1
|
Ge M, Zhou S, Li D, Song D, Yang S, Xu M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134491. [PMID: 38703686 DOI: 10.1016/j.jhazmat.2024.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Collapse
Affiliation(s)
- Meng Ge
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
2
|
Ullah A, Yin X, Naveed M, Aslam S, Chan MWH, Bo S, Wang F, Xu B, Xu B, Yu Z. Study of selenium enrichment metabolomics in Bacillus subtilis BSN313 via transcriptome analysis. Biotechnol Appl Biochem 2024; 71:609-626. [PMID: 38311980 DOI: 10.1002/bab.2562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
In this study, the transcriptome analysis was practiced to identify potential genes of probiotic Bacillus subtilis BSN313 involved in selenium (Se) enrichment metabolism. The transcriptomic variation of the strain was deliberated in presence of three different sodium selenite concentrations (0, 3, and 20 μg/mL). The samples were taken at 1 and 13 h subsequent to inoculation of selenite and gene expression profiles in Se metabolism were analyzed through RNA sequencing. The gene expression levels of the pre log phase were lower than the stationary phase. It is because, the bacteria has maximum grown with high concentration of Se (enriched with organic Se), at stationary phase. Bacterial culture containing 3 μg/mL concentration of inorganic Se (sodium selenite) has shown highest gene expression as compared to no or high concentration of Se. This concentration (3 μg/mL) of sodium selenite (as Se) in the medium promoted the upregulation of thioredoxin reductase expression, whereas its higher Se concentration inhibited the formation of selenomethionine (SeMet). The result of 5 L bioreactor fermentation showed that SeMet was also detected in the fermentation supernatant as the growth entered in the late stationary phase and reached up to 857.3 ng/mL. The overall intracellular SeMet enriched content in BSN313 was extended up to 23.4 μg/g dry cell weight. The other two selenoamino acids (Se-AAs), methyl-selenocysteine, and selenocysteine were hardly detected in medium supernatant. From this study, it was concluded that SeMet was the highest content of organic Se byproduct biosynthesized by B. subtilis BSN313 strain in Se-enriched medium during stationary phase. Thus, B. subtilis BSN313 can be considered a commercial probiotic strain that can be used in the food and pharmaceutical industries. This is because it can meet the commercial demand for Se-AAs (SeMet) in both industries.
Collapse
Affiliation(s)
- Asad Ullah
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Food and Marine Resources Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | - Xian Yin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Muhammad Naveed
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Sadar Aslam
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Malik Wajid Hussain Chan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Sun Bo
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Fenghuan Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Bo Xu
- McIntire School of Commerce, University of Virginia, Charlottesville, Virginia, USA
| | - Baocai Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Zhou Yu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
3
|
Li K, Zhu Y, Zhang S, Xu Q, Guo Y. Nitrate reductase involves in selenite reduction in Rahnella aquatilis HX2 and the characterization and anticancer activity of the biogenic selenium nanoparticles. J Trace Elem Med Biol 2024; 83:127387. [PMID: 38237425 DOI: 10.1016/j.jtemb.2024.127387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Biogenic selenium nanoparticles (SeNPs) show numerous advantages including their high stability, low toxicity, and high bioactivity. While metabolism of SeNPs remains not well studied and need more investigation to reveal the process. PURPOSE The objective of the study was to investigate the relationship between nitrate reductase and selenite reduction in Rahnella aquatilis HX2, characterize the properties of HX2 produced SeNPs, and explore their potential applications, particularly their anticancer activity. PROCEDURES Selenium species were measured by high-performance liquid chromatography coupled to inductively coupled plasma - Mass spectrometry (HPLC-ICP-MS). Transcription level of nitrate reductase was determined by Real-time quantitative PCR. Morphology, particle size, crystal structure and surface chemistry of SeNPs were determined by electron microscopy, dynamic light scattering method, Raman scattering, X-ray photoelectron spectroscopy, respectively. Anti cancer cell activity was measured by CCK-8 assay. MAIN FINDINGS SeNP production in R. aquatilis HX2 was correlated with the cell growth. The products of selenite reduction in HX2 detected by HPLC-ICP-MS included SeNPs, selenocysteine (SeCys), Se-Methylselenocysteine (MeSeCys), and 7 unknown compounds. Nitrate addition experiments suggested the involvement of nitrate reductase in selenite reduction in HX2. Both the cellular membrane and cytoplasm of HX2 exhibited selenite-reducing ability, indicating that membrane-associated nitrate reductase was not the sole selenite reductase in HX2. Characterization of the biogenic SeNPs revealed a spherical morphology and amorphous structure of them. Surface chemistry analysis implicated the binding of extracellular polymeric substances to the biogenic SeNPs, and the presence of Se0, Se2-, and electron-rich Se atoms on the surface of SeNPs. Finally, the IC50 values of the biogenic SeNPs were 36.49 μM for HepG2 and 3.70 μM for HeLa cells. CONCLUSIONS The study first revealed that the nitrate reductase is involving in selenite reduction in R. aquatilis HX2. The biogenic SeNPs coordinated with organic substances in the surface. And SeNPs produced by R. aquatilis HX2 showed excellent anticancer activities on HepG2 and HeLa cells.
