1
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Wang H, Shnaider FM, Martin E, Chiu NHL. Epitranscriptomic Mass Spectrometry. Methods Mol Biol 2024; 2822:335-349. [PMID: 38907927 DOI: 10.1007/978-1-0716-3918-4_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Every chemical group that is added to any one of the canonical ribonucleotides in a transcript would create a specific RNA modification. Currently, 170+ RNA modifications have been identified. A specific epitranscriptome refers to all the RNA modifications in a given biological system and is considered to play an important role in the regulations of cellular activities. Mass spectrometry-based methods have proven to be the most accurate way to identify RNA modifications and determine the amount of each detectable modification. Relating to the recent development of mapping specific RNA modifications within a transcriptome, the profiling of all RNA modifications can serve as a prescreening tool for mapping and provides support for analyzing the data obtained from mapping. In this chapter, the details for setting up a commonly used mass spectrometry-based method to profile all the RNA modifications in specific epitranscriptomes are described, and the possible options if available are discussed.
Collapse
Affiliation(s)
- Hongzhou Wang
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Frank Morales Shnaider
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Elizabeth Martin
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Norman H L Chiu
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, USA.
- Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, Greensboro, NC, USA.
| |
Collapse
|
3
|
Xie Y, Chan LY, Cheung MY, Li MW, Lam HM. Current technical advancements in plant epitranscriptomic studies. THE PLANT GENOME 2023; 16:e20316. [PMID: 36890704 DOI: 10.1002/tpg2.20316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The growth and development of plants are the result of the interplay between the internal developmental programming and plant-environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the "epitranscriptome." The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant-environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Long-Yiu Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Yan Cheung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
4
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Lemsara A, Dieterich C, Naarmann-de Vries IS. Mapping of RNA Modifications by Direct Nanopore Sequencing and JACUSA2. Methods Mol Biol 2023; 2624:241-260. [PMID: 36723820 DOI: 10.1007/978-1-0716-2962-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
RNA modifications exist in all kingdom of life. Several different types of base or ribose modifications are now summarized under the term "epitranscriptome." With the advent of high-throughput sequencing technologies, much progress has been made in understanding RNA modification biology and how these modifications can influence many aspects of RNA life. The most widespread internal modification on mRNA is m6A, which has been implicated in physiological processes as well as disease pathogenesis. Here, we provide a workflow for the mapping of m6A sites using Nanopore direct RNA sequencing data. Our strategy employs pairwise comparison of basecalling error profiles with JACUSA2. We outline a general strategy for RNA modification detection on mRNA and describe two specific use cases on m6A detection in detail. Use case 1: a sample of interest with modifications (e.g., "wild-type" sample) is compared to a sample lacking a specific modification type (e.g., "knockout" sample, here METTL3-KO) or Use case 2: a sample of interest with modifications is compared to a sample lacking all modifications (e.g., in vitro transcribed cDNA). We provide a detailed protocol on experimental and computational aspects. Extensive online material provides a snakemake pipeline to identify m6A positions in mRNA and to validate the results against a miCLIP-derived m6A reference set. The general strategy is flexible and can be easily adapted by users in different application scenarios.
Collapse
Affiliation(s)
- Amina Lemsara
- Klaus Tschira Institute for Integrative Computational Cardiology, University Heidelberg, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Dieterich
- Klaus Tschira Institute for Integrative Computational Cardiology, University Heidelberg, Heidelberg, Germany. .,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany. .,German Centre for Cardiovascular Research (DZHK)-Partner Site HD/MA, Heidelberg, Germany.
| | - Isabel S Naarmann-de Vries
- Klaus Tschira Institute for Integrative Computational Cardiology, University Heidelberg, Heidelberg, Germany.,Department of Internal Medicine III (Cardiology, Angiology, and Pneumology), University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research (DZHK)-Partner Site HD/MA, Heidelberg, Germany
| |
Collapse
|
6
|
Yu D, Dai N, Wolf EJ, Corrêa IR, Zhou J, Wu T, Blumenthal RM, Zhang X, Cheng X. Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. J Biol Chem 2022; 298:101751. [PMID: 35189146 PMCID: PMC8931429 DOI: 10.1016/j.jbc.2022.101751] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
The phosphorylated RNA polymerase II CTD interacting factor 1 (PCIF1) is a methyltransferase that adds a methyl group to the N6-position of 2′O-methyladenosine (Am), generating N6, 2′O-dimethyladenosine (m6Am) when Am is the cap-proximal nucleotide. In addition, PCIF1 has ancillary methylation activities on internal adenosines (both A and Am), although with much lower catalytic efficiency relative to that of its preferred cap substrate. The PCIF1 preference for 2′O-methylated Am over unmodified A nucleosides is due mainly to increased binding affinity for Am. Importantly, it was recently reported that PCIF1 can methylate viral RNA. Although some viral RNA can be translated in the absence of a cap, it is unclear what roles PCIF1 modifications may play in the functionality of viral RNAs. Here we show, using in vitro assays of binding and methyltransfer, that PCIF1 binds an uncapped 5′-Am oligonucleotide with approximately the same affinity as that of a cap analog (KM = 0.4 versus 0.3 μM). In addition, PCIF1 methylates the uncapped 5′-Am with activity decreased by only fivefold to sixfold compared with its preferred capped substrate. We finally discuss the relationship between PCIF1-catalyzed RNA methylation, shown here to have broader substrate specificity than previously appreciated, and that of the RNA demethylase fat mass and obesity-associated protein (FTO), which demonstrates PCIF1-opposing activities on capped RNAs.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, Massachusetts, USA
| | - Eric J Wolf
- New England Biolabs, Inc, Ipswich, Massachusetts, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc, Ipswich, Massachusetts, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tao Wu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|