1
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
Tang QY, Ren W, Wang J, Kaneko K. The Statistical Trends of Protein Evolution: A Lesson from AlphaFold Database. Mol Biol Evol 2022; 39:msac197. [PMID: 36108094 PMCID: PMC9550990 DOI: 10.1093/molbev/msac197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent proteins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional specialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins will be more assortative, and these proteins will have a higher degree of hydrophilic-hydrophobic segregation in the sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogenetic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evolution. This study provides new insights into how the diversity in the functionality of proteins increases and how the dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of the origin and evolution of lives.
Collapse
Affiliation(s)
- Qian-Yuan Tang
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jun Wang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Kunihiko Kaneko
- Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen 2100-DK, Denmark
| |
Collapse
|
3
|
Edwardson TGW, Hilvert D. Virus-Inspired Function in Engineered Protein Cages. J Am Chem Soc 2019; 141:9432-9443. [PMID: 31117660 DOI: 10.1021/jacs.9b03705] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural and functional diversity of proteins combined with their genetic programmability has made them indispensable modern materials. Well-defined, hollow protein capsules have proven to be particularly useful due to their ability to compartmentalize macromolecules and chemical processes. To this end, viral capsids are common scaffolds and have been successfully repurposed to produce a suite of practical protein-based nanotechnologies. Recently, the recapitulation of viromimetic function in protein cages of nonviral origin has emerged as a strategy to both complement physical studies of natural viruses and produce useful scaffolds for diverse applications. In this perspective, we review recent progress toward generation of virus-like behavior in nonviral protein cages through rational engineering and directed evolution. These artificial systems can aid our understanding of the emergence of viruses from existing cellular components, as well as provide alternative approaches to tackle current problems, and open up new opportunities, in medicine and biotechnology.
Collapse
Affiliation(s)
| | - Donald Hilvert
- Laboratory of Organic Chemistry , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
4
|
Joseph JA, Chakraborty D, Wales DJ. Energy Landscape for Fold-Switching in Regulatory Protein RfaH. J Chem Theory Comput 2018; 15:731-742. [DOI: 10.1021/acs.jctc.8b00912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Debayan Chakraborty
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
5
|
Woods KN, Pfeffer J. Using THz Spectroscopy, Evolutionary Network Analysis Methods, and MD Simulation to Map the Evolution of Allosteric Communication Pathways in c-Type Lysozymes. Mol Biol Evol 2016; 33:40-61. [PMID: 26337549 PMCID: PMC4693973 DOI: 10.1093/molbev/msv178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
It is now widely accepted that protein function is intimately tied with the navigation of energy landscapes. In this framework, a protein sequence is not described by a distinct structure but rather by an ensemble of conformations. And it is through this ensemble that evolution is able to modify a protein's function by altering its landscape. Hence, the evolution of protein functions involves selective pressures that adjust the sampling of the conformational states. In this work, we focus on elucidating the evolutionary pathway that shaped the function of individual proteins that make-up the mammalian c-type lysozyme subfamily. Using both experimental and computational methods, we map out specific intermolecular interactions that direct the sampling of conformational states and accordingly, also underlie shifts in the landscape that are directly connected with the formation of novel protein functions. By contrasting three representative proteins in the family we identify molecular mechanisms that are associated with the selectivity of enhanced antimicrobial properties and consequently, divergent protein function. Namely, we link the extent of localized fluctuations involving the loop separating helices A and B with shifts in the equilibrium of the ensemble of conformational states that mediate interdomain coupling and concurrently moderate substrate binding affinity. This work reveals unique insights into the molecular level mechanisms that promote the progression of interactions that connect the immune response to infection with the nutritional properties of lactation, while also providing a deeper understanding about how evolving energy landscapes may define present-day protein function.
Collapse
|
6
|
Holzgräfe C, Wallin S. Smooth functional transition along a mutational pathway with an abrupt protein fold switch. Biophys J 2015; 107:1217-1225. [PMID: 25185557 DOI: 10.1016/j.bpj.2014.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022] Open
Abstract
Recent protein design experiments have demonstrated that proteins can migrate between folds through the accumulation of substitution mutations without visiting disordered or nonfunctional points in sequence space. To explore the biophysical mechanism underlying such transitions we use a three-letter continuous protein model with seven atoms per amino acid to provide realistic sequence-structure and sequence-function mappings through explicit simulation of the folding and interaction of model sequences. We start from two 16-amino-acid sequences folding into an α-helix and a β-hairpin, respectively, each of which has a preferred binding partner with 35 amino acids. We identify a mutational pathway between the two folds, which features a sharp fold switch. By contrast, we find that the transition in function is smooth. Moreover, the switch in preferred binding partner does not coincide with the fold switch. Discovery of new folds in evolution might therefore be facilitated by following fitness slopes in sequence space underpinned by binding-induced conformational switching.
