago, IL
| | - Alan L. Landay
- Department of Internal Medicine, Section of Geriatric Medicine Rush University Medical Center, Chicago, IL
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN; and
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; and
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Frank J. Palella
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Chicago, IL
| |
Collapse
|
9
|
Martín D, Perdiguero P, Morel E, Soleto I, Herranz-Jusdado JG, Ramón LA, Abós B, Wang T, Díaz-Rosales P, Tafalla C. CD38 Defines a Subset of B Cells in Rainbow Trout Kidney With High IgM Secreting Capacities. Front Immunol 2021; 12:773888. [PMID: 34917087 PMCID: PMC8669677 DOI: 10.3389/fimmu.2021.773888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
CD38 is a multifunctional molecule that functions both as a transmembrane signaling receptor and as an ectoenzyme with important roles in cell adhesion, calcium regulation and signal transduction. Within the B cell linage, CD38 is expressed in diverse murine B cell subsets, with highest levels in innate B cell subpopulations such as marginal zone (MZ) B cells or B1 cells. In humans, however, CD38 is transiently expressed on early lymphocyte precursors, is lost on mature B cells and is consistently expressed on terminally differentiated plasma cells. In the present work, we have identified two homologues of mammalian CD38 in rainbow trout (Oncorhynchus mykiss), designating them as CD38A and CD38B. Although constitutively transcribed throughout different tissues in homeostasis, both CD38A and CD38B mRNA levels were significantly up-regulated in head kidney (HK) in response to a viral infection. In this organ, after the generation of a specific monoclonal antibody (mAb) against CD38A, the presence of CD38A+ populations among IgM+ B cells and IgM- leukocytes was investigated by flow cytometry. Interestingly, the percentage of IgM+CD38A+ B cells increased in response to an in vitro stimulation with inactivated Aeromonas salmonicida. Finally, we demonstrated that HK IgM+CD38A+ B cells had an increased IgM secreting capacity than that of cells lacking CD38A on the cell surface, also showing increased transcription levels of genes associated with B cell differentiation. This study strongly suggests a role for CD38 on the B cell differentiation process in teleosts, and provides us with novel tools to discern between B cell subsets in these species.
Collapse
Affiliation(s)
- Diana Martín
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Pedro Perdiguero
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - J German Herranz-Jusdado
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Luis A Ramón
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Beatriz Abós
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Patricia Díaz-Rosales
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
10
|
NAD+-consuming enzymes in immune defense against viral infection. Biochem J 2021; 478:4071-4092. [PMID: 34871367 PMCID: PMC8718269 DOI: 10.1042/bcj20210181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
The COVID-19 pandemic reminds us that in spite of the scientific progress in the past century, there is a lack of general antiviral strategies. In analogy to broad-spectrum antibiotics as antibacterial agents, developing broad spectrum antiviral agents would buy us time for the development of vaccines and treatments for future viral infections. In addition to targeting viral factors, a possible strategy is to understand host immune defense mechanisms and develop methods to boost the antiviral immune response. Here we summarize the role of NAD+-consuming enzymes in the immune defense against viral infections, with the hope that a better understanding of this process could help to develop better antiviral therapeutics targeting these enzymes. These NAD+-consuming enzymes include PARPs, sirtuins, CD38, and SARM1. Among these, the antiviral function of PARPs is particularly important and will be a focus of this review. Interestingly, NAD+ biosynthetic enzymes are also implicated in immune responses. In addition, many viruses, including SARS-CoV-2 contain a macrodomain-containing protein (NSP3 in SARS-CoV-2), which serves to counteract the antiviral function of host PARPs. Therefore, NAD+ and NAD+-consuming enzymes play crucial roles in immune responses against viral infections and detailed mechanistic understandings in the future will likely facilitate the development of general antiviral strategies.