Collapse
Affiliation(s)
- Kui Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanyun Zhu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences; Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Sasa Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Qiaolin Xu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Abstract
Selenium nanoparticles (SeNPs) are gaining importance in the food and medical fields due to their antibacterial properties. The microbial inhibition of these kinds of particles has been tested in a wide range of Gram (+) and Gram (−) pathogenic bacteria. When SeNPs are synthesized by biological methods, they are called biogenic SeNPs, which have a negative charge caused by their interaction between surface and capping layer (bioorganic material), producing their high stability. This review is focused on SeNPs synthesis by bacteria and summarizes the main factors that influence their main characteristics: shape, size and surface charge, considering the bacteria growth conditions for their synthesis. The different mechanisms of antimicrobial activity are revised, and this review describes several biosynthesis hypotheses that have been proposed due to the fact that the biological mechanism of SeNP synthesis is not fully known.
Collapse
|
5
|
Tymoshok NO, Kharchuk MS, Kaplunenko VG, Bityutskyy VS, Tsekhmistrenko SI, Tsekhmistrenko OS, Spivak MY, Melnichenko ОМ. Evaluation of effects of selenium nanoparticles on Bacillus subtilis. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present study was performed to characterize of selenium nanoparticles (Nano-Se) which were synthesized by pulsed laser ablation in liquids to obtain the aqueous selenium citrate solution. The study was conducted using bacteriological and electronic-microscopic methods. Transmission electron microscopy (TEM) and spectroscopy analyses demonstrated that nano-selenium particles obtained by the method of selenium ablation had the size of 4–8 nm. UV-Visible Spectrum colloidal solution Nano-Se exhibited absorption maxima at 210 nm. To clarify some effects of the action of Nano-Se on Bacillus subtilis, we investigated the interaction of Nano-Se with B. subtilis IMV B-7392 before and after incubation with Nano-Se, examining TEM images. It has been shown that exposure to B. subtilis IMV B-7392 in the presence of Nano-Se is accompanied by the rapid uptake of Nano-Se by bacterial culture. TEM analysis found that the electron-dense Nano-Se particles were located in the intracellular spaces of B. subtilis IMV B-7392. That does not lead to changes in cultural and morphological characteristics of B. subtilis IMV B-7392. Using TEM, it has been shown that penetration of nanoparticles in the internal compartments is accompanied with transient porosity of the cell membrane of B. subtilis IMV B-7392 without rupturing it. The effective concentration of Nano-Se 0.2 × 10–3 mg/mL was found to increase the yield of biologically active substances of B. subtilis. In order to create probiotic nano-selenium containing products, the nutrient medium of B. subtilis IMV B-7392 was enriched with Nano-Se at 0.2 × 10–3 mg/mL. It was found that particles Nano-Se are non-toxic to the culture and did not exhibit bactericidal or bacteriostatic effects. The experimentally demonstrated ability of B. subtilis to absorb selenium nanoparticles has opened up the possibility of using Nano-Se as suitable drug carriers.