Collapse
Affiliation(s)
- Christian Holzgräfe
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden
| | - Stefan Wallin
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics, Lund University, Lund, Sweden.
| |
Collapse
|
7
|
When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. J Mol Biol 2015; 427:3316-3326. [PMID: 26301601 DOI: 10.1016/j.jmb.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The traditional view of protein-ligand binding treats a protein as comprising distinct binding epitopes on the surface of a degenerate structural scaffold, largely ignoring the impact of a protein's energy landscape. To determine the robustness of this simplification, we compared two small helix-turn-helix transcription factors with different energy landscapes. λ-Repressor is stable and well folded, while MarA appears to be marginally stable with multiple native conformations (molten). While λ-repressor is known to tolerate any hydrophobic mutation in the core, we find MarA drastically less tolerant to core mutation. Moreover, core mutations in MarA (distant from the DNA-binding interface) change the relative affinities of its binding partners, altering ligand specificity. These results can be explained by taking into account the effects of mutations on the entire energy landscape and not just the native state. Thus, for proteins with multiple conformations that are close in energy, such as many intrinsically disordered proteins, residues distant from the active site can alter both binding affinity and specificity.
Collapse
|
8
|
Eaton KV, Anderson WJ, Dubrava MS, Kumirov VK, Dykstra EM, Cordes MHJ. Studying protein fold evolution with hybrids of differently folded homologs. Protein Eng Des Sel 2015; 28:241-50. [PMID: 25991865 DOI: 10.1093/protein/gzv027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
To study the sequence determinants governing protein fold evolution, we generated hybrid sequences from two homologous proteins with 40% identity but different folds: Pfl 6 Cro, which has a mixed α + β structure, and Xfaso 1 Cro, which has an all α-helical structure. First, we first examined eight chimeric hybrids in which the more structurally conserved N-terminal half of one protein was fused to the more structurally divergent C-terminal half of the other. None of these chimeras folded, as judged by circular dichroism spectra and thermal melts, suggesting that both halves have strong intrinsic preferences for the native global fold pattern, and/or that the interfaces between the halves are not readily interchangeable. Second, we examined 10 hybrids in which blocks of the structurally divergent C-terminal region were exchanged. These hybrids showed varying levels of thermal stability and suggested that the key residues in the Xfaso 1 C terminus specifying the all-α fold were concentrated near the end of helix 4 in Xfaso 1, which aligns to the end of strand 2 in Pfl 6. Finally, we generated hybrid substitutions for each individual residue in this critical region and measured thermal stabilities. The results suggested that R47 and V48 were the strongest factors that excluded formation of the α + β fold in the C-terminal region of Xfaso 1. In support of this idea, we found that the folding stability of one of the original eight chimeras could be rescued by back-substituting these two residues. Overall, the results show not only that the key factors for Cro fold specificity and evolution are global and multifarious, but also that some all-α Cro proteins have a C-terminal subdomain sequence within a few substitutions of switching to the α + β fold.
Collapse
Affiliation(s)
- Karen V Eaton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew S Dubrava
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Vlad K Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Emily M Dykstra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Matthew H J Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| |
Collapse
|
9
|
Sikosek T, Chan HS. Biophysics of protein evolution and evolutionary protein biophysics. J R Soc Interface 2015; 11:20140419. [PMID: 25165599 DOI: 10.1098/rsif.2014.0419] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence-structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by 'hidden' conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution.
