1
|
Fedder J, Fagerberg C, Jørgensen MW, Gravholt CH, Berglund A, Knudsen UB, Skakkebæk A. Complete or partial loss of the Y chromosome in an unselected cohort of 865 non-vasectomized, azoospermic men. Basic Clin Androl 2023; 33:37. [PMID: 38093178 PMCID: PMC10720143 DOI: 10.1186/s12610-023-00212-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Structural abnormalities as well as minor variations of the Y chromosome may cause disorders of sex differentiation or, more frequently, azoospermia. This study aimed to determine the prevalence of loss of Y chromosome material within the spectrum ranging from small microdeletions in the azoospermia factor region (AZF) to complete loss of the Y chromosome in azoospermic men. RESULTS Eleven of 865 azoospermic men (1.3%) collected from 1997 to 2022 were found to have a karyotype including a 45,X cell line. Two had a pure 45,X karyotype and nine had a 45,X/46,XY mosaic karyotype. The AZF region, or part of it, was deleted in eight of the nine men with a structural abnormal Y-chromosome. Seven men had a karyotype with a structural abnormal Y chromosome in a non-mosaic form. In addition, Y chromosome microdeletions were found in 34 men with a structural normal Y chromosome. No congenital malformations were detected by echocardiography and ultrasonography of the kidneys of the 11 men with a 45,X mosaic or non-mosaic cell line. CONCLUSIONS In men with azoospermia, Y chromosome loss ranging from small microdeletions to complete loss of the Y chromosome was found in 6.1% (53/865). Partial AZFb microdeletions may give a milder testicular phenotype compared to complete AZFb microdeletions.
Collapse
Affiliation(s)
- J Fedder
- Centre of Andrology & Fertility Clinic, Odense University Hospital, Kløvervænget 23, DK-5000, Odense, Denmark.
- Department of Clinical Medicine, University of Southern Denmark, Odense, Denmark.
- Fertility Clinic, Horsens Hospital, Horsens, Denmark.
| | - C Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - M W Jørgensen
- Department of Clinical Genetics, Lillebaelt Hospital, Vejle, Denmark
| | - C H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Berglund
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - U B Knudsen
- Fertility Clinic, Horsens Hospital, Horsens, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - A Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Xing Z, Zhang Y, Tian Z, Wang M, Xiao W, Zhu C, Zhao S, Zhu Y, Hu L, Kong X. Escaping but not the inactive X-linked protein complex coding genes may achieve X-chromosome dosage compensation and underlie X chromosome inactivation-related diseases. Heliyon 2023; 9:e17721. [PMID: 37449161 PMCID: PMC10336589 DOI: 10.1016/j.heliyon.2023.e17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/05/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
X chromosome dosage compensation (XDC) refers to the process by which X-linked genes acquire expression equivalence between two sexes. Ohno proposed that XDC is achieved by two-fold upregulations of X-linked genes in both sexes and by silencing one X chromosome (X chromosome inactivation, XCI) in females. However, genes subject to two-fold upregulations as well as the underlying mechanism remain unclear. It's reported that gene dosage changes may only affect X-linked dosage-sensitive genes, such as protein complex coding genes (PCGs). Our results showed that in human PCGs are more likely to escape XCI and escaping PCGs (EsP) show two-fold higher expression than inactivated PCGs (InP) or other X-linked genes at RNA and protein levels in both sexes, which suggest that EsP may achieve upregulations and XDC. The higher expressions of EsP possibly result from the upregulations of the single active X chromosome (Xa), rather than escaping expressions from the inactive X chromosome (Xi). EsP genes have relatively high expression levels in humans and lower dN/dS ratios, suggesting that they are likely under stronger selection pressure over evolutionary time. Our study also suggests that SP1 transcription factor is significantly enriched in EsP and may be involved in the up-regulations of EsP on the active X. Finally, human EsP genes in this study are enriched in the toll-like receptor pathway, NF-kB pathway, apoptotic pathway, and abnormal mental, developmental and reproductive phenotypes. These findings suggest misregulations of EsP may be involved in autoimmune, reproductive, and neurological diseases, providing insight for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhihao Xing
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Zhongyuan Tian
- Zhoukou Traditional Chinese Medicine Hospital, Zhoukou, Henan, China
| | - Meng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Weiwei Xiao
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Chunqing Zhu
- Clinical Laboratory, Institute of Pediatrics, Shenzhen Children’s' Hospital, Shenzhen, China
| | - Songhui Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Yufei Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Landian Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China
| |
Collapse
|
3
|
Valero-Regalón FJ, Solé M, López-Jiménez P, Valerio-de Arana M, Martín-Ruiz M, de la Fuente R, Marín-Gual L, Renfree MB, Shaw G, Berríos S, Fernández-Donoso R, Waters PD, Ruiz-Herrera A, Gómez R, Page J. Divergent patterns of meiotic double strand breaks and synapsis initiation dynamics suggest an evolutionary shift in the meiosis program between American and Australian marsupials. Front Cell Dev Biol 2023; 11:1147610. [PMID: 37181752 PMCID: PMC10166821 DOI: 10.3389/fcell.2023.1147610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.
Collapse
Affiliation(s)
| | - Mireia Solé
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular, Universitat Autònoma de Barcelona, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Valerio-de Arana
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of The Polish Academy of Sciences, Jastrzębiec, Poland
| | - Laia Marín-Gual
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Universitat Autònoma de Barcelona, Barcelona, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Barcelona, Spain
| | - Rocío Gómez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Schartl M, Georges A, Marshall Graves JA. Polygenic sex determination in vertebrates - is there any such thing? Trends Genet 2023; 39:242-250. [PMID: 36669949 PMCID: PMC10148267 DOI: 10.1016/j.tig.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 01/20/2023]
Abstract
Genetic sex determination (SD) in most vertebrates is controlled by a single master sex gene, which ensures a 1:1 sex ratio. However, more complex systems abound, and several have been ascribed to polygenic SD (PSD), in which many genes at different loci interact to produce the sexual phenotype. Here we examine claims for PSD in vertebrates, finding that most constitute transient states during sex chromosome turnover, or aberrant systems in species hybrids. To avoid confusion about terminology, we propose a consistent nomenclature for genetic SD systems.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, ACT, 2601, Australia
| | | |
Collapse
|
5
|
Wang L, You X, Ruan D, Shao R, Dai HQ, Shen W, Xu GL, Liu W, Zou W. TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes. Nat Commun 2022; 13:4709. [PMID: 35953487 PMCID: PMC9372040 DOI: 10.1038/s41467-022-32138-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The Ten-eleven translocation (TET) family of dioxygenases mediate cytosine demethylation by catalyzing the oxidation of 5-methylcytosine (5mC). TET-mediated DNA demethylation controls the proper differentiation of embryonic stem cells and TET members display functional redundancy during early gastrulation. However, it is unclear if TET proteins have functional significance in mammalian skeletal development. Here, we report that Tet genes deficiency in mesoderm mesenchymal stem cells results in severe defects of bone development. The existence of any single Tet gene allele can support early bone formation, suggesting a functional redundancy of TET proteins. Integrative analyses of RNA-seq, Whole Genome Bisulfite Sequencing (WGBS), 5hmC-Seal and Assay for Transposase-Accessible Chromatin (ATAC-seq) demonstrate that TET-mediated demethylation increases the chromatin accessibility of target genes by RUNX2 and facilities RUNX2-regulated transcription. In addition, TET proteins interact with RUNX2 through their catalytic domain to regulate cytosine methylation around RUNX2 binding region. The catalytic domain is indispensable for TET enzymes to regulate RUNX2 transcription activity on its target genes and to regulate bone development. These results demonstrate that TET enzymes function to regulate RUNX2 activity and maintain skeletal homeostasis. Here the authors investigate the role of the TET family of DNA demethylases in mammalian skeletal development. They find that loss of TETs leads to hypermethylation that results in decreased chromatin accessibility of RUNX2 target genes, repressing osteoblast differentiation and leading to skeletal defects in mouse such as short limbs.