Collapse
|
6
|
Tugarova AV, Kamnev AA. Proteins in microbial synthesis of selenium nanoparticles. Talanta 2017; 174:539-547. [PMID: 28738620 DOI: 10.1016/j.talanta.2017.06.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 01/08/2023]
Abstract
Biogenic formation of nano-sized particles composed of various materials (in particular, selenium) by live microorganisms is widespread in nature. This phenomenon has been increasingly attracting the attention of researchers over the last decade not only owing to a range of diverse applications of such nanoparticles (NPs) in nanobiotechnology, but also because of the specificity of methodologies and mechanisms of NPs formation related to "green synthesis". In this mini-review, recent data are discussed on the multifaceted role of proteins in the processes of microbial reduction of selenium oxyanions and the formation of Se NPs. Besides the involvement of proteins in reducing selenites and selenates, their participation in the microbially driven growth and stabilisation of Se NPs is analysed, which results in the formation of unique nanostructured materials differing from those obtained chemically. This mini-review is thus focussed on proteins involved in microbial synthesis of Se NPs and on instrumental analysis of these processes and their products (biogenic nanostructured selenium particles functionalised by a surface-capping layer of various biomacromolecules).
Collapse
Affiliation(s)
- Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| | - Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prosp. Entuziastov, 410049 Saratov, Russia.
| |
Collapse
|
7
|
Khoei NS, Lampis S, Zonaro E, Yrjälä K, Bernardi P, Vallini G. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. N Biotechnol 2016; 34:1-11. [PMID: 27717878 DOI: 10.1016/j.nbt.2016.10.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/11/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022]
Abstract
Microorganisms capable of transforming toxic selenium oxyanions into non-toxic elemental selenium (Se°) may be considered as biocatalysts for the production of selenium nanoparticles (SeNPs), eventually exploitable in different biotechnological applications. Two Burkholderia fungorum strains (B. fungorum DBT1 and B. fungorum 95) were monitored during their growth for both capacity and efficiency of selenite (SeO32-) reduction and elemental selenium formation. Both strains are environmental isolates in origin: B. fungorum DBT1 was previously isolated from an oil refinery drainage, while B. fungorum 95 has been enriched from inner tissues of hybrid poplars grown in a soil contaminated by polycyclic aromatic hydrocarbons. Our results showed that B. fungorum DBT1 is able to reduce 0.5mM SeO32- to Se° when cultured aerobically in liquid medium at 27°C, while B. fungorum 95 can reduce more than 1mM SeO32- to Se° within 96h under the same growth conditions, with the appearance of SeNPs in cultures of both bacterial strains. Biogenic SeNPs were spherical, with pH-dependent charge and an average hydrodynamic diameter of 170nm and 200nm depending on whether they were produced by B. fungorum 95 or B. fungorum DBT1, respectively. Electron microscopy analyses evidenced that Se nanoparticles occurred intracellularly and extracellularly. The mechanism of SeNPs formation can be tentatively attributed to cytoplasmic enzymatic activation mediated by electron donors. Biogenic nanoparticles were then probably released outside the bacterial cells as a consequence of a secretory process or cell lysis. Nevertheless, formation of elemental selenium nanoparticles under aerobic conditions by B. fungorum DBT1 and B. fungorum 95 is likely due to intracellular reduction mechanisms. Biomedical and other high tech sectors might exploit these biogenic nanoparticles in the near future, once fully characterized and tested for their multiple properties.
Collapse
Affiliation(s)
- Nazanin Seyed Khoei
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Silvia Lampis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Emanuele Zonaro
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Kim Yrjälä
- MEM-group, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Paolo Bernardi
- Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giovanni Vallini
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
8
|
Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 2016; 100:2555-66. [DOI: 10.1007/s00253-016-7300-7] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
|
9
|
Li B, Liu N, Li Y, Jing W, Fan J, Li D, Zhang L, Zhang X, Zhang Z, Wang L. Reduction of selenite to red elemental selenium by Rhodopseudomonas palustris strain N. PLoS One 2014; 9:e95955. [PMID: 24759917 PMCID: PMC3997485 DOI: 10.1371/journal.pone.0095955] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/01/2014] [Indexed: 02/03/2023] Open
Abstract
The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO₃⁻²) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO₃⁻² and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO₃⁻² to red elemental selenium. The diameters of particles were 80-200 nm. The bacteria exhibited significant tolerance to SeO₃⁻² up to 8.0 m mol/L concentration with an EC₅₀ value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO₃²⁻ up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO₃⁻² was observed at 2.0, 4.0 and 8.0 m mol/L SeO₃²⁻ concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO₃⁻². The finding of this work will contribute to the application of selenium to human health.
