1
|
Sharma P, Daksh R, Khanna S, Mudgal J, Lewis SA, Arora D, Nampoothiri M. Microglial cannabinoid receptor 2 and epigenetic regulation: Implications for the treatment of depression. Eur J Pharmacol 2025; 995:177422. [PMID: 39988094 DOI: 10.1016/j.ejphar.2025.177422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Depression, often stress-induced, is closely related to neuroinflammation, in which microglia, the brain's immune cells, are the leading players. Microglia shift between a quiescent and an active state, promoting both pro- and anti-inflammatory responses. Cannabinoid type 2 (CB2) receptor encoded by the CNR2 gene is a key player to modulate inflammatory activity. CB2 receptor is highly controlled at the epigenetic level, especially in response to stressful stimuli, positioning it between stress, neuroinflammation, and depression. The following review addresses how epigenetic regulation of CNR2 expression affects depression and the dissection, further, of molecular pathways driving neuroinflammation-related depressive states. The present study emphasizes the therapeutic potential of CB2 receptor agonists that selectively interact with activated microglia and opens a new avenue for the treatment of depression associated with neuroinflammation. The review, therefore, provides a framework of underlying mechanisms for developing novel therapeutic strategies that focus on relieving symptoms by modulating the neuroinflammatory response. Finally, this review underlines the possibilities of therapeutic interventions taking into account CB2 receptors in combating depression.
Collapse
Affiliation(s)
- Pratyasha Sharma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Rajni Daksh
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Saumya Khanna
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Devinder Arora
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
2
|
Jones-Muhammad M, Pryor T, Shao Q, Freeman KB, Warrington JP. Increased hippocampal cannabinoid 1 receptor expression is associated with protection from severe seizures in pregnant mice with reduced uterine perfusion pressure. J Neurosci Res 2023; 101:1884-1899. [PMID: 37772463 DOI: 10.1002/jnr.25244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Eclampsia, new-onset seizures in pregnancy, can complicate preeclampsia, a hypertensive pregnancy disorder. The mechanisms contributing to increased risk of seizures in preeclampsia are not fully known. One mechanism could be abnormal endocannabinoid system (ECS) activity and impaired neuromodulation. Indeed, increased placental cannabinoid receptor 1 (CB1R) expression and reduced serum anandamide, a CB1R ligand, have been reported in preeclampsia patients. We hypothesized that reduced uterine perfusion pressure (RUPP), used to mimic preeclampsia, leads to changes in hippocampal CB1R expression, and that manipulating CB1R activity will change seizure severity in RUPP mice. Pregnant mice underwent sham or RUPP surgery on gestational day (GD)13.5. On GD18.5, mice received: no drug treatment, pentylenetetrazol (PTZ, 40 mg/kg), Rimonabant (10 mg/kg) + PTZ, or 2-AG (1 mg/kg) + PTZ. Behaviors were video recorded (15 min for Rimonabant and 2-AG, followed by 30 min for PTZ), and the hippocampus was harvested. The expression of CB1R and ECS proteins was measured in hippocampal homogenates, synaptosomes, and cytosol. Hippocampal CB1R increased in homogenates and cytosolic fraction, and was unchanged in synaptosomes of RUPP mice. Increased CB1R colocalization on glutamate-releasing neurons within hippocampal CA1 was observed in RUPP mice. Rimonabant modestly increased seizure scores over time in RUPP mice. PTZ after rimonabant pretreatment increased seizure scores and duration, while reducing latency in sham mice, with little to no change in RUPP mice. Furthermore, RUPP mice had lower seizure scores over time than sham following CB1R blockade and activation. These data suggest that RUPP modifies CB1R activity prior to seizure induction, which protects mice from worse seizure outcomes.
Collapse
Affiliation(s)
- Maria Jones-Muhammad
- Program in Neuroscience, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Tyranny Pryor
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| |
Collapse
|
3
|
Andrei C, Mihai DP, Nitulescu G, Ungurianu A, Margina DM, Nitulescu GM, Olaru OT, Busca RM, Zanfirescu A. Cetirizine and Levetiracetam as Inhibitors of Monoacylglycerol Lipase: Investigating Their Repurposing Potential as Novel Osteoarthritic Pain Therapies. Pharmaceuticals (Basel) 2023; 16:1563. [PMID: 38004429 PMCID: PMC10675604 DOI: 10.3390/ph16111563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis is characterized by progressive articular cartilage degradation, subchondral bone changes, and synovial inflammation, and affects various joints, causing pain and disability. Current osteoarthritis therapies, primarily focused on pain management, face limitations due to limited effectiveness and high risks of adverse effects. Safer and more effective treatments are urgently needed. Considering that the endocannabinoid 2-arachidonoyl glycerol is involved in pain processing, increasing its concentration through monoacylglycerol lipase (MAGL) inhibition reduces pain in various animal models. Furthermore, drug repurposing approaches leverage established drug safety profiles, presenting a cost-effective route to accelerate clinical application. To this end, cetirizine and levetiracetam were examined for their MAGL inhibitory effects. In vitro studies revealed that cetirizine and levetiracetam inhibited MAGL with IC50 values of 9.3931 µM and 3.0095 µM, respectively. In vivo experiments demonstrated that cetirizine, and to a lesser extent levetiracetam, reduced mechanical and thermal nociception in complete Freund adjuvant (CFA)-induced osteoarthritis in rats. Cetirizine exhibited a notable anti-inflammatory effect, reducing CFA-induced inflammation, as well as the inflammatory infiltrate and granuloma formation in the affected paw. These findings suggest that cetirizine may serve as a promising starting point for the development of novel compounds for osteoarthritis treatment, addressing both pain and inflammation.