Collapse
Affiliation(s)
- Lijun Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xiuling You
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China
| | - Rui Shao
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hai-Qiang Dai
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Guo-Liang Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Wanlu Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China. .,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, 314400, China.
| | - Weiguo Zou
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Ruiz-Herrera A, Waters PD. Fragile, unfaithful and persistent Ys-on how meiosis can shape sex chromosome evolution. Heredity (Edinb) 2022; 129:22-30. [PMID: 35459933 PMCID: PMC9273583 DOI: 10.1038/s41437-022-00532-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Sex-linked inheritance is a stark exception to Mendel's Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
7
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
8
|
Subrini J, Turner J. Y chromosome functions in mammalian spermatogenesis. eLife 2021; 10:67345. [PMID: 34606444 PMCID: PMC8489898 DOI: 10.7554/elife.67345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian Y chromosome is critical for male sex determination and spermatogenesis. However, linking each Y gene to specific aspects of male reproduction has been challenging. As the Y chromosome is notoriously hard to sequence and target, functional studies have mostly relied on transgene-rescue approaches using mouse models with large multi-gene deletions. These experimental limitations have oriented the field toward the search for a minimum set of Y genes necessary for male reproduction. Here, considering Y-chromosome evolutionary history and decades of discoveries, we review the current state of research on its function in spermatogenesis and reassess the view that many Y genes are disposable for male reproduction.
Collapse
Affiliation(s)
- Jeremie Subrini
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - James Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
9
|
Vegesna R, Tomaszkiewicz M, Ryder OA, Campos-Sánchez R, Medvedev P, DeGiorgio M, Makova KD. Ampliconic Genes on the Great Ape Y Chromosomes: Rapid Evolution of Copy Number but Conservation of Expression Levels. Genome Biol Evol 2021; 12:842-859. [PMID: 32374870 PMCID: PMC7313670 DOI: 10.1093/gbe/evaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/16/2022] Open
Abstract
Multicopy ampliconic gene families on the Y chromosome play an important role in spermatogenesis. Thus, studying their genetic variation in endangered great ape species is critical. We estimated the sizes (copy number) of nine Y ampliconic gene families in population samples of chimpanzee, bonobo, and orangutan with droplet digital polymerase chain reaction, combined these estimates with published data for human and gorilla, and produced genome-wide testis gene expression data for great apes. Analyzing this comprehensive data set within an evolutionary framework, we, first, found high inter- and intraspecific variation in gene family size, with larger families exhibiting higher variation as compared with smaller families, a pattern consistent with random genetic drift. Second, for four gene families, we observed significant interspecific size differences, sometimes even between sister species—chimpanzee and bonobo. Third, despite substantial variation in copy number, Y ampliconic gene families’ expression levels did not differ significantly among species, suggesting dosage regulation. Fourth, for three gene families, size was positively correlated with gene expression levels across species, suggesting that, given sufficient evolutionary time, copy number influences gene expression. Our results indicate high variability in size but conservation in gene expression levels in Y ampliconic gene families, significantly advancing our understanding of Y-chromosome evolution in great apes.
Collapse
Affiliation(s)
- Rahulsimham Vegesna
- Bioinformatics and Genomics Graduate Program, The Huck Institutes for the Life Sciences, Pennsylvania State University, University Park
| | | | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo Global, San Diego, California
| | | | - Paul Medvedev
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park.,Department of Computer Science and Engineering, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| | - Michael DeGiorgio
- Department of Biology, Pennsylvania State University, University Park.,Institute for Computational and Data Science, Pennsylvania State University, University Park
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park.,Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park.,Center for Medical Genomics, Pennsylvania State University, University Park
| |
Collapse
|
10
|
Gil-Fernández A, Matveevsky S, Martín-Ruiz M, Ribagorda M, Parra MT, Viera A, Rufas JS, Kolomiets O, Bakloushinskaya I, Page J. Sex differences in the meiotic behavior of an XX sex chromosome pair in males and females of the mole vole Ellobius tancrei: turning an X into a Y chromosome? Chromosoma 2021; 130:113-131. [PMID: 33825031 DOI: 10.1007/s00412-021-00755-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 01/01/2023]
Abstract
Sex determination in mammals is usually provided by a pair of chromosomes, XX in females and XY in males. Mole voles of the genus Ellobius are exceptions to this rule. In Ellobius tancrei, both males and females have a pair of XX chromosomes that are indistinguishable from each other in somatic cells. Nevertheless, several studies on Ellobius have reported that the two X chromosomes may have a differential organization and behavior during male meiosis. It has not yet been demonstrated if these differences also appear in female meiosis. To test this hypothesis, we have performed a comparative study of chromosome synapsis, recombination, and histone modifications during male and female meiosis in E. tancrei. We observed that synapsis between the two X chromosomes is limited to the short distal (telomeric) regions of the chromosomes in males, leaving the central region completely unsynapsed. This uneven behavior of sex chromosomes during male meiosis is accompanied by structural modifications of one of the X chromosomes, whose axial element tends to appear fragmented, accumulates the heterochromatin mark H3K9me3, and is associated with a specific nuclear body that accumulates epigenetic marks and proteins such as SUMO-1 and centromeric proteins but excludes others such as H3K4me, ubiH2A, and γH2AX. Unexpectedly, sex chromosome synapsis is delayed in female meiosis, leaving the central region unsynapsed during early pachytene. This region accumulates γH2AX up to the stage in which synapsis is completed. However, there are no structural or epigenetic differences similar to those found in males in either of the two X chromosomes. Finally, we observed that recombination in the sex chromosomes is restricted in both sexes. In males, crossover-associated MLH1 foci are located exclusively in the distal regions, indicating incipient differentiation of one of the sex chromosomes into a neo-Y. Notably, in female meiosis, the central region of the X chromosome is also devoid of MLH1 foci, revealing a lack of recombination, possibly due to insufficient homology. Overall, these results reveal new clues about the origin and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
11
|
Miura I, Shams F, Lin SM, de Bello Cioffi M, Liehr T, Al-Rikabi A, Kuwana C, Srikulnath K, Higaki Y, Ezaz T. Evolution of a Multiple Sex-Chromosome System by Three-Sequential Translocations among Potential Sex-Chromosomes in the Taiwanese Frog Odorrana swinhoana. Cells 2021; 10:cells10030661. [PMID: 33809726 PMCID: PMC8002213 DOI: 10.3390/cells10030661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3-♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.
