1
|
Lee-McMullen B, Chrzanowski SM, Vohra R, Forbes S, Vandenborne K, Edison AS, Walter GA. Age-dependent changes in metabolite profile and lipid saturation in dystrophic mice. NMR IN BIOMEDICINE 2019; 32:e4075. [PMID: 30848538 PMCID: PMC6777843 DOI: 10.1002/nbm.4075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/20/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal X-linked genetic disorder. In DMD, the absence of the dystrophin protein causes decreased sarcolemmal integrity resulting in progressive replacement of muscle with fibrofatty tissue. The effects of lacking dystrophin on muscle and systemic metabolism are still unclear. Therefore, to determine the impact of the absence of dystrophin on metabolism, we investigated the metabolic and lipid profile at two different, well-defined stages of muscle damage and stabilization in mdx mice. We measured NMR-detectable metabolite and lipid profiles in the serum and muscles of mdx mice at 6 and 24 weeks of age. Metabolites were determined in muscle in vivo using 1 H MRI/MRS, in isolated muscles using 1 H-HR-MAS NMR, and in serum using high resolution 1 H/13 C NMR. Dystrophic mice were found to have a unique lipid saturation profile compared with control mice, revealing an age-related metabolic change. In the 6-week-old mdx mice, serum lipids were increased and the degree of lipid saturation changed between 6 and 24 weeks. The serum taurine-creatine ratio increased over the life span of mdx, but not in control mice. Furthermore, the saturation index of lipids increased in the serum but decreased in the tissue over time. Finally, we demonstrated associations between MRI-T2 , a strong indicator of inflammation/edema, with tissue and serum lipid profiles. These results indicate the complex temporal changes of metabolites in the tissue and serum during repetitive bouts of muscle damage and regeneration that occur in dystrophic muscle.
Collapse
Affiliation(s)
- Brittany Lee-McMullen
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| | | | - Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Sean Forbes
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - Arthur S. Edison
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
- Current address: Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Glenn A. Walter
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
- Department of Biochemistry and Molecular Biology, Southeast Center for Integrated Metabolomics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Singh SM, Molas JF, Kongari N, Bandi S, Armstrong GS, Winder SJ, Mallela KM. Thermodynamic stability, unfolding kinetics, and aggregation of the N-terminal actin-binding domains of utrophin and dystrophin. Proteins 2012; 80:1377-92. [PMID: 22275054 PMCID: PMC3439503 DOI: 10.1002/prot.24033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 12/12/2022]
Abstract
Muscular dystrophy (MD) is the most common genetic lethal disorder in children. Mutations in dystrophin trigger the most common form of MD, Duchenne, and its allelic variant Becker MD. Utrophin is the closest homologue and has been shown to compensate for the loss of dystrophin in human disease animal models. However, the structural and functional similarities and differences between utrophin and dystrophin are less understood. Both proteins interact with actin through their N-terminal actin-binding domain (N-ABD). In this study, we examined the thermodynamic stability and aggregation of utrophin N-ABD and compared with that of dystrophin. Our results show that utrophin N-ABD has spectroscopic properties similar to dystrophin N-ABD. However, utrophin N-ABD has decreased denaturant and thermal stability, unfolds faster, and is correspondingly more susceptible to proteolysis, which might account for its decreased in vivo half-life compared to dystrophin. In addition, utrophin N-ABD aggregates to a lesser extent compared with dystrophin N-ABD, contrary to the general behavior of proteins in which decreased stability enhances protein aggregation. Despite these differences in stability and aggregation, both proteins exhibit deleterious effects of mutations. When utrophin N-ABD mutations analogous in position to the dystrophin disease-causing mutations were generated, they behaved similarly to dystrophin mutants in terms of decreased stability and the formation of cross-β aggregates, indicating a possible role for utrophin mutations in disease mechanisms.
Collapse
Affiliation(s)
- Surinder M. Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Justine F. Molas
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Narsimulu Kongari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Swati Bandi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Geoffrey S. Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Steve J. Winder
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Krishna M.G. Mallela
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
3
|
Di Certo MG, Corbi N, Strimpakos G, Onori A, Luvisetto S, Severini C, Guglielmotti A, Batassa EM, Pisani C, Floridi A, Benassi B, Fanciulli M, Magrelli A, Mattei E, Passananti C. The artificial gene Jazz, a transcriptional regulator of utrophin, corrects the dystrophic pathology in mdx mice. Hum Mol Genet 2009; 19:752-60. [PMID: 19965907 DOI: 10.1093/hmg/ddp539] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The absence of the cytoskeletal protein dystrophin results in Duchenne muscular dystrophy (DMD). The utrophin protein is the best candidate for dystrophin replacement in DMD patients. To obtain therapeutic levels of utrophin expression in dystrophic muscle, we developed an alternative strategy based on the use of artificial zinc finger transcription factors (ZF ATFs). The ZF ATF 'Jazz' was recently engineered and tested in vivo by generating a transgenic mouse specifically expressing Jazz at the muscular level. To validate the ZF ATF technology for DMD treatment we generated a second mouse model by crossing Jazz-transgenic mice with dystrophin-deficient mdx mice. Here, we show that the artificial Jazz protein restores sarcolemmal integrity and prevents the development of the dystrophic disease in mdx mice. This exclusive animal model establishes the notion that utrophin-based therapy for DMD can be efficiently developed using ZF ATF technology and candidates Jazz as a novel therapeutic molecule for DMD therapy.