Collapse
Affiliation(s)
- Corina Andrei
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Georgiana Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Denisa Marilena Margina
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Radu Mihai Busca
- Colentina Clinical Hospital, Stefan cel Mare 19-21, 020125 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
4
|
Kienzl M, Hasenoehrl C, Maitz K, Sarsembayeva A, Taschler U, Valadez-Cosmes P, Kindler O, Ristic D, Raftopoulou S, Santiso A, Bärnthaler T, Brcic L, Hahnefeld L, Gurke R, Thomas D, Geisslinger G, Kargl J, Schicho R. Monoacylglycerol lipase deficiency in the tumor microenvironment slows tumor growth in non-small cell lung cancer. Oncoimmunology 2021; 10:1965319. [PMID: 34527428 PMCID: PMC8437460 DOI: 10.1080/2162402x.2021.1965319] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Monoacylglycerol lipase (MGL) expressed in cancer cells influences cancer pathogenesis but the role of MGL in the tumor microenvironment (TME) is less known. Using a syngeneic tumor model with KP cells (KrasLSL-G12D/p53fl/fl; from mouse lung adenocarcinoma), we investigated whether TME-expressed MGL plays a role in tumor growth of non-small cell lung cancer (NSCLC). In sections of human and experimental NSCLC, MGL was found in tumor cells and various cells of the TME including macrophages and stromal cells. Mice treated with the MGL inhibitor JZL184 as well as MGL knock-out (KO) mice exhibited a lower tumor burden than the controls. The reduction in tumor growth was accompanied by an increased number of CD8+ T cells and eosinophils. Naïve CD8+ T cells showed a shift toward more effector cells in MGL KOs and an increased expression of granzyme-B and interferon-γ, indicative of enhanced tumoricidal activity. 2-arachidonoyl glycerol (2-AG) was increased in tumors of MGL KO mice, and dose-dependently induced differentiation and migration of CD8+ T cells as well as migration and activation of eosinophils in vitro. Our results suggest that next to cancer cell-derived MGL, TME cells expressing MGL are responsible for maintaining a pro-tumorigenic environment in tumors of NSCLC.
Collapse
Affiliation(s)
- Melanie Kienzl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Carina Hasenoehrl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Kathrin Maitz
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Arailym Sarsembayeva
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute Of Molecular Biosciences, University Of Graz, Graz, Austria
| | - Paulina Valadez-Cosmes
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Oliver Kindler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Dusica Ristic
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Sofia Raftopoulou
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Ana Santiso
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Thomas Bärnthaler
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Luka Brcic
- Diagnostic And Research Institute Of Pathology, Medical University Of Graz, Graz, Austria
| | - Lisa Hahnefeld
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Robert Gurke
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Dominique Thomas
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute Of Clinical Pharmacology, Goethe University, Frankfurt, Germany
- Fraunhofer Institute For Translational Medicine And Pharmacology ITMP, Frankfurt, Germany
| | - Julia Kargl
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
| | - Rudolf Schicho
- Division Of Pharmacology, Otto Loewi Research Center, Medical University Of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
5
|
Pharmacological tools to mobilise mesenchymal stromal cells into the blood promote bone formation after surgery. NPJ Regen Med 2020; 5:3. [PMID: 32133156 PMCID: PMC7035363 DOI: 10.1038/s41536-020-0088-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic approaches requiring the intravenous injection of autologous or allogeneic mesenchymal stromal cells (MSCs) are currently being evaluated for treatment of a range of diseases, including orthopaedic injuries. An alternative approach would be to mobilise endogenous MSCs into the blood, thereby reducing costs and obviating regulatory and technical hurdles associated with development of cell therapies. However, pharmacological tools for MSC mobilisation are currently lacking. Here we show that β3 adrenergic agonists (β3AR) in combination with a CXCR4 antagonist, AMD3100/Plerixafor, can mobilise MSCs into the blood in mice and rats. Mechanistically we show that reversal of the CXCL12 gradient across the bone marrow endothelium and local generation of endocannabinoids may both play a role in this process. Using a spine fusion model we provide evidence that this pharmacological strategy for MSC mobilisation enhances bone formation.
Collapse
|
6
|
Chinnadurai A, Berger G, Burkovskiy I, Zhou J, Cox A, Lynch M, Lehmann C. Monoacylglycerol lipase inhibition as potential treatment for interstitial cystitis. Med Hypotheses 2019; 131:109321. [PMID: 31443753 DOI: 10.1016/j.mehy.2019.109321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
Abstract
Interstitial cystitis is a chronic inflammatory condition of the urinary bladder with an unclear etiology. Currently, there are no widely accepted long-term treatment options available for patients with IC, with the European Association of Urology (EAU, 2017 guidelines), American Urology Association (AUA, 2014 guidelines), and the Royal College of Obstetricians and Gynaecologists (RCOG, 2016 guidelines) all suggesting various different conservative, pharmacological, intravesical, and surgical interventions. The endocannabinoid system represents a potential target for IC treatment and management. Activation of cannabinoid receptor 2 (CBR2) with various agonists has previously been shown to reduce leukocyte differentiation and migration, in addition to inhibiting the release of pro-inflammatory cytokines at the site of inflammation. These receptors have been identified in the detrusor and sensory nerves of the urothelium in various mammalian species, including humans. We hypothesize that by inhibiting the enzymes responsible for the catabolism of endogenous cannabinoids locally, bladder concentrations of CBR2 agonists will increase, particularly 2-arachidonyl glycerol, resulting in a diminished inflammatory response.