Collapse
Affiliation(s)
- Ikuo Miura
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
- Correspondence: ; Tel.: +81-(82)-424-7323
| | - Foyez Shams
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| | - Si-Min Lin
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- School of Life Sciences, National Taiwan Normal University, No. 88, Sec. 4, Tingzhou Road, Tapei 116, Taiwan
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-090, SP, Brazil;
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany; (T.L.); (A.A.-R.)
| | - Chiao Kuwana
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Kornsorn Srikulnath
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Yuya Higaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan; (C.K.); (Y.H.)
| | - Tariq Ezaz
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan; (S.-M.L.); (K.S.); (T.E.)
- Center for Conservation Ecology and Genomics, University of Canberra, Canberra, ACT 2601, Australia;
| |
Collapse
|
12
|
Gil-Fernández A, Saunders PA, Martín-Ruiz M, Ribagorda M, López-Jiménez P, Jeffries DL, Parra MT, Viera A, Rufas JS, Perrin N, Veyrunes F, Page J. Meiosis reveals the early steps in the evolution of a neo-XY sex chromosome pair in the African pygmy mouse Mus minutoides. PLoS Genet 2020; 16:e1008959. [PMID: 33180767 PMCID: PMC7685469 DOI: 10.1371/journal.pgen.1008959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/24/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution. Sex chromosomes seem to evolve and differentiate at different rates in different taxa. The reasons for this variability are still debated. It is well established that recombination suppression around the sex-determining region triggers differentiation, and several studies have investigated this process from a genetic point of view. However, the cellular context in which recombination arrest occurs has received little attention so far. In this report, we show that meiosis, the cellular division in which pairing and recombination between chromosomes takes place, can affect the incipient differentiation of X and Y chromosomes. Combining cytogenetic and genomic approaches, we found that in the African pygmy mouse Mus minutoides, which has recently undergone sex chromosome-autosome fusions, synapsis and DNA repair dynamics are disturbed along the newly added region of the sex chromosomes. We argue that these alterations are a by-product of the fusion itself, and cause recombination suppression across a large region of the neo-sex chromosome pair. Therefore, we propose that the meiotic context in which sex or neo-sex chromosomes arise is crucial to understand the very early stages of their differentiation, as it could promote or hinder recombination suppression, and therefore impact the rate at which these chromosomes differentiate.
Collapse
Affiliation(s)
- Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paul A. Saunders
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo López-Jiménez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S. Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), Montpellier, France
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Meiotic Executioner Genes Protect the Y from Extinction. Trends Genet 2020; 36:728-738. [PMID: 32773168 DOI: 10.1016/j.tig.2020.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
The Y has been described as a wimpy degraded relic of the X, with imminent demise should it lose sex-determining function. Why then has it persisted in almost all mammals? Here we present a novel mechanistic explanation for its evolutionary perseverance: the persistent Y hypothesis. The Y chromosome bears genes that act as their own judge, jury, and executioner in the tightly regulated meiotic surveillance pathways. These executioners are crucial for successful meiosis, yet need to be silenced during the meiotic sex chromosome inactivation window, otherwise germ cells die. Only rare transposition events to the X, where they remain subject to obligate meiotic silencing, are heritable, posing strong evolutionary constraint for the Y chromosome to persist.
Collapse
|
14
|
The Role of Number of Copies, Structure, Behavior and Copy Number Variations (CNV) of the Y Chromosome in Male Infertility. Genes (Basel) 2019; 11:genes11010040. [PMID: 31905733 PMCID: PMC7016774 DOI: 10.3390/genes11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
The World Health Organization (WHO) defines infertility as the inability of a sexually active, non-contracepting couple to achieve spontaneous pregnancy within one year. Statistics show that the two sexes are equally at risk. Several causes may be responsible for male infertility; however, in 30–40% of cases a diagnosis of idiopathic male infertility is made in men with normal urogenital anatomy, no history of familial fertility-related diseases and a normal panel of values as for endocrine, genetic and biochemical markers. Idiopathic male infertility may be the result of gene/environment interactions, genetic and epigenetic abnormalities. Numerical and structural anomalies of the Y chromosome represent a minor yet significant proportion and are the topic discussed in this review. We searched the PubMed database and major search engines for reports about Y-linked male infertility. We present cases of Y-linked male infertility in terms of (i) anomalies of the Y chromosome structure/number; (ii) Y chromosome misbehavior in a normal genetic background; (iii) Y chromosome copy number variations (CNVs). We discuss possible explanations of male infertility caused by mutations, lower or higher number of copies of otherwise wild type, Y-linked sequences. Despite Y chromosome structural anomalies are not a major cause of male infertility, in case of negative results and of normal DNA sequencing of the ascertained genes causing infertility and mapping on this chromosome, we recommend an analysis of the karyotype integrity in all cases of idiopathic fertility impairment, with an emphasis on the structure and number of this chromosome.
Collapse
|
15
|
Deakin JE, Potter S, O'Neill R, Ruiz-Herrera A, Cioffi MB, Eldridge MDB, Fukui K, Marshall Graves JA, Griffin D, Grutzner F, Kratochvíl L, Miura I, Rovatsos M, Srikulnath K, Wapstra E, Ezaz T. Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes (Basel) 2019; 10:genes10080627. [PMID: 31434289 PMCID: PMC6723020 DOI: 10.3390/genes10080627] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| | - Sally Potter
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Rachel O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Marcelo B Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, 1 William St Sydney, NSW 2010, Australia
| | - Kichi Fukui
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita 565-0871, Osaka, Japan
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia
- School of Life Sciences, LaTrobe University, Melbourne, VIC 3168, Australia
| | - Darren Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Frank Grutzner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics & Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
16
|
Marques A, Klemme S, Houben A. Evolution of Plant B Chromosome Enriched Sequences. Genes (Basel) 2018; 9:genes9100515. [PMID: 30360448 PMCID: PMC6210368 DOI: 10.3390/genes9100515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes.