Collapse
Affiliation(s)
- Maria Grazia Di Certo
- Istituto di Neurobiologia e Medicina Molecolare, CNR, IRCCS Fondazione S. Lucia, 00143 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cossu G, Sampaolesi M. New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 2007; 13:520-6. [PMID: 17983835 DOI: 10.1016/j.molmed.2007.10.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/10/2007] [Accepted: 10/10/2007] [Indexed: 02/05/2023]
Abstract
Muscular dystrophies primarily affect skeletal muscle. Mutations in a large number of genes, mainly encoding cytoskeletal proteins, cause different forms of dystrophy that compromise patient mobility and quality of life, and in the most severe cases lead to complete paralysis and premature death. Although muscular dystrophies still lack an effective therapy, several novel strategies are entering or are ready to enter clinical trials. Here we review the main experimental strategies, namely drug, gene and cell therapies, outlining their goals and limitations. We also provide an update of ongoing or planned clinical trials based on these strategies.
Collapse
Affiliation(s)
- Giulio Cossu
- Stem Cell Research Institute, Dibit, H. San Raffaele, 58 Via Olgettina, 20132 Milan, Italy.
| | | |
Collapse
|
5
|
Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet 2004; 12 Spec No 2:R265-70. [PMID: 14504264 DOI: 10.1093/hmg/ddg279] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The muscular dystrophies and congenital myopathies are inherited diseases of the skeletal muscle, which lead to a loss of muscle function and are often fatal. While many of the loci involved are already known, these conditions remain incurable, and genetic models are being developed in an effort to understand the pathological mechanisms involved. Recently several papers have shown that the zebrafish, which is now widely used in developmental genetic studies, will provide a useful addition to our toolkit in this regard. Here we describe these studies, including a zebrafish model of what is potentially the novel pathological mechanism of muscle attachment failure in Duchenne and other muscular dystrophies.
Collapse
Affiliation(s)
- David I Bassett
- Comparative and Developmental Genetics Section, Western General Hospital, Edingburgh, UK.
| | | |
Collapse
|
6
|
Sawada H, Kikukawa Y, Ban S, Kakudo T, Yokosawa H. Expression of trypsin-like proteases and protease nexin-1 in mdx mouse muscles. Biochem Biophys Res Commun 2004; 314:654-8. [PMID: 14733957 DOI: 10.1016/j.bbrc.2003.12.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to examine the possible participation of trypsin-like proteases in the onset and progress of muscular dystrophy, we investigated the expression of the trypsin-like protease in muscular tissues in mdx mice. We found that the mRNAs of several trypsin-like proteases, including hepsin and t-PA, were expressed in the muscular tissues of mdx mice, but at levels not significantly different from normal mice. Since the enzymatic properties of dystrypsin, a muscle trypsin-like protease activated before onset of the disease, are similar to those of thrombin, we investigated the expression pattern of thrombin in mdx mouse muscles. The results showed that prothrombin mRNA is up-regulated in mdx mice at 20-30 days of age but not before the age of 15 days (preclinical). Since protease nexin-1 (PN-1) is known to be a physiological inhibitor of thrombin, we also examined the expression pattern of PN-1. We found that PN-1 transcription and translation is down-regulated in the muscular tissues of mdx mice, before the onset of clinical symptoms. These results suggest that thrombin may be involved in the progression of muscular dystrophy or the regeneration of muscle fibers after the onset of the disease and that the reduced level of PN-1 may enhance the activities stimulate the activities of muscle proteases, including dystrypsin, at a preclinical stage in mdx mice.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, 517-0004 Toba, Japan.