Collapse
Affiliation(s)
- Anu Chinnadurai
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Geraint Berger
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian Burkovskiy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Ashley Cox
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mary Lynch
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
7
|
Pharmacological inhibition of 2-arachidonoilglycerol hydrolysis enhances memory consolidation in rats through CB2 receptor activation and mTOR signaling modulation. Neuropharmacology 2018; 138:210-218. [DOI: 10.1016/j.neuropharm.2018.05.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/09/2018] [Accepted: 05/24/2018] [Indexed: 11/24/2022]
|
8
|
Labra VC, Santibáñez CA, Gajardo-Gómez R, Díaz EF, Gómez GI, Orellana JA. The Neuroglial Dialog Between Cannabinoids and Hemichannels. Front Mol Neurosci 2018; 11:79. [PMID: 29662436 PMCID: PMC5890195 DOI: 10.3389/fnmol.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 12/11/2022] Open
Abstract
The formation of gap junctions was initially thought to be the central role of connexins, however, recent evidence had brought to light the high relevance of unopposed hemichannels as an independent mechanism for the selective release of biomolecules during physiological and pathological conditions. In the healthy brain, the physiological opening of astrocyte hemichannels modulates basal excitatory synaptic transmission. At the other end, the release of potentially neurotoxic compounds through astroglial hemichannels and pannexons has been insinuated as one of the functional alterations that negatively affect the progression of multiple brain diseases. Recent insights in this matter have suggested encannabinoids (eCBs) as molecules that could regulate the opening of these channels during diverse conditions. In this review, we discuss and hypothesize the possible interplay between the eCB system and the hemichannel/pannexon-mediated signaling in the inflamed brain and during event of synaptic plasticity. Most findings indicate that eCBs seem to counteract the activation of major neuroinflammatory pathways that lead to glia-mediated production of TNF-α and IL-1β, both well-known triggers of astroglial hemichannel opening. In contrast to the latter, in the normal brain, eCBs apparently elicit the Ca2+-activation of astrocyte hemichannels, which could have significant consequences on eCB-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Cristian A Santibáñez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Esteban F Díaz
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Gonzalo I Gómez
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes, Santiago, Chile
| |
Collapse
|
9
|
Karpińska O, Baranowska-Kuczko M, Kloza M, Kozłowska H. Endocannabinoids modulate G q/11 protein-coupled receptor agonist-induced vasoconstriction via a negative feedback mechanism. ACTA ACUST UNITED AC 2017; 70:214-222. [PMID: 29148061 DOI: 10.1111/jphp.12854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The endocannabinoid (eCB) system centrally and peripherally regulates cardiovascular parameters, including blood pressure, in health and disease. The relationship between Gq/11 protein-coupled receptor activation, regulation of eCBs release (mainly 2-arachidonoylglycerol) and subsequent CB1 receptor activation was initially observed in the central nervous system. Here, we review the latest findings from systemic physiological studies which include for the first time data from pulmonary arteries. We present evidence for direct CB1 -dependent cannabinoid ligand-induced vasorelaxation, vascular expression of eCBs along with their degradation enzymes, and indicate the location of the described interaction. KEY FINDINGS Endocannabinoids (mainly 2-arachidonoylglycerol), acting via CB1 receptors, evoke vasodilatory effects and may modulate responses of vasoconstrictors for Gq/11 protein-coupled receptors including angiotensin II, thromboxane A2 , phenylephrine, noradrenaline in systemic or pulmonary arteries. However, the role of the endothelium in this interaction is not well-established, and the precise vascular location of eCB system components remains unclear, which contributes to discrepancies in the interpretation of results when describing the above-mentioned relationship. SUMMARY Endocannabinoid's negative feedback is responsible for diminishing agonist-induced vasoconstriction, which may be clinically important in the treatment of arterial and pulmonary hypertension. Further research is required to establish the importance of the eCB system and its downstream signalling pathways.
Collapse
Affiliation(s)
- Olga Karpińska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Monika Kloza
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - Hanna Kozłowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Poursharifi P, Madiraju SRM, Prentki M. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes Metab 2017; 19 Suppl 1:76-89. [PMID: 28880480 DOI: 10.1111/dom.13008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/24/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
Lipid metabolism dysregulation underlies chronic pathologies such as obesity, diabetes and cancer. Besides their role in structure and energy storage, lipids are also important signalling molecules regulating multiple biological functions. Thus, understanding the precise lipid metabolism enzymatic steps that are altered in some pathological conditions is helpful for designing better treatment strategies. Several monoacylglycerol (MAG) species are only recently being recognized as signalling lipid molecules in different tissues. Recent studies indicated the importance of the ubiquitously expressed serine hydrolase α/β-hydrolase domain 6 (ABHD6), which is a MAG hydrolase, in regulating signalling competent MAG in both central and peripheral tissues. The central and peripheral function of the endocannabinoid 2-arachidonoylglycerol, which is a 2-MAG, and its breakdown by both ABHD6 and classical MAG lipase has been well documented. ABHD6 and its substrate MAG appear to be involved in the regulation of various physiological and pathological processes including insulin secretion, adipose browning, food intake, neurotransmission, autoimmune disorders, neurological and metabolic diseases as well as cancer. Diverse cellular targets such as mammalian unc13-1 (Munc13-1), PPARs, GPR119 and CB1/2 receptors, for MAG-mediated signalling processes have been proposed in different cell types. The purpose of this review is to provide a comprehensive summary of the current state of knowledge regarding ABHD6/MAG signalling and its possible therapeutic implications.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Sri Ramachandra Murthy Madiraju
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, University of Montreal, and Montreal Diabetes Research Center, CRCHUM, Montreal, Canada
| |
Collapse
|
11
|
Aaltonen N, Kedzierska E, Orzelska-Górka J, Lehtonen M, Navia-Paldanius D, Jakupovic H, Savinainen JR, Nevalainen T, Laitinen JT, Parkkari T, Gynther M. In Vivo Characterization of the Ultrapotent Monoacylglycerol Lipase Inhibitor {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048). J Pharmacol Exp Ther 2016; 359:62-72. [PMID: 27451409 DOI: 10.1124/jpet.116.233114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/08/2016] [Indexed: 02/04/2023] Open
Abstract
Monoacylglycerol lipase (MAGL) is a serine hydrolase that acts as a principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). In addition to terminating the signaling function of 2-AG, MAGL liberates arachidonic acid to be used as a primary source for neuroinflammatory prostaglandin synthesis in the brain. MAGL activity also contributes to cancer pathogenicity by producing precursors for tumor-promoting bioactive lipids. Pharmacological inhibitors of MAGL provide valuable tools for characterization of MAGL and 2-AG signaling pathways. They also hold great therapeutic potential to treat several pathophysiological conditions, such as pain, neurodegenerative disorders, and cancer. We have previously reported piperidine triazole urea, {4-[bis-(benzo[d][1,3]dioxol-5-yl)methyl]-piperidin-1-yl}(1H-1,2,4-triazol-1-yl)methanone (JJKK-048), to be an ultrapotent and highly selective inhibitor of MAGL in vitro. Here, we characterize in vivo effects of JJKK-048. Acute in vivo administration of JJKK-048 induced a massive increase in mouse brain 2-AG levels without affecting brain anandamide levels. JJKK-048 appeared to be extremely potent in vivo. Activity-based protein profiling revealed that JJKK-048 maintains good selectivity toward MAGL over other serine hydrolases. Our results are also the first to show that JJKK-048 promoted significant analgesia in a writhing test with a low dose that did not cause cannabimimetic side effects. At a high dose, JJKK-048 induced analgesia both in the writhing test and in the tail-immersion test, as well as hypomotility and hyperthermia, but not catalepsy.