Collapse
Affiliation(s)
- André Marques
- Laboratory of Genetic Resources, Federal University of Alagoas, Av. Manoel Severino Barbosa, 57309-005 Arapiraca-AL, Brazil.
| | - Sonja Klemme
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
17
|
Dumont BL, Williams CL, Ng BL, Horncastle V, Chambers CL, McGraw LA, Adams D, Mackay TFC, Breen M. Relationship Between Sequence Homology, Genome Architecture, and Meiotic Behavior of the Sex Chromosomes in North American Voles. Genetics 2018; 210:83-97. [PMID: 30002081 PMCID: PMC6116968 DOI: 10.1534/genetics.118.301182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/07/2018] [Indexed: 11/18/2022] Open
Abstract
In most mammals, the X and Y chromosomes synapse and recombine along a conserved region of homology known as the pseudoautosomal region (PAR). These homology-driven interactions are required for meiotic progression and are essential for male fertility. Although the PAR fulfills key meiotic functions in most mammals, several exceptional species lack PAR-mediated sex chromosome associations at meiosis. Here, we leveraged the natural variation in meiotic sex chromosome programs present in North American voles (Microtus) to investigate the relationship between meiotic sex chromosome dynamics and X/Y sequence homology. To this end, we developed a novel, reference-blind computational method to analyze sparse sequencing data from flow-sorted X and Y chromosomes isolated from vole species with sex chromosomes that always (Microtus montanus), never (Microtus mogollonensis), and occasionally synapse (Microtus ochrogaster) at meiosis. Unexpectedly, we find more shared X/Y homology in the two vole species with no and sporadic X/Y synapsis compared to the species with obligate synapsis. Sex chromosome homology in the asynaptic and occasionally synaptic species is interspersed along chromosomes and largely restricted to low-complexity sequences, including a striking enrichment for the telomeric repeat sequence, TTAGGG. In contrast, homology is concentrated in high complexity, and presumably euchromatic, sequence on the X and Y chromosomes of the synaptic vole species, M. montanus Taken together, our findings suggest key conditions required to sustain the standard program of X/Y synapsis at meiosis and reveal an intriguing connection between heterochromatic repeat architecture and noncanonical, asynaptic mechanisms of sex chromosome segregation in voles.
Collapse
Affiliation(s)
- Beth L Dumont
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
| | - Christina L Williams
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
| | - Bee Ling Ng
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Valerie Horncastle
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Carol L Chambers
- School of Forestry, Northern Arizona University, Flagstaff, Arizona 86011
| | - Lisa A McGraw
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
| | - David Adams
- Cytometry Core Facility, Wellcome Sanger Institute, Hinxton, United Kingdom, CB10 1SA
| | - Trudy F C Mackay
- Initiative in Biological Complexity, North Carolina State University, Raleigh, North Carolina 04609
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 04609
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 04609
| |
Collapse
|
18
|
Matveevsky S, Ivanitskaya E, Spangenberg V, Bakloushinskaya I, Kolomiets O. Reorganization of the Y Chromosomes Enhances Divergence in Israeli Mole Rats Nannospalax ehrenbergi (Spalacidae, Rodentia): Comparative Analysis of Meiotic and Mitotic Chromosomes. Genes (Basel) 2018; 9:genes9060272. [PMID: 29794981 PMCID: PMC6027163 DOI: 10.3390/genes9060272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
The Y chromosome in mammals is variable, even in closely related species. Middle East blind mole rats Nannospalax ehrenbergi demonstrate autosomal variability, which probably leads to speciation. Here, we compare the mitotic and meiotic chromosomes of mole rats. For the first time, we studied the behavior of their sex chromosomes in the meiotic prophase I using electron microscopy and immunocytochemical analysis. Unexpectedly, the sex chromosomes of the 52- and 60-chromosome forms of mole rats showed different synaptic and recombination patterns due to distinct locations of the centromeres on the Y chromosomes. The absence of recombination in the 60-chromosome form, the asymmetric synapsis, and the short-term disturbance in the synaptic co-orientation of the telomeric regions of the X and Y chromosomes were revealed as specific features of mole rat sex bivalents. We suggest several scenarios of Y chromosome alteration in connection with species differentiation in mole rats.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Victor Spangenberg
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| | - Oxana Kolomiets
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia.
| |
Collapse
|
19
|
The Methylome of Vertebrate Sex Chromosomes. Genes (Basel) 2018; 9:genes9050230. [PMID: 29723955 PMCID: PMC5977170 DOI: 10.3390/genes9050230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023] Open
Abstract
DNA methylation is a key epigenetic modification in vertebrate genomes known to be involved in the regulation of gene expression, X chromosome inactivation, genomic imprinting, chromatin structure, and control of transposable elements. DNA methylation is common to all eukaryote genomes, but we still lack a complete understanding of the variation in DNA methylation patterns on sex chromosomes and between the sexes in diverse species. To better understand sex chromosome DNA methylation patterns between different amniote vertebrates, we review literature that has analyzed the genome-wide distribution of DNA methylation in mammals and birds. In each system, we focus on DNA methylation patterns on the autosomes versus the sex chromosomes.
Collapse
|
20
|
Abstract
Making my career in Australia exposed me to the tyranny of distance, but it gave me opportunities to study our unique native fauna. Distantly related animal species present genetic variation that we can use to explore the most fundamental biological structures and processes. I have compared chromosomes and genomes of kangaroos and platypus, tiger snakes and emus, devils (Tasmanian) and dragons (lizards). I particularly love the challenges posed by sex chromosomes, which, apart from determining sex, provide stunning examples of epigenetic control and break all the evolutionary rules that we currently understand. Here I describe some of those amazing animals and the insights on genome structure, function, and evolution they have afforded us. I also describe my sometimes-random walk in science and the factors and people who influenced my direction. Being a woman in science is still not easy, and I hope others will find encouragement and empathy in my story.
Collapse
Affiliation(s)
- Jennifer A. Marshall Graves
- School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Australia Institute of Applied Ecology, University of Canberra, ACT 2617, Australia
| |
Collapse
|
21
|
Deakin JE. Chromosome Evolution in Marsupials. Genes (Basel) 2018; 9:E72. [PMID: 29415454 PMCID: PMC5852568 DOI: 10.3390/genes9020072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/17/2022] Open
Abstract
Marsupials typically possess very large, distinctive chromosomes that make them excellent subjects for cytogenetic analysis, and the high level of conservation makes it relatively easy to track chromosome evolution. There are two speciose marsupial families with contrasting rates of karyotypic evolution that could provide insight into the mechanisms driving genome reshuffling and speciation. The family Dasyuridae displays exceptional karyotype conservation with all karyotyped species possessing a 2n = 14 karyotype similar to that predicted for the ancestral marsupial. In contrast, the family Macropodidae has experienced a higher rate of genomic rearrangement and one genus of macropods, the rock-wallabies (Petrogale), has experienced extensive reshuffling. For at least some recently diverged Petrogale species, there is still gene flow despite hybrid fertility issues, making this species group an exceptional model for studying speciation. This review highlights the unique chromosome features of marsupial chromosomes, particularly for these two contrasting families, and the value that a combined cytogenetics, genomics, and epigenomics approach will have for testing models of genome evolution and speciation.