| | | | | | | | | |
Collapse
|
7
|
Sawada H, Nagahiro K, Kikukawa Y, Ban S, Kakefuda R, Shiomi T, Yokosawa H. Therapeutic effect of camostat mesilate on Duchenne muscular dystrophy in mdx mice. Biol Pharm Bull 2003; 26:1025-7. [PMID: 12843632 DOI: 10.1248/bpb.26.1025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy is known to be caused by a defective gene of dystrophin, a 427-kDa cytoskeletal protein, but the effective therapeutic drug is presently unavailable. We previously reported that a trypsin-like protease designated as dystrypsin is markedly activated in the muscle microsomal fraction immediately before onset of the clinical signs in mdx mice, a dystrophin-deficient hereditary animal model for human Duchenne muscular dystrophy. In order to examine the possible participation of dystrypsin in the occurrence of the disease, we investigated the therapeutic effects of dystrypsin inhibitors on the occurrence and progress of muscular dystrophy. Here, we show that camostat mesilate, a low-molecular-weight inhibitor of trypsin-like proteases, including dystrypsin, is a candidate drug for Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Hitoshi Sawada
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Moores CA, Kendrick-Jones J. Biochemical characterisation of the actin-binding properties of utrophin. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:116-28. [PMID: 10891857 DOI: 10.1002/1097-0169(200006)46:2<116::aid-cm4>3.0.co;2-l] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Utrophin is a large ubiquitously expressed cytoskeletal protein that is important for maturation of vertebrate neuromuscular junctions. It is highly homologous to dystrophin, the protein defective in Duchenne and Becker muscular dystrophies. Utrophin binds to the actin cytoskeleton via an N-terminal actin-binding domain, which is related to the actin-binding domains of members of the spectrin superfamily of proteins. We have determined the actin-binding properties of this utrophin domain and investigated its binding site on F-actin. An F-actin cosedimentation assay confirmed that the domain binds more tightly to beta-F-actin than to alpha-F-actin and that the full-length utrophin domain binds more tightly to both actin isoforms than a truncated construct, lacking a characteristic utrophin N-terminal extension. Both domain constructs exist in solution as compact monomers and bind to actin as 1:1 complexes. Analysis of the products of partial proteolysis of the domain in the presence of F-actin showed that the N-terminal extension was protected by binding to actin. The actin isoform dependence of utrophin binding could reflect differences at the N-termini of the actin isoforms, thus localising the utrophin-binding site on actin. The involvement of the actin N-terminus in utrophin binding was also supported by competition binding assays using myosin subfragment S1, which also binds F-actin near its N-terminus. Cross-linking studies suggested that utrophin contacts two actin monomers in the actin filament as does myosin S1. These biochemical approaches complement our structural studies and facilitate characterisation of the actin-binding properties of the utrophin actin-binding domain.
Collapse
Affiliation(s)
- C A Moores
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
9
|
Corbi N, Libri V, Fanciulli M, Tinsley JM, Davies KE, Passananti C. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription. Gene Ther 2000; 7:1076-83. [PMID: 10871758 DOI: 10.1038/sj.gt.3301204] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.
Collapse
Affiliation(s)
- N Corbi
- Istituto Tecnologie Biomediche, CNR, Rome, Italy
| | | | | | | | | | | |
Collapse
|
10
|
Keep NH, Winder SJ, Moores CA, Walke S, Norwood FL, Kendrick-Jones J. Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer. Structure 1999; 7:1539-46. [PMID: 10647184 DOI: 10.1016/s0969-2126(00)88344-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Utrophin is a large multidomain protein that belongs to a superfamily of actin-binding proteins, which includes dystrophin, alpha-actinin, beta-spectrin, fimbrin, filamin and plectin. All the members of this family contain a common actin-binding region at their N termini and perform a wide variety of roles associated with the actin cytoskeleton. Utrophin is the autosomal homologue of dystrophin, the protein defective in the X-linked Duchenne and Becker muscular dystrophies, and upregulation of utrophin has been suggested as a potential therapy for muscular dystrophy patients. RESULTS The structure of the actin-binding region of utrophin, consisting of two calponin-homology (CH) domains, has been solved at 3.0 A resolution. It is composed of an antiparallel dimer with each of the monomers being present in an extended dumbell shape and the two CH domains being separated by a long central helix. This extended conformation is in sharp contrast to the compact monomer structure of the N-terminal actin-binding region of fimbrin. CONCLUSIONS The crystal structure of the actin-binding region of utrophin suggests that these actin-binding domains may be more flexible than was previously thought and that this flexibility may allow domain reorganisation and play a role in the actin-binding mechanism. Thus utrophin could possibly bind to actin in an extended conformation so that the sites previously identified as being important for actin binding may be directly involved in this interaction.