Collapse
Affiliation(s)
- Tobias Sikosek
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Hue Sun Chan
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
10
|
Lukowski JK, Savas CP, Gehring AM, McKary MG, Adkins CT, Lavis LD, Hoops GC, Johnson RJ. Distinct substrate selectivity of a metabolic hydrolase from Mycobacterium tuberculosis. Biochemistry 2014; 53:7386-95. [PMID: 25354081 DOI: 10.1021/bi501108u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transition between dormant and active Mycobacterium tuberculosis infection requires reorganization of its lipid metabolism and activation of a battery of serine hydrolase enzymes. Among these serine hydrolases, Rv0045c is a mycobacterial-specific serine hydrolase with limited sequence homology outside mycobacteria but structural homology to divergent bacterial hydrolase families. Herein, we determined the global substrate specificity of Rv0045c against a library of fluorogenic hydrolase substrates, constructed a combined experimental and computational model for its binding pocket, and performed comprehensive substitutional analysis to develop a structural map of its binding pocket. Rv0045c showed strong substrate selectivity toward short, straight chain alkyl esters with the highest activity toward four atom chains. This strong substrate preference was maintained through the combined action of residues in a flexible loop connecting the cap and α/β hydrolase domains and in residues close to the catalytic triad. Two residues bracketing the substrate-binding pocket (Gly90 and His187) were essential to maintaining the narrow substrate selectivity of Rv0045c toward various acyl ester substituents, as independent conversion of these residues significantly increased its catalytic activity and broadened its substrate specificity. Focused saturation mutagenesis of position 187 implicated this residue, as the differentiation point between the substrate specificity of Rv0045c and the structurally homologous ybfF hydrolase family. Insertion of the analogous tyrosine residue from ybfF hydrolases into Rv0045c increased the catalytic activity of Rv0045 by over 20-fold toward diverse ester substrates. The unique binding pocket structure and selectivity of Rv0045c provide molecular indications of its biological role and evidence for expanded substrate diversity in serine hydrolases from M. tuberculosis.
Collapse
Affiliation(s)
- Jessica K Lukowski
- Department of Chemistry, Butler University , 4600 Sunset Avenue, Indianapolis, Indiana 46208, United States
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Karpel RL. The illusive search for the lowest free energy state of globular proteins and RNAs. DNA Repair (Amst) 2014; 21:158-62. [PMID: 24846762 DOI: 10.1016/j.dnarep.2014.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
As a consequence of the one-dimensional storage and transfer of genetic information, DNA→RNA→protein, the process by which globular proteins and RNAs achieve their three-dimensional structure involves folding of a linear chain. The folding process itself could create massive activation barriers that prevent the attainment of many stable protein and RNA structures. We consider several kinds of energy barriers inherent in folding that might serve as kinetic constraints to achieving the lowest energy state. Alternative approaches to forming 3D structure, where a substantial number of weak interactions would be created prior to the formation of all the peptide (or phosphodiester) bonds, might not be subjected to such high barriers. This could lead to unique 3D conformational states, potentially more stable than "native" proteins and RNAs, with new functionalities.
Collapse
Affiliation(s)
- Richard L Karpel
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| |
Collapse
|
12
|
Stewart KL, Dodds ED, Wysocki VH, Cordes MHJ. A polymetamorphic protein. Protein Sci 2013; 22:641-9. [PMID: 23471712 DOI: 10.1002/pro.2248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 11/10/2022]
Abstract
Arc repressor is a homodimeric protein with a ribbon-helix-helix fold. A single polar-to-hydrophobic substitution (N11L) at a solvent-exposed position leads to population of an alternate dimeric fold in which 3₁₀ helices replace a β-sheet. Here we find that the variant Q9V/N11L/R13V (S-VLV), with two additional polar-to-hydrophobic surface mutations in the same β-sheet, forms a highly stable, reversibly folded octamer with approximately half the α-helical content of wild-type Arc. At low protein concentration and low ionic strength, S-VLV also populates both dimeric topologies previously observed for N11L, as judged by NMR chemical shift comparisons. Thus, accumulation of simple hydrophobic mutations in Arc progressively reduces fold specificity, leading first to a sequence with two folds and then to a manifold bridge sequence with at least three different topologies. Residues 9-14 of S-VLV form a highly hydrophobic stretch that is predicted to be amyloidogenic, but we do not observe aggregates of higher order than octamer. Increases in sequence hydrophobicity can promote amyloid aggregation but also exert broader and more complex effects on fold specificity. Altered native folds, changes in fold coupled to oligomerization, toxic pre-amyloid oligomers, and amyloid fibrils may represent a near continuum of accessible alternatives in protein structure space.