Collapse
Affiliation(s)
- Baozhen Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yongquan Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Weixin Jing
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jinhua Fan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Dan Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Longyan Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Zhaoming Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Lampis S, Zonaro E, Bertolini C, Bernardi P, Butler CS, Vallini G. Delayed formation of zero-valent selenium nanoparticles by Bacillus mycoides SeITE01 as a consequence of selenite reduction under aerobic conditions. Microb Cell Fact 2014; 13:35. [PMID: 24606965 PMCID: PMC3975340 DOI: 10.1186/1475-2859-13-35] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Selenite (SeO32-) oxyanion shows severe toxicity to biota. Different bacterial strains exist that are capable of reducing SeO32- to non-toxic elemental selenium (Se0), with the formation of Se nanoparticles (SeNPs). These SeNPs might be exploited for technological applications due to their physico-chemical and biological characteristics. The present paper discusses the reduction of selenite to SeNPs by a strain of Bacillus sp., SeITE01, isolated from the rhizosphere of the Se-hyperaccumulator legume Astragalus bisulcatus. RESULTS Use of 16S rRNA and GyrB gene sequence analysis positioned SeITE01 phylogenetically close to B. mycoides. On agarized medium, this strain showed rhizoid growth whilst, in liquid cultures, it was capable of reducing 0.5 and 2.0 mM SeO32- within 12 and 24 hours, respectively. The resultant Se0 aggregated to form nanoparticles and the amount of Se0 measured was equivalent to the amount of selenium originally added as selenite to the growth medium. A delay of more than 24 hours was observed between the depletion of SeO32 and the detection of SeNPs. Nearly spherical-shaped SeNPs were mostly found in the extracellular environment whilst rarely in the cytoplasmic compartment. Size of SeNPs ranged from 50 to 400 nm in diameter, with dimensions greatly influenced by the incubation times. Different SeITE01 protein fractions were assayed for SeO32- reductase capability, revealing that enzymatic activity was mainly associated with the membrane fraction. Reduction of SeO32- was also detected in the supernatant of bacterial cultures upon NADH addition. CONCLUSIONS The selenite reducing bacterial strain SeITE01 was attributed to the species Bacillus mycoides on the basis of phenotypic and molecular traits. Under aerobic conditions, the formation of SeNPs were observed both extracellularly or intracellularly. Possible mechanisms of Se0 precipitation and SeNPs assembly are suggested. SeO32- is proposed to be enzymatically reduced to Se0 through redox reactions by proteins released from bacterial cells. Sulfhydryl groups on peptides excreted outside the cells may also react directly with selenite. Furthermore, membrane reductases and the intracellular synthesis of low molecular weight thiols such as bacillithiols may also play a role in SeO32- reduction. Formation of SeNPs seems to be the result of an Ostwald ripening mechanism.
Collapse
Affiliation(s)
- Silvia Lampis
- Department of Biotechnology, University of Verona, Strada le Grazie 15, Verona 37134, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, Tong ZH, Yu HQ. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 2014; 4:3735. [PMID: 24435070 PMCID: PMC3894562 DOI: 10.1038/srep03735] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 12/05/2013] [Indexed: 11/09/2022] Open
Abstract
In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils.