Collapse
|
11
|
Tan A, Doig CL. NAD + Degrading Enzymes, Evidence for Roles During Infection. Front Mol Biosci 2021; 8:697359. [PMID: 34485381 PMCID: PMC8415550 DOI: 10.3389/fmolb.2021.697359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Declines in cellular nicotinamide adenine dinucleotide (NAD) contribute to metabolic dysfunction, increase susceptibility to disease, and occur as a result of pathogenic infection. The enzymatic cleavage of NAD+ transfers ADP-ribose (ADPr) to substrate proteins generating mono-ADP-ribose (MAR), poly-ADP-ribose (PAR) or O-acetyl-ADP-ribose (OAADPr). These important post-translational modifications have roles in both immune response activation and the advancement of infection. In particular, emergent data show viral infection stimulates activation of poly (ADP-ribose) polymerase (PARP) mediated NAD+ depletion and stimulates hydrolysis of existing ADP-ribosylation modifications. These studies are important for us to better understand the value of NAD+ maintenance upon the biology of infection. This review focuses specifically upon the NAD+ utilising enzymes, discusses existing knowledge surrounding their roles in infection, their NAD+ depletion capability and their influence within pathogenic infection.
Collapse
Affiliation(s)
- Arnold Tan
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig L Doig
- Interdisciplinary Science and Technology Centre, Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
12
|
Lu L, Wang J, Yang Q, Xie X, Huang Y. The role of CD38 in HIV infection. AIDS Res Ther 2021; 18:11. [PMID: 33820568 PMCID: PMC8021004 DOI: 10.1186/s12981-021-00330-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/06/2021] [Indexed: 11/24/2022] Open
Abstract
The widely-expressed molecule CD38 is a single-stranded type II transmembrane glycoprotein that is mainly involved in regulating the differentiation and activation state of the cell. CD38 has broad and complex functions, including enzymatic activity, intercellular signal transduction, cell activation, cytokine production, receptor function and adhesion activity, and it plays an important role in the physiological and pathological processes of many diseases. Many studies have shown that CD38 is related to the occurrence and development of HIV infection, and CD38 may regulate its progression through different mechanisms. Therefore, investigating the role of CD38 in HIV infection and the potential signaling pathways that are involved may provide a new perspective on potential treatments for HIV infection. In the present review, the current understanding of the roles CD38 plays in HIV infection are summarized. In addition, the specific role of CD38 in the process of HIV infection of human CD4+ T lymphocytes is also discussed.
Collapse
|
13
|
Zhou Y, He Y, Chang Y, Peng X, Zhao R, Peng M, Hu P, Ren H, Chen M, Xu H. The Characteristics of Natural Killer Cells and T Cells Vary With the Natural History of Chronic Hepatitis B in Children. Front Pediatr 2021; 9:736023. [PMID: 34900857 PMCID: PMC8656424 DOI: 10.3389/fped.2021.736023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Aims: The immune status of children with chronic hepatitis B (CHB) in different phases is still unclear. The aim of this study was to investigate the phenotype and cytokine-producing ability of natural killer (NK) and T cells and to better understand the immune characteristics of children with different phases of CHB. Methods: Treatment-naive children with CHB were divided into groups with different clinical phases of CHB. Fresh peripheral blood drawn from hepatitis B virus (HBV)-infected and healthy children was processed to perform flow cytometric analysis. Results: A total of 112 treatment-naive children with CHB and 16 comparable healthy controls were included in this study. The expression of HLA-DR on NK cells and CD38 on T cells were upregulated, especially in the IA phase, in children with CHB compared with healthy controls. The ability of circulating NK cells instead of CD8+ T cells to produce IFN-γ in children with CHB was slightly increased, but TNF-α production seemed to be decreased compared with that in healthy controls. The expression of some activation markers varied among children with different phases of CHB, especially the higher CD38 expression found on T cells in the IA phase. Regression analysis revealed that IFN-γ and TNF-α production by NK cells and CD8+ T cells seemed to have positive correlations with ALT elevation and an activated status of NK cells or T cells. Conclusion: NK cells and T cells tended to be phenotypically activated (especially in the IA phase) in children with CHB compared with healthy controls. However, their cytokine-producing function was not obviously elevated, especially IFN-γ production by CD8+ T cells. More studies investigating the mechanism and observing the longitudinal changes in the immune status in children with CHB are needed.