Collapse
Affiliation(s)
- Niina Aaltonen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Ewa Kedzierska
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Jolanta Orzelska-Górka
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Marko Lehtonen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Dina Navia-Paldanius
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Hermina Jakupovic
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Juha R Savinainen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Tapio Nevalainen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Jarmo T Laitinen
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Teija Parkkari
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| | - Mikko Gynther
- School of Medicine, Institute of Biomedicine/Physiology (N.A., D.N.-P., H.J., J.R.S., J.T.L.), and School of Pharmacy, (M.L., T.N., T.P., M.G.), University of Eastern Finland, Kuopio, Finland; and Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, Lublin, Poland (E.K., J.O.-G.)
| |
Collapse
|
12
|
Loewendorf AI, Matynia A, Saribekyan H, Gross N, Csete M, Harrington M. Roads Less Traveled: Sexual Dimorphism and Mast Cell Contributions to Migraine Pathology. Front Immunol 2016; 7:140. [PMID: 27148260 PMCID: PMC4836167 DOI: 10.3389/fimmu.2016.00140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/31/2016] [Indexed: 12/30/2022] Open
Abstract
Migraine is a common, little understood, and debilitating disease. It is much more prominent in women than in men (~2/3 are women) but the reasons for female preponderance are not clear. Migraineurs frequently experience severe comorbidities, such as allergies, depression, irritable bowel syndrome, and others; many of the comorbidities are more common in females. Current treatments for migraine are not gender specific, and rarely are migraine and its comorbidities considered and treated by the same specialist. Thus, migraine treatments represent a huge unmet medical need, which will only be addressed with greater understanding of its underlying pathophysiology. We discuss the current knowledge about sex differences in migraine and its comorbidities, and focus on the potential role of mast cells (MCs) in both. Sex-based differences in pain recognition and drug responses, fluid balance, and the blood–brain barrier are recognized but their impact on migraine is not well studied. Furthermore, MCs are well recognized for their prominent role in allergies but much less is known about their contributions to pain pathways in general and migraine specifically. MC-neuron bidirectional communication uniquely positions these cells as potential initiators and/or perpetuators of pain. MCs can secrete nociceptor sensitizing and activating agents, such as serotonin, prostaglandins, histamine, and proteolytic enzymes that can also activate the pain-mediating transient receptor potential vanilloid channels. MCs express receptors for both estrogen and progesterone that induce degranulation upon binding. Furthermore, environmental estrogens, such as Bisphenol A, activate MCs in preclinical models but their impact on pain pathways or migraine is understudied. We hope that this discussion will encourage scientists and physicians alike to bridge the knowledge gaps linking sex, MCs, and migraine to develop better, more comprehensive treatments for migraine patients.
Collapse
Affiliation(s)
| | - Anna Matynia
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Noah Gross
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | - Marie Csete
- Huntington Medical Research Institutes , Pasadena, CA , USA
| | | |
Collapse
|
13
|
Kishimoto Y, Cagniard B, Yamazaki M, Nakayama J, Sakimura K, Kirino Y, Kano M. Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol. Front Behav Neurosci 2015; 9:134. [PMID: 26082696 PMCID: PMC4451424 DOI: 10.3389/fnbeh.2015.00134] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/11/2015] [Indexed: 12/03/2022] Open
Abstract
Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions, we conducted a comprehensive behavioral test battery in knockout (KO) mice deficient in monoacylglycerol lipase (MGL), the major hydrolyzing enzyme of 2-AG. We found age-dependent increases in spontaneous physical activity (SPA) in MGL KO mice. Next, we tested the MGL KO mice using 5 hippocampus-dependent learning paradigms (i.e., Morris water maze (MWM), contextual fear conditioning, novel object recognition test, trace eyeblink conditioning, and water-finding test). In the MWM, MGL KO mice showed normal acquisition of reference memory, but exhibited significantly faster extinction of the learned behavior. Moreover, they showed faster memory acquisition on the reversal-learning task of the MWM. In contrast, in the contextual fear conditioning, MGL KO mice tended to show slower memory extinction. In the novel object recognition and water-finding tests, MGL KO mice exhibited enhanced memory acquisition. Trace eyeblink conditioning was not altered in MGL KO mice throughout the acquisition and extinction phases. These results indicate that 2-AG signaling is important for hippocampus-dependent learning and memory, but its contribution is highly task-dependent.