Collapse
Affiliation(s)
- Dao-Bo Li
- 1] School of Earth and Space Sciences [2] Department of Chemistry [3]
| | | | | | | | | | - Zong-Chuang Yang
- School of Life Sciences, University of Science & Technology of China, Hefei, 230026, China
| | | | | |
Collapse
|
12
|
Comparative assessment of selenite (SeIV) detoxification to elemental selenium (Se0) by Bacillus sp. Biotechnol Lett 2010; 32:1255-9. [DOI: 10.1007/s10529-010-0291-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/21/2010] [Indexed: 10/19/2022]
|
13
|
Kabiri M, Amoozegar MA, Tabebordbar M, Gilany K, Salekdeh GH. Effects of selenite and tellurite on growth, physiology, and proteome of a moderately halophilic bacterium. J Proteome Res 2009; 8:3098-108. [PMID: 19334765 DOI: 10.1021/pr900005h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We isolated a moderately halophilic bacterium with high level of tolerance to two toxic oxyanions, selenite and tellurite, from hypersaline soil in Garmsar, Iran. 16s rRNA sequence analysis revealed that the isolate, strain MAM, had 98% similarity with Halomonas elongate, and is closely related to other species of the genus Halomonas. We observed that the tolerance to tellurite and its removal increased significantly when both selenite and tellurite were added to the culture media, suggesting a positive synergism of selenite on tellurite tolerance and removal. We applied a proteomic approach to study the proteome response of Halomonas sp. strain MAM to selenite, tellurite, and selenite + tellurite. Out of approximately 800 protein spots detected on 2-DE gels, 208 spots were differentially expressed in response to at least one of treatments. Of them, 70 CBB stained spots were analyzed by MALDI TOF/TOF mass spectrometry, leading to identification of 36 proteins. Our results revealed that several mechanisms including fatty acid synthesis, energy production, cell transport, oxidative stress detoxification, DNA replication, transcription and translation contributed in bacterial response and/or adaptation. These results provided new insights into the general mechanisms on the tolerance of halophilic bacteria to these two toxic oxyanions and the use of them for bioremediation of contaminated saline soils and wastes discharge sites.
Collapse
Affiliation(s)
- Mahboubeh Kabiri
- Agricultural Biotechnology Research Institute of Iran, Karaj, Iran
| | | | | | | | | |
Collapse
|
14
|
Hunter WJ, Manter DK. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 2009; 58:493-8. [DOI: 10.1007/s00284-009-9358-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/23/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
|
15
|
Hunter WJ, Manter DK. Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 2008; 57:83-8. [PMID: 18389307 DOI: 10.1007/s00284-008-9160-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/28/2008] [Indexed: 11/29/2022]
Abstract
A bacterium that detoxifies selenite by reduction to insoluble elemental red selenium was isolated from soil. The strain showed an unusually high resistance to the toxic effects of selenite by growing in media containing 64 mM selenite. 16S rRNA gene sequence alignment identified the isolate as Tetrathiobacter kashmirensis. Fatty acid analysis and morphology confirmed the identification. The isolate reduced selenite to elemental selenium under aerobic conditions only. Native gel electrophoresis of cell-free extracts revealed a band, corresponding to a molecular weight of approximately 120 kDa, that reduced selenite. In culture, the strain did not reduce selenate; however, a soluble and inducible enzyme with a molecular weight of approximately 90 kDa that reduced both selenate and nitrate was present in cell-free extracts. This organism might be useful in bioreactors designed to remove selenite from contaminated water.
Collapse
|
16
|
Gouget B, Avoscan L, Sarret G, Collins R, Carrière M. Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV. RADIOCHIM ACTA 2007. [DOI: 10.1524/ract.2005.93.11.683] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Summary
Our purpose was to investigate the ability of Synechocystis sp . PCC 6803, a photosynthetic prokaryote isolated from fresh water, to resist, incorporate and reduce the oxidized forms of selenium including selenite and selenate, the major selenium species present in aquatic systems. Selenium speciation and the chemical intermediates during selenium transformation were determined by X-ray absorption near edge structure (XANES) spectroscopy. The possible internalisation pathways involving selenium and the metabolic fate of selenate and selenite were examined. Selenate metabolism seemed to proceed via the sulfate reduction pathway resulting in the formation of the R-Se-H, R-Se-R and R-Se-Se-R species. The transformation of selenate to toxic amino acids may explain the high sensitivity of Synechocystis to selenate. Several mechanisms of selenium reduction seem to compete during selenite assimilation. A specific mechanism may transform internalised selenite into selenide and, subsequently induce the biosynthesis of selenoproteins. A non-specific mechanism may interfere with thiols, such as glutathione in the cell cytoplasm, or with proteins in the periplasm of the bacteria, notably thioredoxins. Several hypotheses concerning the complex transformation of selenium in Synechocystis could therefore be proposed.