Collapse
Affiliation(s)
- Katie L Stewart
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|
13
|
Sikosek T, Bornberg-Bauer E, Chan HS. Evolutionary dynamics on protein bi-stability landscapes can potentially resolve adaptive conflicts. PLoS Comput Biol 2012; 8:e1002659. [PMID: 23028272 PMCID: PMC3441461 DOI: 10.1371/journal.pcbi.1002659] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022] Open
Abstract
Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological functions. However, computational models that simulate protein structure evolution do not yet recognize the importance of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future studies on protein bi-stability and evolution are discussed. Proteins are essential molecules for performing a majority of functions in all biological systems. These functions often depend on the three-dimensional structures of proteins. Here, we investigate a fundamental question in molecular evolution: how can proteins acquire new advantageous structures via mutations while not sacrificing their existing structures that are still needed? Some authors have suggested that the same protein may adopt two or more alternative structures, switch between them and thus perform different functions with each of the alternative structures. Intuitively, such a protein could provide an evolutionary compromise between conflicting demands for existing and new protein structures. Yet no theoretical study has systematically tackled the biophysical basis of such compromises during evolutionary processes. Here we devise a model of evolution that specifically recognizes protein molecules that can exist in several different stable structures. Our model demonstrates that proteins can indeed utilize multiple structures to satisfy conflicting evolutionary requirements. In light of these results, we identify data from known protein structures that are consistent with our predictions and suggest novel directions for future investigation.
Collapse
Affiliation(s)
- Tobias Sikosek
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| | | | | |
Collapse
|
14
|
Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness. Proc Natl Acad Sci U S A 2012; 109:14888-93. [PMID: 22927372 DOI: 10.1073/pnas.1115620109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in molecular evolution is how proteins can adapt to new functions while being conserved for an existing function at the same time. Several theoretical models have been put forward to explain this apparent paradox. The most popular models include neofunctionalization, subfunctionalization (SUBF) by degenerative mutations, and dosage models. All of these models focus on adaptation after gene duplication. A newly proposed model named "Escape from Adaptive Conflict" (EAC) includes adaptive processes before and after gene duplication that lead to multifunctional proteins, and divergence (SUBF). Support for the importance of multifunctionality for the evolution of new protein functions comes from two experimental observations. First, many enzymes have highly evolvable promiscuous side activities. Second, different structural states of the same protein can be associated with different functions. How these observations may be related to the EAC model, under which conditions EAC is possible, and how the different models relate to each other is still unclear. Here, we present a theoretical framework that uses biophysical principles to infer the roles of functional promiscuity, gene dosage, gene duplication, point mutations, and selection pressures in the evolution of proteins. We find that selection pressures can determine whether neofunctionalization or SUBF is the more likely evolutionary process. Multifunctional proteins, arising during EAC evolution, allow rapid adaptation independent of gene duplication. This becomes a crucial advantage when gene duplications are rare. Finally, we propose that an increase in mutational robustness, not necessarily functional optimization, can be the sole driving force behind SUBF.
Collapse
|
15
|
Honaker MT, Acchione M, Sumida JP, Atkins WM. Ensemble perspective for catalytic promiscuity: calorimetric analysis of the active site conformational landscape of a detoxification enzyme. J Biol Chem 2011; 286:42770-42776. [PMID: 22002059 DOI: 10.1074/jbc.m111.304386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enzymological paradigms have shifted recently to acknowledge the biological importance of catalytic promiscuity. However, catalytic promiscuity is a poorly understood property, and no thermodynamic treatment has described the conformational landscape of promiscuous versus substrate-specific enzymes. Here, two structurally similar glutathione transferase (GST, glutathione S-transferase) isoforms with high specificity or high promiscuity are compared. Differential scanning calorimetry (DSC) indicates a reversible low temperature transition for the promiscuous GSTA1-1 that is not observed with substrate-specific GSTA4-4. This transition is assigned to rearrangement of the C terminus at the active site of GSTA1-1 based on the effects of ligands and mutations. Near-UV and far-UV circular dichroism indicate that this transition is due to repacking of tertiary contacts with the remainder of the subunit, rather than "unfolding" of the C terminus per se. Analysis of the DSC data using a modified Landau theory indicates that the local conformational landscape of the active site of GSTA1-1 is smooth, with barrierless transitions between states. The partition function of the C-terminal states is a broad unimodal distribution at all temperatures within this DSC transition. In contrast, the remainder of the GSTA1-1 subunit and the GSTA4-4 protein exhibit folded and unfolded macrostates with a significant energy barrier separating them. Their partition function includes a sharp unimodal distribution of states only at temperatures that yield either folded or unfolded macrostates. At intermediate temperatures the partition function includes a bimodal distribution. The barrierless rearrangement of the GSTA1-1 active site within a local smooth energy landscape suggests a thermodynamic basis for catalytic promiscuity.