Collapse
Affiliation(s)
- N H Keep
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Gramolini AO, Jasmin BJ. Molecular mechanisms and putative signalling events controlling utrophin expression in mammalian skeletal muscle fibres. Neuromuscul Disord 1998; 8:351-61. [PMID: 9713851 DOI: 10.1016/s0960-8966(98)00052-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The absence of full-length dystrophin molecules in skeletal muscle fibres results in the most severe form of muscular dystrophy, the Duchenne form (DMD). Several years ago, an autosomal homologue to dystrophin, termed utrophin, was identified. Although utrophin is expressed along the sarcolemma in developing, regenerating and DMD muscles, it nonetheless accumulates at the postsynaptic membrane of the neuromuscular junction in both normal and DMD adult muscle fibres. Due to the high degree of sequence identity between dystrophin and utrophin, it has been previously suggested that utrophin could in fact functionally compensate for the lack of dystrophin. Recent studies using transgenic mouse model systems have directly tested this hypothesis and revealed that upregulation of utrophin throughout dystrophic muscle fibres represents indeed, a viable approach for the treatment of DMD. Current studies are therefore focusing on the elucidation of the various regulatory mechanisms presiding over expression of utrophin in muscle fibres in attempts to ultimately identify small molecules which could systematically increase utrophin levels in extrasynaptic compartments of dystrophic muscle fibres. This review presents some of the recent data relevant for our understanding of the transcriptional regulatory mechanisms involved in maintaining expression of utrophin at the neuromuscular junction. In addition, the contribution of specific cues originating from motoneurons and the putative involvement of signalling events are also discussed.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
12
|
Gramolini AO, Burton EA, Tinsley JM, Ferns MJ, Cartaud A, Cartaud J, Davies KE, Lunde JA, Jasmin BJ. Muscle and neural isoforms of agrin increase utrophin expression in cultured myotubes via a transcriptional regulatory mechanism. J Biol Chem 1998; 273:736-43. [PMID: 9422725 DOI: 10.1074/jbc.273.2.736] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Duchenne muscular dystrophy is a prevalent X-linked neuromuscular disease for which there is currently no cure. Recently, it was demonstrated in a transgenic mouse model that utrophin could functionally compensate for the lack of dystrophin and alleviate the muscle pathology (Tinsley, J. M., Potter, A. C., Phelps, S. R., Fisher, R., Trickett, J. I., and Davies, K. E. (1996) Nature 384, 349-353). In this context, it thus becomes essential to determine the cellular and molecular mechanisms presiding over utrophin expression in attempts to overexpress the endogenous gene product throughout skeletal muscle fibers. In a recent study, we showed that the nerve exerts a profound influence on utrophin gene expression and postulated that nerve-derived trophic factors mediate the local transcriptional activation of the utrophin gene within nuclei located in the postsynaptic sarcoplasm (Gramolini, A. O., Dennis, C. L., Tinsley, J. M., Robertson, G. S., Davies, K. E, Cartaud, J., and Jasmin, B. J. (1997) J. Biol. Chem. 272, 8117-8120). In the present study, we have therefore focused on the effect of agrin on utrophin expression in cultured C2 myotubes. In response to Torpedo-, muscle-, or nerve-derived agrin, we observed a significant 2-fold increase in utrophin mRNAs. By contrast, CGRP treatment failed to affect expression of utrophin transcripts. Western blotting experiments also revealed that the increase in utrophin mRNAs was accompanied by an increase in the levels of utrophin. To determine whether these changes were caused by parallel increases in the transcriptional activity of the utrophin gene, we transfected muscle cells with a 1. 3-kilobase pair utrophin promoter-reporter (nlsLacZ) gene construct and treated them with agrin for 24-48 h. Under these conditions, both muscle- and nerve-derived agrin increased the activity of beta-galactosidase, indicating that agrin treatment led, directly or indirectly, to the transcriptional activation of the utrophin gene. Furthermore, this increase in transcriptional activity in response to agrin resulted from a greater number of myonuclei expressing the 1.3-kilobase pair utrophin promoter-nlsLacZ construct. Deletion of 800 base pairs 5' from this fragment decreased the basal levels of nlsLacZ expression and abolished the sensitivity of the utrophin promoter to exogenously applied agrin. In addition, site-directed mutagenesis of an N-box motif contained within this 800-base pair fragment demonstrated its essential contribution in this regulatory mechanism. Finally, direct gene transfer studies performed in vivo further revealed the importance of this DNA element for the synapse-specific expression of the utrophin gene along multinucleated muscle fibers. These data show that both muscle and neural isoforms of agrin can regulate expression of the utrophin gene and further indicate that agrin is not only involved in the mechanisms leading to the formation of clusters containing presynthesized synaptic molecules but that it can also participate in the local regulation of genes encoding synaptic proteins. Together, these observations are therefore relevant for our basic understanding of the events involved in the assembly and maintenance of the postsynaptic membrane domain of the neuromuscular junction and for the potential use of utrophin as a therapeutic strategy to counteract the effects of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- A O Gramolini
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | |
Collapse
|