Collapse
Affiliation(s)
- Janine E Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
| |
Collapse
|
22
|
Blackmon H, Brandvain Y. Long-Term Fragility of Y Chromosomes Is Dominated by Short-Term Resolution of Sexual Antagonism. Genetics 2017; 207:1621-1629. [PMID: 29021279 PMCID: PMC5714469 DOI: 10.1534/genetics.117.300382] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
The evolution of heteromorphic sex chromosomes has fascinated biologists, inspiring theoretical models, experimental studies, and studies of genome structure. This work has produced a clear model, in which heteromorphic sex chromosomes result from repeated fixations of inversions (or other recombination suppression mechanisms) that tether sexually antagonistic alleles to sex-determining regions, followed by the degeneration of these regions induced by the lack of sex chromosome recombination in the heterogametic sex. However, current models do not predict if inversions are expected to preferentially accumulate on one sex-chromosome or another, and do not address if inversions can accumulate even when they cause difficulties in pairing between heteromorphic chromosomes in the heterogametic sex increasing aneuploidy or meiotic arrest. To address these questions, we developed a population genetic model in which the sex chromosome aneuploidy rate is elevated when males carry an inversion on either the X or Y chromosome. We show that inversions fix more easily when male-beneficial alleles are dominant, and that inversions on the Y chromosome fix with lower selection coefficients than comparable X chromosome inversions. We further show that sex-chromosome inversions can often invade and fix despite causing a substantial increase in the risk of aneuploidy. As sexual antagonism can lead to the fixation of inversions that increase sex chromosomes aneuploidy (which underlies genetic diseases including Klinefelter and Turner syndrome in humans) selection could subsequently favor diverse mechanisms to reduce aneuploidy-including alternative meiotic mechanisms, translocations to, and fusions with, the sex chromosomes, and sex chromosome turnover.
Collapse
Affiliation(s)
- Heath Blackmon
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Yaniv Brandvain
- College of Biological Sciences, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
23
|
Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016; 7:68. [PMID: 27999654 PMCID: PMC5154145 DOI: 10.1186/s13293-016-0115-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Stem Cell Biology and Developmental Genetics, Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, London, NW7 1AA UK
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 610 Charles Young Drive South, Los Angeles, CA 90095-7239 USA
| |
Collapse
|
24
|
Ezaz T, Srikulnath K, Graves JAM. Origin of Amniote Sex Chromosomes: An Ancestral Super-Sex Chromosome, or Common Requirements? J Hered 2016; 108:94-105. [DOI: 10.1093/jhered/esw053] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022] Open
|
25
|
Graves JAM. Did sex chromosome turnover promote divergence of the major mammal groups?: De novo sex chromosomes and drastic rearrangements may have posed reproductive barriers between monotremes, marsupials and placental mammals. Bioessays 2016; 38:734-43. [PMID: 27334831 PMCID: PMC5094562 DOI: 10.1002/bies.201600019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Comparative mapping and sequencing show that turnover of sex determining genes and chromosomes, and sex chromosome rearrangements, accompany speciation in many vertebrates. Here I review the evidence and propose that the evolution of therian mammals was precipitated by evolution of the male‐determining SRY gene, defining a novel XY sex chromosome pair, and interposing a reproductive barrier with the ancestral population of synapsid reptiles 190 million years ago (MYA). Divergence was reinforced by multiple translocations in monotreme sex chromosomes, the first of which supplied a novel sex determining gene. A sex chromosome‐autosome fusion may have separated eutherians (placental mammals) from marsupials 160 MYA. Another burst of sex chromosome change and speciation is occurring in rodents, precipitated by the degradation of the Y. And although primates have a more stable Y chromosome, it may be just a matter of time before the same fate overtakes our own lineage. Also watch the video abstract.
Collapse
Affiliation(s)
- Jennifer A M Graves
- School of Life Science, La Trobe University, Melbourne, Australia.,Institute of Applied Ecology, University of Canberra, Australia.,Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
26
|
Disteche CM. Dosage compensation of the sex chromosomes and autosomes. Semin Cell Dev Biol 2016; 56:9-18. [PMID: 27112542 DOI: 10.1016/j.semcdb.2016.04.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/16/2022]
Abstract
Males are XY and females are XX in most mammalian species. Other species such as birds have a different sex chromosome make-up: ZZ in males and ZW in females. In both types of organisms one of the sex chromosomes, Y or W, has degenerated due to lack of recombination with its respective homolog X or Z. Since autosomes are present in two copies in diploid organisms the heterogametic sex has become a natural "aneuploid" with haploinsufficiency for X- or Z-linked genes. Specific mechanisms have evolved to restore a balance between critical gene products throughout the genome and between males and females. Some of these mechanisms were co-opted from and/or added to compensatory processes that alleviate autosomal aneuploidy. Surprisingly, several modes of dosage compensation have evolved. In this review we will consider the evidence for dosage compensation and the molecular mechanisms implicated.
Collapse
Affiliation(s)
- Christine M Disteche
- Department of Pathology, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA; Department of Medicine, School of Medicine, University of Washington, 1959 NE Pacific St. Seattle, WA 98115, USA.
| |
Collapse
|
27
|
The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 2016; 6:24501. [PMID: 27089831 PMCID: PMC4835728 DOI: 10.1038/srep24501] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
Collapse
|
28
|
Vernet N, Mahadevaiah SK, Decarpentrie F, Longepied G, de Rooij DG, Burgoyne PS, Mitchell MJ. Mouse Y-Encoded Transcription Factor Zfy2 Is Essential for Sperm Head Remodelling and Sperm Tail Development. PLoS One 2016; 11:e0145398. [PMID: 26765744 PMCID: PMC4713206 DOI: 10.1371/journal.pone.0145398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/30/2015] [Indexed: 01/25/2023] Open
Abstract
A previous study indicated that genetic information encoded on the mouse Y chromosome short arm (Yp) is required for efficient completion of the second meiotic division (that generates haploid round spermatids), restructuring of the sperm head, and development of the sperm tail. Using mouse models lacking a Y chromosome but with varying Yp gene complements provided by Yp chromosomal derivatives or transgenes, we recently identified the Y-encoded zinc finger transcription factors Zfy1 and Zfy2 as the Yp genes promoting the second meiotic division. Using the same mouse models we here show that Zfy2 (but not Zfy1) contributes to the restructuring of the sperm head and is required for the development of the sperm tail. The preferential involvement of Zfy2 is consistent with the presence of an additional strong spermatid-specific promotor that has been acquired by this gene. This is further supported by the fact that promotion of sperm morphogenesis is also seen in one of the two markedly Yp gene deficient models in which a Yp deletion has created a Zfy2/1 fusion gene that is driven by the strong Zfy2 spermatid-specific promotor, but encodes a protein almost identical to that encoded by Zfy1. Our results point to there being further genetic information on Yp that also has a role in restructuring the sperm head.
Collapse
Affiliation(s)
- Nadege Vernet
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, France
| | - Shantha K Mahadevaiah
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Fanny Decarpentrie
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom.,The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Guy Longepied
- Aix Marseille Université GMGF, Marseille, France.,Inserm, UMR_S 910, Marseille, France
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Center for Reproductive Medicine, Amsterdam Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Paul S Burgoyne
- Division of Developmental Genetics, MRC National Institute for Medical Research, London, United Kingdom
| | - Michael J Mitchell
- Aix Marseille Université GMGF, Marseille, France.,Inserm, UMR_S 910, Marseille, France
| |
Collapse
|
29
|
Abstract
Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.