Collapse
Affiliation(s)
- Matthew T Honaker
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - Mauro Acchione
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - John P Sumida
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610.
| |
Collapse
|
16
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
17
|
Labean TH, Butt TR, Kauffman SA, Schultes EA. Protein folding absent selection. Genes (Basel) 2011; 2:608-26. [PMID: 24710212 PMCID: PMC3927614 DOI: 10.3390/genes2030608] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 11/16/2022] Open
Abstract
Biological proteins are known to fold into specific 3D conformations. However, the fundamental question has remained: Do they fold because they are biological, and evolution has selected sequences which fold? Or is folding a common trait, widespread throughout sequence space? To address this question arbitrary, unevolved, random-sequence proteins were examined for structural features found in folded, biological proteins. Libraries of long (71 residue), random-sequence polypeptides, with ensemble amino acid composition near the mean for natural globular proteins, were expressed as cleavable fusions with ubiquitin. The structural properties of both the purified pools and individual isolates were then probed using circular dichroism, fluorescence emission, and fluorescence quenching techniques. Despite this necessarily sparse "sampling" of sequence space, structural properties that define globular biological proteins, namely collapsed conformations, secondary structure, and cooperative unfolding, were found to be prevalent among unevolved sequences. Thus, for polypeptides the size of small proteins, natural selection is not necessary to account for the compact and cooperative folded states observed in nature.
Collapse
Affiliation(s)
- Thomas H Labean
- Sequenomics LLC, 1428 Chanterelle Lane, Hillsborough, NC 27278, USA.
| | - Tauseef R Butt
- LifeSensors Inc., 271 Great Valley Parkway, Suite 100, Malvern, PA 19355, USA.
| | - Stuart A Kauffman
- Complex Systems Center University of Vermont, 200C Farrell Hall, 210 Colchester Ave., Burlington, VT 05405, USA.
| | - Erik A Schultes
- Sequenomics LLC, 1428 Chanterelle Lane, Hillsborough, NC 27278, USA.
| |
Collapse
|
18
|
Anderson WJ, Van Dorn LO, Ingram WM, Cordes MHJ. Evolutionary bridges to new protein folds: design of C-terminal Cro protein chameleon sequences. Protein Eng Des Sel 2011; 24:765-71. [PMID: 21676898 DOI: 10.1093/protein/gzr027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regions of amino-acid sequence that are compatible with multiple folds may facilitate evolutionary transitions in protein structure. In a previous study, we described a heuristically designed chameleon sequence (SASF1, structurally ambivalent sequence fragment 1) that could adopt either of two naturally occurring conformations (α-helical or β-sheet) when incorporated as part of the C-terminal dimerization subdomain of two structurally divergent transcription factors, P22 Cro and λ Cro. Here we describe longer chameleon designs (SASF2 and SASF3) that in the case of SASF3 correspond to the full C-terminal half of the ordered region of a P22 Cro/λ Cro sequence alignment (residues 34-57). P22-SASF2 and λ(WDD)-SASF2 show moderate thermal stability in denaturation curves monitored by circular dichroism (T(m) values of 46 and 55°C, respectively), while P22-SASF3 and λ(WDD)-SASF3 have somewhat reduced stability (T(m) values of 33 and 49°C, respectively). (13)C and (1)H NMR secondary chemical shift analysis confirms two C-terminal α-helices for P22-SASF2 (residues 36-45 and 54-57) and two C-terminal β-strands for λ(WDD)-SASF2 (residues 40-45 and 50-52), corresponding to secondary structure locations in the two parent sequences. Backbone relaxation data show that both chameleon sequences have a relatively well-ordered structure. Comparisons of (15)N-(1)H correlation spectra for SASF2 and SASF3-containing proteins strongly suggest that SASF3 retains the chameleonism of SASF2. Both Cro C-terminal conformations can be encoded in a single sequence, showing the plausibility of linking different Cro folds by smooth evolutionary transitions. The N-terminal subdomain, though largely conserved in structure, also exerts an important contextual influence on the structure of the C-terminal region.