Collapse
|
17
|
Simonoff M, Sergeant C, Poulain S, Pravikoff MS. Microorganisms and migration of radionuclides in environment. CR CHIM 2007. [DOI: 10.1016/j.crci.2007.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Hunter WJ, Kuykendall LD. Reduction of selenite to elemental red selenium by Rhizobium sp. strain B1. Curr Microbiol 2007; 55:344-9. [PMID: 17882505 DOI: 10.1007/s00284-007-0202-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 05/16/2007] [Indexed: 10/22/2022]
Abstract
A bacterium that reduces the soluble and toxic selenite anion to insoluble elemental red selenium (Se(0)) was isolated from a laboratory bioreactor. Biochemical, morphological, and 16S rRNA gene sequence alignment identified the isolate as a Rhizobium sp. that is related to but is genetically divergent from R. radiobacter (syn. Agrobacterium tumefaciens) or R. rubi (syn. A. rubi). The isolate was capable of denitrification and reduced selenite to Se(0) under aerobic and denitrifying conditions. It did not reduce selenate and did not use selenite or selenate as terminal e(-) donors. Native gel electrophoresis revealed two bands, corresponding to molecular weights of approximately 100 and approximately 45 kDa, that reduced selenite. Tungsten inhibited in vivo selenite reduction, suggesting that a molybdenum-containing protein is involved in selenite reduction. This organism, or its enzymes or DNA, might be useful in bioreactors designed to remove selenite from water.
Collapse
|
19
|
Ledgham F, Quest B, Vallaeys T, Mergeay M, Covès J. A probable link between the DedA protein and resistance to selenite. Res Microbiol 2005; 156:367-74. [PMID: 15808941 DOI: 10.1016/j.resmic.2004.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 11/22/2004] [Accepted: 11/24/2004] [Indexed: 10/26/2022]
Abstract
To understand the molecular events involved in the reduction of selenite to non-toxic elemental selenium, 4000 clones of Ralstonia metallidurans CH34 were produced by random Tn5 transposon integration mutagenesis. Eight mutants were able to resist up to 15 mM selenite while the MIC for the wild-type strain was estimated as 4-6 mM selenite. The identification of the disrupted genes was carried out by Southern blot analysis and inverse PCR. The three resistant mutants containing only one insertion were further characterized. Tn5 disrupted a gene that encoded a protein which was closely related to proteins of the DedA family. This family represents a group of integral membrane proteins with completely unknown functions. Phenotypic characterization of the dedA mutants and selenite consumption experiments strongly suggest that DedA is involved in the uptake of selenite.
Collapse
Affiliation(s)
- Fouzia Ledgham
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, DRDC/CB, CEA-Grenoble, France
| | | | | | | | | |
Collapse
|
20
|
Di Gregorio S, Lampis S, Vallini G. Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. ENVIRONMENT INTERNATIONAL 2005; 31:233-241. [PMID: 15661289 DOI: 10.1016/j.envint.2004.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A bacterial strain (SeITE02), related to the species Stenotrophomonas maltophilia and resistant to selenite (SeIV) up to 50 mM in the growth medium, was isolated from rhizospheric soil of a selenium hyperaccumulator plant, the legume Astragalus bisulcatus. The influence of SeIV on the active growth of this Se-tolerant bacterial strain has been investigated in oxic conditions, along with the isolate's ability to reduce selenite to elemental selenium (Se(0)). Interestingly, concentrations of 0.5 mM SeIV were wholly reduced by strain SeITE02 in liquid culture within 52 h. Moreover, 87% of SeIV added to the growth medium at the initial concentration of 2.0 mM underwent again reduction in 120 h. Actually, a selenite-mediated induction of a sort of adaptive response to detrimental SeIV effects magnified the efficiency of SeITE02 in reducing this toxic oxyanion. Furthermore, the SeIV influence on cell morphology of strain SeITE02 was evidenced by phase-contrast and electron microscopy analyses. In particular, transmission electron microscopy (TEM)-energy-dispersive X-ray (EDX) analysis of S. maltophilia strain SeITE02, grown in presence of SeIV, showed electron-dense Se(0) granules either in the cell cytoplasm or in the extracellular space. Therefore, the capability of strain SeITE02 to quickly reduce soluble and harmful SeIV to insoluble and unavailable Se(0) may be looked at as a promising exploitable option for the setup of low-cost biological treatments tailored to manage contamination in selenium-laden effluents.