Collapse
|
30
|
Cao PR, Wang L, Jiang YC, Yi YS, Qu F, Liu TC, Lv Y. De novo origin of VCY2 from autosome to Y-transposed amplicon. PLoS One 2015; 10:e0119651. [PMID: 25799347 PMCID: PMC4370482 DOI: 10.1371/journal.pone.0119651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/02/2015] [Indexed: 12/02/2022] Open
Abstract
The formation of new genes is a primary driving force of evolution in all organisms. The de novo evolution of new genes from non-protein-coding genomic regions is emerging as an important additional mechanism for novel gene creation. Y chromosomes underlie sex determination in mammals and contain genes that are required for male-specific functions. In this study, a search was undertaken for Y chromosome de novo genes derived from non-protein-coding sequences. The Y chromosome orphan gene variable charge, Y-linked (VCY)2, is an autosome-derived gene that has sequence similarity to large autosomal fragments but lacks an autosomal protein-coding homolog. VCY2 locates in the amplicon containing long DNA fragments that were transposed from autosomes to the Y chromosome before the ape-monkey split. We confirmed that VCY2cannot be encoded by autosomes due to the presence of multiple disablers that disrupt the open reading frame, such as the absence of start or stop codons and the presence of premature stop codons. Similar observations have been made for homologs in the autosomes of the chimpanzee, gorilla, rhesus macaque, baboon and out-group marmoset, which suggests that there was a non-protein-coding ancestral VCY2 that was common to apes and monkeys that predated the transposition event. Furthermore, while protein-coding orthologs are absent, a putative non-protein-coding VCY2 with conserved disablers was identified in the rhesus macaque Y chromosome male-specific region. This finding implies that VCY2 might have not acquired its protein-coding ability before the ape-monkey split. VCY2 encodes a testis-specific expressed protein and is involved in the pathologic process of male infertility, and the acquisition of this gene might improve male fertility. This is the first evidence that de novo genes can be generated from transposed autosomal non-protein-coding segments, and this evidence provides novel insights into the evolutionary history of the Y chromosome.
Collapse
Affiliation(s)
- Peng-Rong Cao
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Lei Wang
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Yu-Chao Jiang
- The State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology School of Life Sciences, Fudan University, Shanghai, China
| | - Yin-Sha Yi
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Fang Qu
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Tao-Cheng Liu
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
| | - Yuan Lv
- Department of Epidemiology, Medical College of Hunan Normal University, Changsha, China
- * E-mail:
| |
Collapse
|
31
|
Grabowska-Joachimiak A, Kula A, Książczyk T, Chojnicka J, Sliwinska E, Joachimiak AJ. Chromosome landmarks and autosome-sex chromosome translocations in Rumex hastatulus, a plant with XX/XY1Y2 sex chromosome system. Chromosome Res 2014; 23:187-97. [PMID: 25394583 PMCID: PMC4430600 DOI: 10.1007/s10577-014-9446-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/26/2014] [Accepted: 10/28/2014] [Indexed: 11/28/2022]
Abstract
Rumex hastatulus is the North American endemic dioecious plant with heteromorphic sex chromosomes. It is differentiated into two chromosomal races: Texas (T) race characterised by a simple XX/XY sex chromosome system and North Carolina (NC) race with a polymorphic XX/XY1Y2 sex chromosome system. The gross karyotype morphology in NC race resembles the derived type, but chromosomal changes that occurred during its evolution are poorly understood. Our C-banding/DAPI and fluorescence in situ hybridization (FISH) experiments demonstrated that Y chromosomes of both races are enriched in DAPI-positive sequences and that the emergence of polymorphic sex chromosome system was accompanied by the break of ancestral Y chromosome and switch in the localization of 5S rDNA, from autosomes to sex chromosomes (X and Y2). Two contrasting domains were detected within North Carolina Y chromosomes: the older, highly heterochromatinised, inherited from the original Y chromosome and the younger, euchromatic, representing translocated autosomal material. The flow-cytometric DNA estimation showed ∼3.5 % genome downsizing in the North Carolina race. Our results are in contradiction to earlier reports on the lack of heterochromatin within Y chromosomes of this species and enable unambiguous identification of autosomes involved in the autosome-heterosome translocation, providing useful chromosome landmarks for further studies on the karyotype and sex chromosome differentiation in this species.
Collapse
|
32
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
33
|
Suárez-Villota EY, Pansonato-Alves JC, Foresti F, Gallardo MH. Homomorphic Sex Chromosomes and the Intriguing Y Chromosome of Ctenomys Rodent Species (Rodentia, Ctenomyidae). Cytogenet Genome Res 2014; 143:232-40. [DOI: 10.1159/000366173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 11/19/2022] Open
|
34
|
Vernet N, Mahadevaiah SK, Yamauchi Y, Decarpentrie F, Mitchell MJ, Ward MA, Burgoyne PS. Mouse Y-linked Zfy1 and Zfy2 are expressed during the male-specific interphase between meiosis I and meiosis II and promote the 2nd meiotic division. PLoS Genet 2014; 10:e1004444. [PMID: 24967676 PMCID: PMC4072562 DOI: 10.1371/journal.pgen.1004444] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
Mouse Zfy1 and Zfy2 encode zinc finger transcription factors that map to the short arm of the Y chromosome (Yp). They have previously been shown to promote meiotic quality control during pachytene (Zfy1 and Zfy2) and at the first meiotic metaphase (Zfy2). However, from these previous studies additional roles for genes encoded on Yp during meiotic progression were inferred. In order to identify these genes and investigate their function in later stages of meiosis, we created three models with diminishing Yp and Zfy gene complements (but lacking the Y-long-arm). Since the Y-long-arm mediates pairing and exchange with the X via their pseudoautosomal regions (PARs) we added a minute PAR-bearing X chromosome derivative to enable formation of a sex bivalent, thus avoiding Zfy2-mediated meiotic metaphase I (MI) checkpoint responses to the unpaired (univalent) X chromosome. Using these models we obtained definitive evidence that genetic information on Yp promotes meiosis II, and by transgene addition identified Zfy1 and Zfy2 as the genes responsible. Zfy2 was substantially more effective and proved to have a much more potent transactivation domain than Zfy1. We previously established that only Zfy2 is required for the robust apoptotic elimination of MI spermatocytes in response to a univalent X; the finding that both genes potentiate meiosis II led us to ask whether there was de novo Zfy1 and Zfy2 transcription in the interphase between meiosis I and meiosis II, and this proved to be the case. X-encoded Zfx was also expressed at this stage and Zfx over-expression also potentiated meiosis II. An interphase between the meiotic divisions is male-specific and we previously hypothesised that this allows meiosis II critical X and Y gene reactivation following sex chromosome silencing in meiotic prophase. The interphase transcription and meiosis II function of Zfx, Zfy1 and Zfy2 validate this hypothesis. The mouse Y chromosome genes Zfy1 and Zfy2 were first identified in the late 1980s during the search for the gene on the Y that triggers male development; they encode proteins that regulate the expression of other genes to which they bind via a ‘zinc finger’ domain. We have now discovered that these genes play important roles during spermatogenesis. Zfy2 proved to be essential for the efficient operation of a ‘checkpoint’ during the first meiotic division that identifies and kills cells that would otherwise produce sperm with an unbalanced chromosome set. Female meiosis, which does not have an equivalent checkpoint, generates a significant proportion of eggs with an unbalanced chromosome set. In the present study we show that Zfy2 also has a major role in ensuring that the second meiotic division occurs, with Zfy1 and a related gene, Zfx, on the X chromosome providing some support. In order to fulfil this function all three genes are expressed in the ‘interphase’ stage between the two divisions. In female meiosis there is no interphase stage between the two meiotic divisions but in this case essential functions during the divisions are supported by stored RNAs, so an interphase is not needed.