Collapse
Affiliation(s)
- William J Anderson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | | | | | | |
Collapse
|
19
|
Atkins WM, Qian H. Stochastic ensembles, conformationally adaptive teamwork, and enzymatic detoxification. Biochemistry 2011; 50:3866-72. [PMID: 21473615 DOI: 10.1021/bi200275r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It has been appreciated for a long time that enzymes exist as conformational ensembles throughout multiple stages of the reactions they catalyze, but there is renewed interest in the functional implications. The energy landscape that results from conformationlly diverse poteins is a complex surface with an energetic topography in multiple dimensions, even at the transition state(s) leading to product formation, and this represents a new paradigm. At the same time there has been renewed interest in conformational ensembles, a new paradigm concerning enzyme function has emerged, wherein catalytic promiscuity has clear biological advantages in some cases. "Useful", or biologically functional, promiscuity or the related behavior of "multifunctionality" can be found in the immune system, enzymatic detoxification, signal transduction, and the evolution of new function from an existing pool of folded protein scaffolds. Experimental evidence supports the widely held assumption that conformational heterogeneity promotes functional promiscuity. The common link between these coevolving paradigms is the inherent structural plasticity and conformational dynamics of proteins that, on one hand, lead to complex but evolutionarily selected energy landscapes and, on the other hand, promote functional promiscuity. Here we consider a logical extension of the overlap between these two nascent paradigms: functionally promiscuous and multifunctional enzymes such as detoxification enzymes are expected to have an ensemble landscape with more states accessible on multiple time scales than substrate specific enzymes. Two attributes of detoxification enzymes become important in the context of conformational ensembles: these enzymes metabolize multiple substrates, often in substrate mixtures, and they can form multiple products from a single substrate. These properties, combined with complex conformational landscapes, lead to the possibility of interesting time-dependent, or emergent, properties. Here we demonstrate these properties with kinetic simulations of nonequilibrium steady state (NESS) behavior resulting from energy landscapes expected for detoxification enzymes. Analogous scenarios with other promiscuous enzymes may be worthy of consideration.
Collapse
Affiliation(s)
- William M Atkins
- Department of Medicinal Chemistry and Department of Applied Mathematics, University of Washington, Seattle, Washington 98190, United States.
| | | |
Collapse
|
20
|
Holland JW, Okamura B, Hartikainen H, Secombes CJ. A novel minicollagen gene links cnidarians and myxozoans. Proc Biol Sci 2010; 278:546-53. [PMID: 20810433 DOI: 10.1098/rspb.2010.1301] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Myxozoans are enigmatic endoparasitic organisms sharing morphological features with bilateria, protists and cnidarians. This, coupled with their highly divergent gene sequences, has greatly obscured their phylogenetic affinities. Here we report the sequencing and characterization of a minicollagen homologue (designated Tb-Ncol-1) in the myxozoan Tetracapsuloides bryosalmonae. Minicollagens are phylum-specific genes encoding cnidarian nematocyst proteins. Sequence analysis revealed a cysteine-rich domain (CRD) architecture and genomic organization similar to group 1 minicollagens. Homology modelling predicted similar three-dimensional structures to Hydra CRDs despite deviations from the canonical pattern of group 1 minicollagens. The discovery of this minicollagen gene strongly supports myxozoans as cnidarians that have radiated as endoparasites of freshwater, marine and terrestrial hosts. It also reveals novel protein sequence variation of relevance to understanding the evolution of nematocyst complexity, and indicates a molecular/morphological link between myxozoan polar capsules and cnidarian nematocysts. Our study is the first to illustrate the power of using genes related to a taxon-specific novelty for phylogenetic inference within the Metazoa, and it exemplifies how the evolutionary relationships of other metazoans characterized by extreme sequence divergence could be similarly resolved.
