1
|
Liao FH, Chen SP, Yao CN, Wu TH, Liu MT, Hsu CS, Chen HM, Lin SY. Oxygen-Binding Sites of Enriched Gold Nanoclusters for Capturing Mitochondrial Reverse Electrons. NANO LETTERS 2024; 24:11202-11209. [PMID: 39207943 PMCID: PMC11403762 DOI: 10.1021/acs.nanolett.4c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reverse electron transfer (RET), an abnormal backward flow of electrons from complexes III/IV to II/I of mitochondria, causes the overproduction of a reduced-type CoQ to boost downstream production of mitochondrial superoxide anions that leads to ischemia-reperfusion injury (IRI) to organs. Herein, we studied low-coordinated gold nanoclusters (AuNCs) with abundant oxygen-binding sites to form an electron-demanding trapper that allowed rapid capture of electrons to compensate for the CoQ/CoQH2 imbalance during RET. The AuNCs were composed of only eight gold atoms that formed a Cs-symmetrical configuration with all gold atoms exposed on the edge site. The geometry and atomic configuration enhance oxygen intercalation to attain a d-band electron deficiency in frontier orbitals, forming an unusually high oxidation state for rapid mitochondrial reverse electron capture under a transient imbalance of CoQ/CoQH2 redox cycles. Using hepatic IRI cells/animals, we corroborated that the CoQ-like AuNCs prevent inflammation and liver damage from IRI via recovery of the mitochondrial function.
Collapse
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
| | - Meng-Ting Liu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Shuo Hsu
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
| | - Hao Ming Chen
- Department of Chemistry and Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town 35053, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Grilo LF, Martins JD, Diniz MS, Tocantins C, Cavallaro CH, Baldeiras I, Cunha-Oliveira T, Ford S, Nathanielsz PW, Oliveira PJ, Pereira SP. Maternal hepatic adaptations during obese pregnancy encompass lobe-specific mitochondrial alterations and oxidative stress. Clin Sci (Lond) 2023; 137:1347-1372. [PMID: 37565250 DOI: 10.1042/cs20230048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Maternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality. Understanding the role of MO on liver function and pathophysiology could be crucial for better understanding the altered pathways leading to PALD and liver disease, possibly paving the way to prevention and adequate management of disease. We investigated specific hepatic metabolic alterations in mitochondria and oxidative stress during MO at late-gestation. Maternal hepatic tissue was collected at 90% gestation in Control and MO ewes (fed 150% of recommended nutrition starting 60 days before conception). Maternal hepatic redox state, mitochondrial respiratory chain (MRC), and OS markers were investigated. MO decreased MRC complex-II activity and its subunits SDHA and SDHB protein expression, increased complex-I and complex-IV activities despite reduced complex-IV subunit mtCO1 protein expression, and increased ATP synthase ATP5A subunit. Hepatic MO-metabolic remodeling was characterized by decreased adenine nucleotide translocator 1 and 2 (ANT-1/2) and voltage-dependent anion channel (VDAC) protein expression and protein kinase A (PKA) activity (P<0.01), and augmented NAD+/NADH ratio due to reduced NADH levels (P<0.01). MO showed an altered redox state with increased OS, increased lipid peroxidation (P<0.01), decreased GSH/GSSG ratio (P=0.005), increased superoxide dismutase (P=0.03) and decreased catalase (P=0.03) antioxidant enzymatic activities, lower catalase, glutathione peroxidase (GPX)-4 and glutathione reductase protein expression (P<0.05), and increased GPX-1 abundance (P=0.03). MO-related hepatic changes were more evident in the right lobe, corroborated by the integrative data analysis. Hepatic tissue from obese pregnant ewes showed alterations in the redox state, consistent with OS and MRC and metabolism remodeling. These are hallmarks of PALD and hepatic disease, supporting MO as a risk-factor and highlighting OS and mitochondrial dysfunction as mechanisms responsible for liver disease predisposition.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João D Martins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Chiara H Cavallaro
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Inês Baldeiras
- Neurological Clinic, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Stephen Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, U.S.A
| | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Mitochondrial DNA Polymorphism in HV1 and HV2 Regions and 12S rDNA in Perimenopausal Hypertensive Women. Biomedicines 2023; 11:biomedicines11030823. [PMID: 36979802 PMCID: PMC10044999 DOI: 10.3390/biomedicines11030823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Estrogens enhance cellular mitochondrial activity. The diminution of female hormones during menopause may have an effect on the mitochondrial genome and the expression of mitochondrial proteins. Hence, oxidative stress and the pro-inflammatory state contribute to the formation of systemic illnesses including arterial hypertension (AH). This study aimed to determine the types and frequency of mutations in the mitochondrial DNA (mtDNA) nucleotide sequence in the hypervariable regions 1 and 2 (HV1 and HV2) and the 12S RNA coding sequence of the D-loop in postmenopausal women with hypertension. In our study, 100 women were investigated, 53 of whom were postmenopausal and 47 of whom were premenopausal (53.9 ± 3.7 years vs. 47.7 ± 4.2 years, respectively). Of those studied, 35 premenopausal and 40 postmenopausal women were diagnosed with AH. A medical checkup with 24 h monitoring of blood pressure (RR) and heart rate was undertaken (HR). The polymorphism of the D-loop and 12S rDNA region of mtDNA was examined. Changes in the nucleotide sequence of mtDNA were observed in 23% of the group of 100 women. The changes were identified in 91.3% of HV1 and HV2 regions, 60.9% of HV1 segments, 47.5% of HV2 regions, and 43.5% of 12S rDNA regions. The frequency of nucleotide sequence alterations in mtDNA was substantially higher in postmenopausal women (34%) than in premenopausal women (10.6%), p = 0.016. A higher frequency of changes in HV1 + HV2 sections in postmenopausal women (30.2%) compared to the premenopausal group (10.6%) was detected, p = 0.011. Only postmenopausal women were found to have modifications to the HV2 segment and the 12S rDNA region. After menopause, polymorphism in the mtDNA region was substantially more frequent in women with arterial hypertension than before menopause (p = 0.030; 37.5% vs. 11.5%). Comparable findings were observed in the HV2 and HV1 regions of the AH group (35% vs. 11.5%), p = 0.015, in the HV1 segment (25% vs. 11.5%), p = 0.529, and in the HV2 segment, 12S rDNA (25% vs. 0%). More than 80% of all changes in nucleotide sequence were homoplasmic. The mtDNA polymorphisms of the nucleotide sequence in the HV1 and HV2 regions, the HV2 region alone, and the 12S RNA coding sequence were associated with estrogen deficiency and a more severe course of arterial hypertension, accompanied by symptoms of adrenergic stimulation.