Collapse
Affiliation(s)
- Nadège Vernet
- MRC National Institute for Medical Research, London, United Kingdom
- Department of functional genomics and cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- * E-mail: ,
| | | | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, United States of America
| | | | - Michael J. Mitchell
- Aix Marseille Université, GMGF, Marseille, France
- Inserm UMR_S 910, Marseille, France
| | - Monika A. Ward
- Institute for Biogenesis Research, University of Hawaii Medical School, Honolulu, Hawaii, United States of America
| | - Paul S. Burgoyne
- MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
35
|
Adkins-Regan E, Reeve HK. Sexual Dimorphism in Body Size and the Origin of Sex-Determination Systems. Am Nat 2014; 183:519-36. [DOI: 10.1086/675303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
36
|
|
37
|
Sex-linked and autosomal microsatellites provide new insights into island populations of the tammar wallaby. Heredity (Edinb) 2013; 112:333-42. [PMID: 24169646 DOI: 10.1038/hdy.2013.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 11/08/2022] Open
Abstract
The emerging availability of microsatellite markers from mammalian sex chromosomes provides opportunities to investigate both male- and female-mediated gene flow in wild populations, identifying patterns not apparent from the analysis of autosomal markers alone. Tammar wallabies (Macropus eugenii), once spread over the southern mainland, have been isolated on several islands off the Western Australian and South Australian coastlines for between 10,000 and 13,000 years. Here, we combine analyses of autosomal, Y-linked and X-linked microsatellite loci to investigate genetic variation in populations of this species on two islands (Kangaroo Island, South Australia and Garden Island, Western Australia). All measures of diversity were higher for the larger Kangaroo Island population, in which genetic variation was lowest at Y-linked markers and highest at autosomal markers (θ=3.291, 1.208 and 0.627 for autosomal, X-linked and Y-linked data, respectively). Greater relatedness among females than males provides evidence for male-biased dispersal in this population, while sex-linked markers identified genetic lineages not apparent from autosomal data alone. Overall genetic diversity in the Garden Island population was low, especially on the Y chromosome where most males shared a common haplotype, and we observed high levels of inbreeding and relatedness among individuals. Our findings highlight the utility of this approach for management actions, such as the selection of animals for translocation or captive breeding, and the ecological insights that may be gained by combining analyses of microsatellite markers on sex chromosomes with those derived from autosomes.
Collapse
|
38
|
Abstract
In this review, we provide a detailed overview of studies on the elusive sex determination (SD) and gonad differentiation mechanisms of zebrafish (Danio rerio). We show that the data obtained from most studies are compatible with polygenic sex determination (PSD), where the decision is made by the allelic combinations of several loci. These loci are typically dispersed throughout the genome, but in some teleost species a few of them might be located on a preferential pair of (sex) chromosomes. The PSD system has a much higher level of variation of SD genotypes both at the level of gametes and the sexual genotype of individuals, than that of the chromosomal sex determination systems. The early sexual development of zebrafish males is a complicated process, as they first develop a ‘juvenile ovary’, that later undergoes a transformation to give way to a testis. To date, three major developmental pathways were shown to be involved with gonad differentiation through the modulation of programmed cell death. In our opinion, there are more pathways participating in the regulation of zebrafish gonad differentiation/transformation. Introduction of additional powerful large-scale genomic approaches into the analysis of zebrafish reproduction will result in further deepening of our knowledge as well as identification of additional pathways and genes associated with these processes in the near future.
Collapse
Affiliation(s)
- Woei Chang Liew
- Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore.
| | | |
Collapse
|
39
|
|
40
|
Affiliation(s)
- Jennifer A. Marshall Graves
- La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne 3186, Australia
- Research School of Biology, Australian National University, Canberra 2060, Australia;
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| | - Marilyn B. Renfree
- Department of Zoology, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
41
|
Graves JAM. Kangaroo gene mapping and sequencing: insights into mammalian genome evolution. AUST J ZOOL 2013. [DOI: 10.1071/zo13002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The deep divergence of marsupials and eutherian mammals 160 million years ago provides genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. Following the pioneering work of Professor Desmond W. Cooper, emerging techniques in cytogenetics and molecular biology have been adapted to characterise the genomes of kangaroos and other marsupials. In particular, genetic and genomic work over four decades has shown that marsupial sex chromosomes differ significantly from the eutherian XY chromosome pair in their size, gene content and activity. These differences can be exploited to deduce how mammalian sex chromosomes, sex determination and epigenetic silencing evolved.
Collapse
|
42
|
Koundouros S, Verma P. Significant enrichment of Y-bearing chromosome human spermatozoa using a modified centrifugation technique. ACTA ACUST UNITED AC 2012; 35:880-886. [DOI: 10.1111/j.1365-2605.2012.01295.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Mácha J, Teichmanová R, Sater AK, Wells DE, Tlapáková T, Zimmerman LB, Krylov V. Deep ancestry of mammalian X chromosome revealed by comparison with the basal tetrapod Xenopus tropicalis. BMC Genomics 2012; 13:315. [PMID: 22800176 PMCID: PMC3472169 DOI: 10.1186/1471-2164-13-315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. RESULTS This study clarifies the genesis and remodelling of the Eutherian X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. CONCLUSIONS Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These X chromosome ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis' simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution.