Collapse
Affiliation(s)
- Yasushi Kishimoto
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Barbara Cagniard
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo Bunkyo-ku, Tokyo, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Junko Nakayama
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University Niigata, Japan
| | - Yutaka Kirino
- Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University Sanuki, Kagawa, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
14
|
Picone RP, Kendall DA. Minireview: From the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 2015; 29:801-13. [PMID: 25866875 DOI: 10.1210/me.2015-1062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of cannabinoids have been known for centuries and over the past several decades two G protein-coupled receptors, CB1 and CB2, that are responsible for their activity have been identified. Endogenous lipid-derived cannabinergic agents have been found, biosynthetic and catabolic machinery has been characterized, and synthetic agents have been designed to modulate these receptors. Selective agents including agonists, antagonists, inverse agonists, and novel allosteric modulators targeting either CB1 or CB2 have been developed to inhibit or augment their basal tone. As a result, the role these receptors play in human physiology and their potential therapeutic applications in disease states are being elucidated. The CB1 receptor, although ubiquitous, is densely expressed in the brain, and CB2 is largely found on cells of immune origin. This minireview highlights the role of CB1 in excitotoxic assaults in the brain and its potential to limit addiction liability. In addition, it will examine the relationship between receptor activity and stimulation of insulin release from pancreatic β-cells, insulin resistance, and feeding behavior leading toward obesity. The roles of CB2 in the neuropathology of amyotrophic lateral sclerosis and in the central manifestations of chronic HIV infection potentially converge at inflammatory cell activation, thereby providing an opportunity for intervention. Last, CB2 modulation is discussed in the context of an experimental model of postmenopausal osteoporosis. Achieving exquisite receptor selectivity and elucidating the mechanisms underlying receptor inhibition and activation will be essential for the development of the next generation of cannabinergic-based therapeutic agents.
Collapse
Affiliation(s)
- Robert P Picone
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| | - Debra A Kendall
- Clinical Development (R.P.P.), Medical and Regulatory Affairs, Novo Nordisk Inc, Plainsboro, New Jersey 08536; and Department of Pharmaceutical Sciences (D.A.K.), University of Connecticut, Storrs, Connecticut 06269-3092
| |
Collapse
|
15
|
Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci 2015; 34:14919-33. [PMID: 25378159 DOI: 10.1523/jneurosci.1165-14.2014] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormal accumulation of β-amyloid (Aβ) is the major neuropathological hallmark of Alzheimer's disease (AD). However, the mechanisms underlying aberrant Aβ formation in AD remain unclear. We showed previously that inhibition of monoacylglycerol lipase (MAGL), the primary enzyme that metabolizes the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain, robustly reduces Aβ by inhibiting β-site amyloid precursor protein cleaving enzyme 1 (BACE1), a key enzyme responsible for Aβ formation. However, the molecular mechanisms responsible for suppression of BACE1 by inhibition of 2-AG metabolism are largely unknown. We demonstrate here that expression of the noncoding small RNA miR-188-3p that targets BACE1 was significantly downregulated both in the brains of AD humans and APP transgenic (TG) mice, a mouse model of AD. The downregulated miR-188-3p expression was restored by MAGL inhibition. Overexpression of miR-188-3p in the hippocampus reduced BACE1, Aβ, and neuroinflammation and prevented deteriorations in hippocampal basal synaptic transmission, long-term potentiation, spatial learning, and memory in TG mice. 2-AG-induced suppression of BACE1 was prevented by miR-188-3p loss of function. Moreover, miR-188-3p expression was upregulated by 2-AG or peroxisome proliferator-activated receptor-γ (PPARγ) agonists and suppressed by PPARγ antagonism or NF-κB activation. Reducing Aβ and neuroinflammation by MAGL inhibition was occluded by PPARγ antagonism. In addition, BACE1 suppression by 2-AG and PPARγ activation was eliminated by knockdown of NF-κB. Our study provides a novel molecular mechanism underlying improved synaptic and cognitive function in TG mice by 2-AG signaling, which upregulates miR-188-3p expression through PPARγ and NF-κB signaling pathway, resulting in suppressions of BACE1 expression and Aβ formation.
Collapse
|
16
|
Wyrofsky R, McGonigle P, Van Bockstaele EJ. Drug discovery strategies that focus on the endocannabinoid signaling system in psychiatric disease. Expert Opin Drug Discov 2014; 10:17-36. [PMID: 25488672 DOI: 10.1517/17460441.2014.966680] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The endocannabinoid (eCB) system plays an important role in the control of mood, and its dysregulation has been implicated in several psychiatric disorders. Targeting the eCB system appears to represent an attractive and novel approach to the treatment of depression and other mood disorders. However, several failed clinical trials have diminished enthusiasm for the continued development of eCB-targeted therapeutics for psychiatric disorders, despite the encouraging preclinical data and promising preliminary results obtained with the synthetic cannabinoid nabilone for treating post-traumatic stress disorder. AREAS COVERED This review describes the eCB system's role in modulating cell signaling within the brain. There is a specific focus on eCB's regulation of monoamine neurotransmission and the stress axis, as well as how dysfunction of this interaction can contribute to the development of psychiatric disorders. Additionally, the review provides discussion on compounds and drugs that target this system and might prove to be successful for the treatment of mood-related psychiatric disorders. EXPERT OPINION The discovery of increasingly selective modulators of CB receptors should enable the identification of optimal therapeutic strategies. It should also maximize the likelihood of developing safe and effective treatments for debilitating psychiatric disorders.
Collapse
Affiliation(s)
- Ryan Wyrofsky
- Drexel University, Department of Pharmacology and Physiology , Mail Stop 400, New College Building, 245 N. 15th Street, Philadelphia, PA 19102 , USA
| | | | | |
Collapse
|
17
|
den Boon FS, Chameau P, Houthuijs K, Bolijn S, Mastrangelo N, Kruse CG, Maccarrone M, Wadman WJ, Werkman TR. Endocannabinoids produced upon action potential firing evoke a Cl(-) current via type-2 cannabinoid receptors in the medial prefrontal cortex. Pflugers Arch 2014; 466:2257-68. [PMID: 24671573 DOI: 10.1007/s00424-014-1502-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation. This AP-evoked synthesis of eCBs is dependent on the Ca(2+) influx through N-type voltage-gated calcium channels. Our results indicate that 2-AG is the main eCB involved in this process. Finally, we demonstrate that under physiologically relevant intracellular Cl(-) conditions, 20-Hz AP firing leads to a CB2R-dependent reduction in neuronal excitability. Altogether, our data indicate that eCBs released upon action potential firing can modulate, through CB2R activation, neuronal activity in the mPFC. We discuss how this may be a mechanism to prevent excessive neuronal firing.