Collapse
Affiliation(s)
- Yingzhi Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yi He
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Yunan Chang
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Xiaorong Peng
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Ruiqiu Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| | - Mingli Peng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Infection, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Restrepo C, Álvarez B, Valencia JL, García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Prieto L, Nistal S, Montoya M, Górgolas M, Rallón N, Benito JM. Both HCV Infection and Elevated Liver Stiffness Significantly Impacts on Several Parameters of T-Cells Homeostasis in HIV-Infected Patients. J Clin Med 2020; 9:jcm9092978. [PMID: 32942736 PMCID: PMC7564456 DOI: 10.3390/jcm9092978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The role of hepatitis C virus (HCV) co-infection on the T-cell homeostasis disturbances in human immunodeficiency virus (HIV)-infected patients as well as its reversion after HCV eradication with direct acting antivirals (DAAs) therapy has not been yet clarified. We extensively analyzed the effect of HCV co-infection on immune parameters of HIV pathogenesis and its evolution after HCV eradication with DAAs. (2) Methods: Seventy individuals were included in the study-25 HIV-monoinfected patients, 25 HIV/HCV-coinfected patients and 20 HIV and HCV seronegative subjects. All patients were on antiretroviral therapy and undetectable HIV-viremia. Immune parameters, such as maturation, activation, apoptosis, senescence and exhaustion of T-cells were assessed by flow cytometry. Cross-sectional and longitudinal (comparing pre- and post-DAAs data in HIV/HCV coinfected patients) analyses were performed. Univariate and multivariate (general linear model and canonical discriminant analysis -CDA-) analyses were used to assess differences between groups. (3) Results-The CDA was able to clearly separate HIV/HCV coinfected from HIV-monoinfected patients, showing a more disturbed T-cells homeostasis in HIV/HCV patients, especially activation and exhaustion of T-cells. Interestingly, those perturbations were more marked in HIV/HCV patients with increased liver stiffness. Eradication of HCV with DAAs restored some but not all the T-cells homeostasis disturbances, with activation and exhaustion of effector CD8 T-cells remaining significantly increased three months after HCV eradication. (4) Conclusions-HCV co-infection significantly impacts on several immune markers of HIV pathogenesis, especially in patients with increased liver stiffness. Eradication of HCV with DAAs ameliorates but does not completely normalize these alterations. It is of utmost relevance to explore other mechanisms underlying the immune damage observed in HIV/HCV coinfected patients with control of both HIV and HCV replication.
Collapse
Affiliation(s)
- Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - José L Valencia
- Departamento de Estadística e Investigación Operativa III, Facultad de Estudios Estadísticos, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Marcial García
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María A Navarrete-Muñoz
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Laura Prieto
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Sara Nistal
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.M.L.); (M.M.)
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (B.Á.); (A.C.); (L.P.); (M.G.)
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
- Correspondence: ; Tel.: +34-91-544-37-20; Fax: +34-91-550-48-49
| | - José M Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28933 Madrid, Spain; (C.R.); (M.G.); (M.A.N.-M.); (J.M.B.)
- Hospital Universitario Rey Juan Carlos, Móstoles, 28933 Madrid, Spain;
| |
Collapse
|
15
|
Glaría E, Valledor AF. Roles of CD38 in the Immune Response to Infection. Cells 2020; 9:cells9010228. [PMID: 31963337 PMCID: PMC7017097 DOI: 10.3390/cells9010228] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
CD38 is a multifunctional protein widely expressed in cells from the immune system and as a soluble form in biological fluids. CD38 expression is up-regulated by an array of inflammatory mediators, and it is frequently used as a cell activation marker. Studies in animal models indicate that CD38 functional expression confers protection against infection by several bacterial and parasitic pathogens. In addition, infectious complications are associated with anti-CD38 immunotherapy. Although CD38 displays receptor and enzymatic activities that contribute to the establishment of an effective immune response, recent work raises the possibility that CD38 might also enhance the immunosuppressive potential of regulatory leukocytes. This review integrates the current knowledge on the diversity of functions mediated by CD38 in the host defense to infection.
Collapse
|