Collapse
Affiliation(s)
- Jaroslav Mácha
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 2, Czech Republic
| | - Radka Teichmanová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 2, Czech Republic
| | - Amy K Sater
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Dan E Wells
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Tereza Tlapáková
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 2, Czech Republic
| | - Lyle B Zimmerman
- Division of Developmental Biology, MRC-National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
| | - Vladimír Krylov
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, Prague 2, Czech Republic
| |
Collapse
|
44
|
Abstract
On August 31, 2011 at the 18th International Chromosome Conference in Manchester, Jenny Graves took on Jenn Hughes to debate the demise (or otherwise) of the mammalian Y chromosome. Sex chromosome evolution is an example of convergence; there are numerous examples of XY and ZW systems with varying degrees of differentiation and isolated examples of the Y disappearing in some lineages. It is agreed that the Y was once genetically identical to its partner and that the present-day human sex chromosomes retain only traces of their shared ancestry. The euchromatic portion of the male-specific region of the Y is ~1/6 of the size of the X and has only ~1/12 the number of genes. The big question however is whether this degradation will continue or whether it has reached a point of equilibrium. Jenny Graves argued that the Y chromosome is subject to higher rates of variation and inefficient selection and that Ys (and Ws) degrade inexorably. She argued that there is evidence that the Y in other mammals has undergone lineage-specific degradation and already disappeared in some rodent lineages. She also pointed out that there is practically nothing left of the original human Y and the added part of the human Y is degrading rapidly. Jenn Hughes on the other hand argued that the Y has not disappeared yet and it has been around for hundreds of millions of years. She stated that it has shown that it can outsmart genetic decay in the absence of "normal" recombination and that most of its genes on the human Y exhibit signs of purifying selection. She noted that it has added at least eight different genes, many of which have subsequently expanded in copy number, and that it has not lost any genes since the human and chimpanzee diverged ~6 million years ago. The issue was put to the vote with an exact 50/50 split among the opinion of the audience; an interesting (though perhaps not entirely unexpected) skew however was noted in the sex ratio of those for and against the notion.
Collapse
|
45
|
Decarpentrie F, Vernet N, Mahadevaiah SK, Longepied G, Streichemberger E, Aknin-Seifer I, Ojarikre OA, Burgoyne PS, Metzler-Guillemain C, Mitchell MJ. Human and mouse ZFY genes produce a conserved testis-specific transcript encoding a zinc finger protein with a short acidic domain and modified transactivation potential. Hum Mol Genet 2012; 21:2631-45. [PMID: 22407129 PMCID: PMC3363334 DOI: 10.1093/hmg/dds088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian ZFY genes are located on the Y chromosome, and code putative transcription factors with 12–13 zinc fingers preceded by a large acidic (activating) domain. In mice, there are two genes, Zfy1 and Zfy2, which are expressed mainly in the testis. Their transcription increases in germ cells as they enter meiosis, both are silenced by meiotic sex chromosome inactivation (MSCI) during pachytene, and Zfy2 is strongly reactivated later in spermatids. Recently, we have shown that mouse Zfy2, but not Zfy1, is involved in triggering the apoptotic elimination of specific types of sex chromosomally aberrant spermatocytes. In humans, there is a single widely transcribed ZFY gene, and there is no evidence for a specific role in the testis. Here, we characterize ZFY transcription during spermatogenesis in mice and humans. In mice, we define a variety of Zfy transcripts, among which is a Zfy2 transcript that predominates in spermatids, and a Zfy1 transcript, lacking an exon encoding approximately half of the acidic domain, which predominates prior to MSCI. In humans, we have identified a major testis-specific ZFY transcript that encodes a protein with the same short acidic domain. This represents the first evidence that ZFY has a conserved function during human spermatogenesis. We further show that, in contrast to the full acidic domain, the short domain does not activate transcription in yeast, and we hypothesize that this explains the functional difference observed between Zfy1 and Zfy2 during mouse meiosis.
Collapse
|
46
|
Mammalian X chromosome inactivation evolved as a dosage-compensation mechanism for dosage-sensitive genes on the X chromosome. Proc Natl Acad Sci U S A 2012; 109:5346-51. [PMID: 22392987 DOI: 10.1073/pnas.1116763109] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How and why female somatic X-chromosome inactivation (XCI) evolved in mammals remains poorly understood. It has been proposed that XCI is a dosage-compensation mechanism that evolved to equalize expression levels of X-linked genes in females (2X) and males (1X), with a prior twofold increase in expression of X-linked genes in both sexes ("Ohno's hypothesis"). Whereas the parity of X chromosome expression between the sexes has been clearly demonstrated, tests for the doubling of expression levels globally along the X chromosome have returned contradictory results. However, changes in gene dosage during sex-chromosome evolution are not expected to impact on all genes equally, and should have greater consequences for dosage-sensitive genes. We show that, for genes encoding components of large protein complexes (≥ 7 members)--a class of genes that is expected to be dosage-sensitive--expression of X-linked genes is similar to that of autosomal genes within the complex. These data support Ohno's hypothesis that XCI acts as a dosage-compensation mechanism, and allow us to refine Ohno's model of XCI evolution. We also explore the contribution of dosage-sensitive genes to X aneuploidy phenotypes in humans, such as Turner (X0) and Klinefelter (XXY) syndromes. X aneuploidy in humans is common and is known to have mild effects because most of the supernumerary X genes are inactivated and not affected by aneuploidy. Only genes escaping XCI experience dosage changes in X-aneuploidy patients. We combined data on dosage sensitivity and XCI to compute a list of candidate genes for X-aneuploidy syndromes.
Collapse
|
47
|
Synapsis, recombination, and chromatin remodeling in the XY body of armadillos. Chromosome Res 2012; 20:293-302. [DOI: 10.1007/s10577-012-9273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/27/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
|
48
|
|
49
|
Murtagh VJ, O'Meally D, Sankovic N, Delbridge ML, Kuroki Y, Boore JL, Toyoda A, Jordan KS, Pask AJ, Renfree MB, Fujiyama A, Graves JAM, Waters PD. Evolutionary history of novel genes on the tammar wallaby Y chromosome: Implications for sex chromosome evolution. Genome Res 2011; 22:498-507. [PMID: 22128133 DOI: 10.1101/gr.120790.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.
Collapse
Affiliation(s)
- Veronica J Murtagh
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Livernois AM, Graves JAM, Waters PD. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity (Edinb) 2011; 108:50-8. [PMID: 22086077 DOI: 10.1038/hdy.2011.106] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In mammals, birds, snakes and many lizards and fish, sex is determined genetically (either male XY heterogamy or female ZW heterogamy), whereas in alligators, and in many reptiles and turtles, the temperature at which eggs are incubated determines sex. Evidently, different sex-determining systems (and sex chromosome pairs) have evolved independently in different vertebrate lineages. Homology shared by Xs and Ys (and Zs and Ws) within species demonstrates that differentiated sex chromosomes were once homologous, and that the sex-specific non-recombining Y (or W) was progressively degraded. Consequently, genes are left in single copy in the heterogametic sex, which results in an imbalance of the dosage of genes on the sex chromosomes between the sexes, and also relative to the autosomes. Dosage compensation has evolved in diverse species to compensate for these dose differences, with the stringency of compensation apparently differing greatly between lineages, perhaps reflecting the concentration of genes on the original autosome pair that required dosage compensation. We discuss the organization and evolution of amniote sex chromosomes, and hypothesize that dosage insensitivity might predispose an autosome to evolving function as a sex chromosome.
Collapse
Affiliation(s)
- A M Livernois
- Evolution Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | |
Collapse
|