Collapse
Affiliation(s)
- Femke S den Boon
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wilhelmsen K, Khakpour S, Tran A, Sheehan K, Schumacher M, Xu F, Hellman J. The endocannabinoid/endovanilloid N-arachidonoyl dopamine (NADA) and synthetic cannabinoid WIN55,212-2 abate the inflammatory activation of human endothelial cells. J Biol Chem 2014; 289:13079-100. [PMID: 24644287 DOI: 10.1074/jbc.m113.536953] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although cannabinoids, such as Δ(9)-tetrahydrocannabinol, have been studied extensively for their psychoactive effects, it has become apparent that certain cannabinoids possess immunomodulatory activity. Endothelial cells (ECs) are centrally involved in the pathogenesis of organ injury in acute inflammatory disorders, such as sepsis, because they express cytokines and chemokines, which facilitate the trafficking of leukocytes to organs, and they modulate vascular barrier function. In this study, we find that primary human ECs from multiple organs express the cannabinoid receptors CB1R, GPR18, and GPR55, as well as the ion channel transient receptor potential cation channel vanilloid type 1. In contrast to leukocytes, CB2R is only minimally expressed in some EC populations. Furthermore, we show that ECs express all of the known endocannabinoid (eCB) metabolic enzymes. Examining a panel of cannabinoids, we demonstrate that the synthetic cannabinoid WIN55,212-2 and the eCB N-arachidonoyl dopamine (NADA), but neither anandamide nor 2-arachidonoylglycerol, reduce EC inflammatory responses induced by bacterial lipopeptide, LPS, and TNFα. We find that endothelial CB1R/CB2R are necessary for the effects of NADA, but not those of WIN55,212-2. Furthermore, transient receptor potential cation channel vanilloid type 1 appears to counter the anti-inflammatory properties of WIN55,212-2 and NADA, but conversely, in the absence of these cannabinoids, its inhibition exacerbates the inflammatory response in ECs activated with LPS. These data indicate that the eCB system can modulate inflammatory activation of the endothelium and may have important implications for a variety of acute inflammatory disorders that are characterized by EC activation.
Collapse
|
19
|
Endocannabinoid modulation of cortical up-states and NREM sleep. PLoS One 2014; 9:e88672. [PMID: 24520411 PMCID: PMC3919802 DOI: 10.1371/journal.pone.0088672] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/15/2014] [Indexed: 11/20/2022] Open
Abstract
Up-/down-state transitions are a form of network activity observed when sensory input into the cortex is diminished such as during non-REM sleep. Up-states emerge from coordinated signaling between glutamatergic and GABAergic synapses and are modulated by systems that affect the balance between inhibition and excitation. We hypothesized that the endocannabinoid (EC) system, a neuromodulatory system intrinsic to the cortical microcircuitry, is an important regulator of up-states and sleep. To test this hypothesis, up-states were recorded from layer V/VI pyramidal neurons in organotypic cultures of wild-type or CB1R knockout (KO) mouse prefrontal cortex. Activation of the cannabinoid 1 receptor (CB1) with exogenous agonists or by blocking metabolism of endocannabinoids, anandamide or 2-arachidonoyl glycerol, increased up-state amplitude and facilitated action potential discharge during up-states. The CB1 agonist also produced a layer II/III-selective reduction in synaptic GABAergic signaling that may underlie its effects on up-state amplitude and spiking. Application of CB1 antagonists revealed that an endogenous EC tone regulates up-state duration. Paradoxically, the duration of up-states in CB1 KO cultures was increased suggesting that chronic absence of EC signaling alters cortical activity. Consistent with increased cortical excitability, CB1 KO mice exhibited increased wakefulness as a result of reduced NREM sleep and NREM bout duration. Under baseline conditions, NREM delta (0.5–4 Hz) power was not different in CB1 KO mice, but during recovery from forced sleep deprivation, KO mice had reduced NREM delta power and increased sleep fragmentation. Overall, these findings demonstrate that the EC system actively regulates cortical up-states and important features of NREM sleep such as its duration and low frequency cortical oscillations.
Collapse
|
20
|
Costa MA, Fonseca BM, Keating E, Teixeira NA, Correia-da-Silva G. 2-arachidonoylglycerol effects in cytotrophoblasts: metabolic enzymes expression and apoptosis in BeWo cells. Reproduction 2014; 147:301-11. [PMID: 24324206 DOI: 10.1530/rep-13-0563] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The major endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a member of the endocannabinoid system (ECS) that participates in cell proliferation and apoptosis, important events for the homoeostasis of biological systems. The formation of placenta is one of the most important stages of pregnancy and its development requires highly regulated proliferation, differentiation and apoptosis of trophoblasts. Anomalies in these processes are associated with gestational pathologies. In this work, we aimed to study the involvement of 2-AG in cytotrophoblast cell turnover. We found that 2-AG biosynthetic (diacylglycerol lipase A) and degradative (monoacylglycerol lipase) enzymes are expressed in human cytotrophoblasts and in BeWo cells. We also found that 2-AG induces a decrease in cell viability in a time- and concentration-dependent manner and exerts antiproliferative effects. The loss of cell viability induced by a 48-h treatment with 2-AG (10 μM) was accompanied by chromatin fragmentation and condensation, morphological features of apoptosis. Additionally, 2-AG induced an increase in caspase 3/7 and 9 activities, a loss of mitochondrial membrane potential (Δψm) and an increase in reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation, suggesting the activation of the mitochondrial pathway. Moreover, whereas Δψm loss and ROS/RNS generation were significantly attenuated by the antagonists of both the cannabinoid receptors 1 and 2 (CB1 and CB2), the increase in caspase 3/7 and 9 activities and loss of cell viability were reversed only by the antagonist of CB2 receptor; the blockage of the eCB membrane transporter and the depletion of cholesterol failed to reverse the effects of 2-AG. Therefore, this work supports the importance of cannabinoid signalling during cytotrophoblast cell turnover and that its deregulation may be responsible for altered placental development and poor pregnancy outcomes.