Collapse
Affiliation(s)
- Jason W Holland
- Scottish Fish Immunology Research Centre, Aberdeen University, , Aberdeen AB24 2TZ, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
Many, if not most, enzymes can promiscuously catalyze reactions, or act on substrates, other than those for which they evolved. Here, we discuss the structural, mechanistic, and evolutionary implications of this manifestation of infidelity of molecular recognition. We define promiscuity and related phenomena and also address their generality and physiological implications. We discuss the mechanistic enzymology of promiscuity--how enzymes, which generally exert exquisite specificity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
22
|
How do new proteins arise? Curr Opin Struct Biol 2010; 20:390-6. [PMID: 20347587 DOI: 10.1016/j.sbi.2010.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
|
23
|
Tulip PR, Gregor CR, Troitzsch RZ, Martyna GJ, Cerasoli E, Tranter G, Crain J. Conformational Plasticity in an HIV-1 Antibody Epitope. J Phys Chem B 2010; 114:7942-50. [DOI: 10.1021/jp100929n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- P. R. Tulip
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - C. R. Gregor
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - R. Z. Troitzsch
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. J. Martyna
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - E. Cerasoli
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - G. Tranter
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| | - J. Crain
- School of Physics, The University of Edinburgh, Mayfield Road, Edinburgh, EH9 3JZ, U.K., IBM T.J. Watson Research Center, Yorktown Heights, New York, 10598, and National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, U.K
| |
Collapse
|
24
|
Metamorphic proteins mediate evolutionary transitions of structure. Proc Natl Acad Sci U S A 2010; 107:7287-92. [PMID: 20368465 DOI: 10.1073/pnas.0912616107] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The primary sequence of proteins usually dictates a single tertiary and quaternary structure. However, certain proteins undergo reversible backbone rearrangements. Such metamorphic proteins provide a means of facilitating the evolution of new folds and architectures. However, because natural folds emerged at the early stages of evolution, the potential role of metamorphic intermediates in mediating evolutionary transitions of structure remains largely unexplored. We evolved a set of new proteins based on approximately 100 amino acid fragments derived from tachylectin-2--a monomeric, 236 amino acids, five-bladed beta-propeller. Their structures reveal a unique pentameric assembly and novel beta-propeller structures. Although identical in sequence, the oligomeric subunits adopt two, or even three, different structures that together enable the pentameric assembly of two propellers connected via a small linker. Most of the subunits adopt a wild-type-like structure within individual five-bladed propellers. However, the bridging subunits exhibit domain swaps and asymmetric strand exchanges that allow them to complete the two propellers and connect them. Thus, the modular and metamorphic nature of these subunits enabled dramatic changes in tertiary and quaternary structure, while maintaining the lectin function. These oligomers therefore comprise putative intermediates via which beta-propellers can evolve from smaller elements. Our data also suggest that the ability of one sequence to equilibrate between different structures can be evolutionary optimized, thus facilitating the emergence of new structures.
Collapse
|
25
|
|
26
|
Petrey D, Honig B. Is protein classification necessary? Toward alternative approaches to function annotation. Curr Opin Struct Biol 2009; 19:363-8. [PMID: 19269161 PMCID: PMC2745633 DOI: 10.1016/j.sbi.2009.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 02/02/2009] [Indexed: 11/16/2022]
Abstract
The current nonredundant protein sequence database contains over seven million entries and the number of individual functional domains is significantly larger than this value. The vast quantity of data associated with these proteins poses enormous challenges to any attempt at function annotation. Classification of proteins into sequence and structural groups has been widely used as an approach to simplifying the problem. In this article we question such strategies. We describe how the multifunctionality and structural diversity of even closely related proteins confounds efforts to assign function on the basis of overall sequence or structural similarity. Rather, we suggest that strategies that avoid classification may offer a more robust approach to protein function annotation.
Collapse
Affiliation(s)
- Donald Petrey
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
27
|
Abstract
The traditional view that proteins possess absolute functional specificity and a single, fixed structure conflicts with their marked ability to adapt and evolve new functions and structures. We consider an alternative, "avant-garde view" in which proteins are conformationally dynamic and exhibit functional promiscuity. We surmise that these properties are the foundation stones of protein evolvability; they facilitate the divergence of new functions within existing folds and the evolution of entirely new folds. Packing modes of proteins also affect their evolvability, and poorly packed, disordered, and conformationally diverse proteins may exhibit high evolvability. This dynamic view of protein structure, function, and evolvability is extrapolated to describe hypothetical scenarios for the evolution of the early proteins and future research directions in the area of protein dynamism and evolution.
Collapse
Affiliation(s)
- Nobuhiko Tokuriki
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|