Collapse
Affiliation(s)
- Simona Di Gregorio
- Department of Science and Technology, Laboratories of Microbial Biotechnology and Environmental Microbiology, University of Verona, Strada Le Grazie 15-Ca' Vignal, 37134Verona, Italy
| | | | | |
Collapse
|
21
|
Kessi J, Hanselmann KW. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J Biol Chem 2004; 279:50662-9. [PMID: 15371444 DOI: 10.1074/jbc.m405887200] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Various mechanisms have been proposed to explain the biological dissimilatory reduction of selenite (SeO3(2-)) to elemental selenium (Se(o)), although none is without controversy. Glutathione, the most abundant thiol in the eukaryotic cells, the cyanobacteria, and the alpha, beta, and gamma groups of the proteobacteria, has long been suspected to be involved in selenium metabolism. Experiments with the phototrophic alpha proteobacterium Rhodospirillum rubrum showed that the rate of selenite reduction was decreased when bacteria synthesized lower than normal levels of glutathione, and in Rhodobacter sphaeroides and Escherichia coli the reaction was reported to induce glutathione reductase. In the latter organism superoxide dismutase was also induced in cells grown in the presence of selenite, indicating that superoxide anions (O2-) were produced. These observations led us to investigate the abiotic (chemical) reduction of selenite by glutathione and to compare the features of this reaction with those of the reaction mediated by R. rubrum and E. coli. Our findings imply that selenite was first reduced to selenodiglutathione, which reached its maximum concentration within the 1st min of the reaction. Formation of selenodiglutathione was paralleled by a rapid reduction of cytochrome c, a known oxidant for superoxide anions. Cytochrome c reduction was inhibited by superoxide dismutase, indicating that O2- was the source of electrons for the reduction. These results demonstrated that superoxide was produced in the abiotic reduction of selenite with glutathione, thus lending support to the hypothesis that glutathione may be involved in the reaction mediated by R. rubrum and E. coli. The second phase of the reaction, which led to the formation of elemental selenium (Se(o)), developed more slowly. Se(o) precipitation reached a maximum within 2 h after the beginning of the reaction. Secondary reactions leading to the degradation of the superoxide significantly decreased the yield of Se(o) in the abiotic reaction compared with that of the bacterially mediated selenite reduction. Abiotically formed selenium particles showed the same characteristic orange-red color, spherical structure, and size as particles produced by R. rubrum, again providing support for the hypothesis that glutathione is involved in the reduction of selenite to elemental selenium in this organism.
Collapse
Affiliation(s)
- Janine Kessi
- Microbial Ecology Group, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, Zurich CH-8008, Switzerland.
| | | |
Collapse
|
22
|
Roux M, Sarret G, Pignot-Paintrand I, Fontecave M, Coves J. Mobilization of selenite by Ralstonia metallidurans CH34. Appl Environ Microbiol 2001; 67:769-73. [PMID: 11157242 PMCID: PMC92646 DOI: 10.1128/aem.67.2.769-773.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia metallidurans CH34 (formerly Alcaligenes eutrophus CH34) is a soil bacterium characteristic of metal-contaminated biotopes, as it is able to grow in the presence of a variety of heavy metals. R. metallidurans CH34 is reported now to resist up to 6 mM selenite and to reduce selenite to elemental red selenium as shown by extended X-ray absorption fine-structure analysis. Growth kinetics analysis suggests an adaptation of the cells to the selenite stress during the lag-phase period. Depending on the culture conditions, the medium can be completely depleted of selenite. Selenium accumulates essentially in the cytoplasm as judged from electron microscopy and energy-dispersive X-ray analysis. Elemental selenium, highly insoluble, represents a nontoxic storage form for the bacterium. The ability of R. metallidurans CH34 to reduce large amounts of selenite may be of interest for bioremediation processes targeting selenite-polluted sites.
Collapse
Affiliation(s)
- M Roux
- Laboratoire de Chimie et Biochimie des Centres Redox Biologiques, CEA-Grenoble, DBMS/CB-CNRS-Université Joseph Fourier, France
| | | | | | | | | |
Collapse
|