Collapse
Affiliation(s)
- M A Costa
- Laboratório de Bioquímica, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | | | | | | | | |
Collapse
|
21
|
Fonteh AN, Pogoda JM, Chung R, Cowan RP, Harrington MG. Phospholipase C activity increases in cerebrospinal fluid from migraineurs in proportion to the number of comorbid conditions: a case-control study. J Headache Pain 2013; 14:60. [PMID: 23826990 PMCID: PMC3704687 DOI: 10.1186/1129-2377-14-60] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/29/2013] [Indexed: 12/30/2022] Open
Abstract
Background Migraineurs are more often afflicted by comorbid conditions than those without primary headache disorders, though the linking pathophysiological mechanism(s) is not known. We previously reported that phosphatidylcholine-specific phospholipase C (PC-PLC) activity in cerebrospinal fluid (CSF) increased during migraine compared to the same individual’s well state. Here, we examined whether PC-PLC activity from a larger group of well-state migraineurs is related to the number of their migraine comorbidities. Methods In a case–control study, migraineurs were diagnosed using International Headache Society criteria, and controls had no primary headache disorder or family history of migraine. Medication use, migraine frequency, and physician-diagnosed comorbidities were recorded for all participants. Lumbar CSF was collected between the hours of 1 and 5 pm, examined immediately for cells and total protein, and stored at −80°C. PC-PLC activity in thawed CSF was measured using a fluorometric enzyme assay. Multivariable logistic regression was used to evaluate age, gender, medication use, migraine frequency, personality scores, and comorbidities as potential predictors of PC-PLC activity in CSF. Results A total of 18 migraineurs-without-aura and 17 controls participated. In a multivariable analysis, only the number of comorbidities was related to PC-PLC activity in CSF, and only in migraineurs [parameter estimate (standard error) = 1.77, p = 0.009]. Conclusion PC-PLC activity in CSF increases with increasing number of comorbidities in migraine-without-aura. These data support involvement of a common lipid signaling pathway in migraine and in the comorbid conditions.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, 99 N El Molino Ave, Pasadena, CA 91101, USA.
| | | | | | | | | |
Collapse
|
22
|
Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:4-15. [PMID: 22421596 PMCID: PMC3378782 DOI: 10.1016/j.pnpbp.2012.02.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 02/06/2023]
Abstract
The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor (GPCR) family that are pharmacologically well defined. However, the discovery of additional sites of action for endocannabinoids as well as synthetic cannabinoid compounds suggests the existence of additional cannabinoid receptors. Here we review this evidence, as well as the current nomenclature for classifying a target as a cannabinoid receptor. Basic pharmacological definitions, principles and experimental conditions are discussed in order to place in context the mechanisms underlying cannabinoid receptor activation. Constitutive (agonist-independent) activity is observed with the overexpression of many GPCRs, including cannabinoid receptors. Allosteric modulators can alter the pharmacological responses of cannabinoid receptors. The complex molecular architecture of each of the cannabinoid receptors allows for a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. Importantly, the basic biology of the endocannabinoid system will continue to be revealed by ongoing investigations.
Collapse
Affiliation(s)
- Linda Console-Bram
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Jahan Marcu
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| | - Mary E. Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA 19140
| |
Collapse
|
23
|
Roche MJ, Madren SM, Tallent CR, Carroll FI, Seltzman HH. Mild acetal cleavage using B-chlorocatecholborane in the synthesis of rearrangement-sensitive 2-arachidonoylglycerol. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
25
|
Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, Sinelnikov I, Krishnamurthy R, Eisner R, Gautam B, Young N, Xia J, Knox C, Dong E, Huang P, Hollander Z, Pedersen TL, Smith SR, Bamforth F, Greiner R, McManus B, Newman JW, Goodfriend T, Wishart DS. The human serum metabolome. PLoS One 2011; 6:e16957. [PMID: 21359215 PMCID: PMC3040193 DOI: 10.1371/journal.pone.0016957] [Citation(s) in RCA: 1242] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Accepted: 01/18/2011] [Indexed: 12/14/2022] Open
Abstract
Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca.
Collapse
Affiliation(s)
| | - David D. Hau
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Jun Peng
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - An Chi Guo
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Rupasri Mandal
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Souhaila Bouatra
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Igor Sinelnikov
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | | | - Roman Eisner
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Bijaya Gautam
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Nelson Young
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Jianguo Xia
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Craig Knox
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Edison Dong
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Paul Huang
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Zsuzsanna Hollander
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and the NCE CECR Centre of Excellence for Prevention of Organ Failure (PROOF Centre), Vancouver, Canada
| | - Theresa L. Pedersen
- United States Department of Agriculture, Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, California, United States of America
| | - Steven R. Smith
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Fiona Bamforth
- Department of Clinical Laboratory Medicine, University of Alberta, Edmonton, Canada
| | - Russ Greiner
- Department of Computing Science, University of Alberta, Edmonton, Canada
| | - Bruce McManus
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research and the NCE CECR Centre of Excellence for Prevention of Organ Failure (PROOF Centre), Vancouver, Canada
| | - John W. Newman
- United States Department of Agriculture, Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, California, United States of America
| | - Theodore Goodfriend
- Veterans Administration Hospital and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David S. Wishart
- Department of Computing Science, University of Alberta, Edmonton, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- National Institute for Nanotechnology, Edmonton, Canada
- * E-mail:
| |
Collapse
|
26
|
Pope C, Mechoulam R, Parsons L. Endocannabinoid signaling in neurotoxicity and neuroprotection. Neurotoxicology 2010; 31:562-71. [PMID: 19969019 PMCID: PMC2891218 DOI: 10.1016/j.neuro.2009.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 12/02/2009] [Indexed: 01/23/2023]
Abstract
The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways.
Collapse
Affiliation(s)
- C Pope
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| | | | | |
Collapse
|
27
|
Karageorgos I, Tyukhtenko S, Zvonok N, Janero DR, Sallum C, Makriyannis A. Identification by nuclear magnetic resonance spectroscopy of an active-site hydrogen-bond network in human monoacylglycerol lipase (hMGL): implications for hMGL dynamics, pharmacological inhibition, and catalytic mechanism. MOLECULAR BIOSYSTEMS 2010; 6:1381-8. [PMID: 20464001 PMCID: PMC3697746 DOI: 10.1039/c004515b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Intramolecular hydrogen bonding is an important determinant of enzyme structure, catalysis, and inhibitor action. Monoacylglycerol lipase (MGL) modulates cannabinergic signaling as the main enzyme responsible for deactivating 2-arachidonoylglycerol (2-AG), a primary endocannabinoid lipid messenger. By enhancing tissue-protective 2-AG tone, targeted MGL inhibitors hold therapeutic promise for managing pain and treating inflammatory and neurodegenerative diseases. We report study of purified, solubilized human MGL (hMGL) to explore the details of hMGL catalysis by using two known covalent hMGL inhibitors, the carbamoyl tetrazole AM6701 and N-arachidonoylmaleimide (NAM), that act through distinct mechanisms. Using proton nuclear magnetic resonance spectroscopy (NMR) with purified wild-type and mutant hMGLs, we have directly observed a strong hydrogen-bond network involving Asp239 and His269 of the catalytic triad and neighboring Leu241 and Cys242 residues. hMGL inhibition by AM6701 alters this hydrogen-bonding pattern through subtle active-site structural rearrangements without influencing hydrogen-bond occupancies. Rapid carbamoylation of hMGL Ser122 by AM6701 and elimination of the leaving group is followed by a slow hydrolysis of the carbamate group, ultimately regenerating catalytically competent hMGL. In contrast, hMGL titration with NAM, which leads to cysteine alkylation, stoichiometrically decreases the population of the active-site hydrogen bonds. NAM prevents reformation of this network, and in this manner inhibits hMGL irreversibly. These data provide detailed molecular insight into the distinctive mechanisms of two covalent hMGL inhibitors and implicate a hydrogen-bond network as a structural feature of hMGL catalytic function.
Collapse
Affiliation(s)
- Ioannis Karageorgos
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| | - Sergiy Tyukhtenko
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| | - Nikolai Zvonok
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| | - David R. Janero
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| | - Christine Sallum
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| | - Alexandros Makriyannis
- Center for Drug Discovery, Northeastern University, 360 Huntington Avenue, 116 Mugar Hall, Boston, MA 02115-5000, USA 617-373-2208. Fax: +1 617-373-7493
| |
Collapse
|
28
|
|
29
|
Kim J, Alger BE. Reduction in endocannabinoid tone is a homeostatic mechanism for specific inhibitory synapses. Nat Neurosci 2010; 13:592-600. [PMID: 20348918 PMCID: PMC2860695 DOI: 10.1038/nn.2517] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 02/16/2010] [Indexed: 11/24/2022]
Abstract
When chronic alterations in neuronal activity occur, network gain is maintained by global homeostatic scaling of synaptic strength, but the stability of microcircuits can be controlled by unique adaptations that differ from the global changes. It is not understood how specificity of synaptic tuning is achieved. We found that, although a large population of inhibitory synapses was homeostatically scaled down after chronic inactivity, decreased endocannabinoid tone specifically strengthened a subset of GABAergic synapses that express cannabinoid receptors. In rat hippocampal slice cultures, a 3-5-d blockade of neuronal firing facilitated uptake and degradation of anandamide. The consequent reduction in basal stimulation of cannabinoid receptors augmented GABA release probability, fostering rapid depression of synaptic inhibition and on-demand disinhibition. This regulatory mechanism, mediated by activity-dependent changes in tonic endocannabinoid level, permits selective local tuning of inhibitory synapses in hippocampal networks.
Collapse
Affiliation(s)
- Jimok Kim
- Departments of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
30
|
Friesen RW, Innis SM. Linoleic acid is associated with lower long-chain n-6 and n-3 fatty acids in red blood cell lipids of Canadian pregnant women. Am J Clin Nutr 2010; 91:23-31. [PMID: 19923368 DOI: 10.3945/ajcn.2009.28206] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Arachidonic (ARA), eicosapentaenoic (EPA), and docosahexaenoic (DHA) acids are important in membrane glycerophospholipids. Higher maternal blood ARA, EPA, and DHA concentrations in gestation are associated with higher maternal-to-fetal transfer of ARA, EPA, and DHA, respectively, which emphasizes the importance of maternal fatty acid status in gestation. As in the brain, red blood cell (RBC) ethanolamine phosphoglycerides (EPGs) are high in plasmalogen, ARA, and DHA. OBJECTIVE We determined the relation between dietary n-6 (omega-6) and n-3 (omega-3) fatty acid intakes and n-6 and n-3 fatty acids in RBC EPGs and phosphatidylcholine in near-term pregnant women. DESIGN The subjects were 105 healthy Canadian pregnant (36 wk gestation) women. Fatty acid intakes were estimated by food-frequency questionnaire, and fasting venous blood samples were collected. RESULTS DHA and EPA intakes were positively associated with RBC EPG and phosphatidylcholine concentrations of DHA (rho = 0.309 and 0.369, respectively; P < 0.001) and EPA (rho = 0.391 and 0.228, respectively; P < 0.001) and inversely associated with RBC EPG 22:4n-6 and 22:5n-6 (P < 0.001). In RBCs, concentrations of linoleic acid (LA, 18:2n-6) were inversely associated with DHA, EPA, and ARA, respectively, in EPGs (r = -0.432, P < 0.01; r = -0.201, P < 0.04; and r = -0.303, P < 0.01) and phosphatidylcholine (r = -0.460, -0.490, and -0.604; P < 0.01 for all). CONCLUSIONS Membrane fatty acids are influenced by the amount and balance of fatty acid substrates. Our results suggest the competitive interaction of LA with ARA, EPA, and DHA, with no evidence that higher LA increases ARA. Biochemical indicators to suggest that DHA is limiting are present in our population. This trial was registered at clinicaltrials.gov as NCT00620672.
Collapse
Affiliation(s)
- Russell W Friesen
- Nutrition and Metabolism Program, Child and Family Research Institute, Department of Paediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|