Collapse
|
4
|
Coenzyme Q at the Hinge of Health and Metabolic Diseases. Antioxidants (Basel) 2021; 10:antiox10111785. [PMID: 34829656 PMCID: PMC8615162 DOI: 10.3390/antiox10111785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q is a unique lipidic molecule highly conserved in evolution and essential to maintaining aerobic metabolism. It is endogenously synthesized in all cells by a very complex pathway involving a group of nuclear genes that share high homology among species. This pathway is tightly regulated at transcription and translation, but also by environment and energy requirements. Here, we review how coenzyme Q reacts within mitochondria to promote ATP synthesis and also integrates a plethora of metabolic pathways and regulates mitochondrial oxidative stress. Coenzyme Q is also located in all cellular membranes and plasma lipoproteins in which it exerts antioxidant function, and its reaction with different extramitochondrial oxidoreductases contributes to regulate the cellular redox homeostasis and cytosolic oxidative stress, providing a key factor in controlling various apoptosis mechanisms. Coenzyme Q levels can be decreased in humans by defects in the biosynthesis pathway or by mitochondrial or cytosolic dysfunctions, leading to a highly heterogeneous group of mitochondrial diseases included in the coenzyme Q deficiency syndrome. We also review the importance of coenzyme Q levels and its reactions involved in aging and age-associated metabolic disorders, and how the strategy of its supplementation has had benefits for combating these diseases and for physical performance in aging.
Collapse
|
5
|
Kozakiewicz P, Grzybowska-Szatkowska L, Ciesielka M, Rzymowska J. The Role of Mitochondria in Carcinogenesis. Int J Mol Sci 2021; 22:ijms22105100. [PMID: 34065857 PMCID: PMC8151940 DOI: 10.3390/ijms22105100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
The mitochondria are essential for normal cell functioning. Changes in mitochondrial DNA (mtDNA) may affect the occurrence of some chronic diseases and cancer. This process is complex and not entirely understood. The assignment to a particular mitochondrial haplogroup may be a factor that either contributes to cancer development or reduces its likelihood. Mutations in mtDNA occurring via an increase in reactive oxygen species may favour the occurrence of further changes both in mitochondrial and nuclear DNA. Mitochondrial DNA mutations in postmitotic cells are not inherited, but may play a role both in initiation and progression of cancer. One of the first discovered polymorphisms associated with cancer was in the gene NADH-ubiquinone oxidoreductase chain 3 (mt-ND3) and it was typical of haplogroup N. In prostate cancer, these mutations and polymorphisms involve a gene encoding subunit I of respiratory complex IV cytochrome c oxidase subunit 1 gene (COI). At present, a growing number of studies also address the impact of mtDNA polymorphisms on prognosis in cancer patients. Some of the mitochondrial DNA polymorphisms occur in both chronic disease and cancer, for instance polymorphism G5913A characteristic of prostate cancer and hypertension.
Collapse
Affiliation(s)
- Paulina Kozakiewicz
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
- Correspondence:
| | - Ludmiła Grzybowska-Szatkowska
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Department of Radiotherapy, St. John’s Cancer Centre, The Regional Oncology Centre of Lublin Jaczewskiego 7, 20-090 Lublin, Poland
| | - Marzanna Ciesielka
- Department of Radiotherapy, Medical University in Lublin, Chodźki 7, 20-093 Lublin, Poland; (L.G.-S.); (M.C.)
- Chair and Department of Forensic Medicine, Medical University in Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Rzymowska
- Chair and Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
6
|
López-Lluch G. Coenzyme Q homeostasis in aging: Response to non-genetic interventions. Free Radic Biol Med 2021; 164:285-302. [PMID: 33454314 DOI: 10.1016/j.freeradbiomed.2021.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
Coenzyme Q (CoQ) is a key component for many essential metabolic and antioxidant activities in cells in mitochondria and cell membranes. Mitochondrial dysfunction is one of the hallmarks of aging and age-related diseases. Deprivation of CoQ during aging can be the cause or the consequence of this mitochondrial dysfunction. In any case, it seems clear that aging-associated CoQ deprivation accelerates mitochondrial dysfunction in these diseases. Non-genetic prolongevity interventions, including CoQ dietary supplementation, can increase CoQ levels in mitochondria and cell membranes improving mitochondrial activity and delaying cell and tissue deterioration by oxidative damage. In this review, we discuss the importance of CoQ deprivation in aging and age-related diseases and the effect of prolongevity interventions on CoQ levels and synthesis and CoQ-dependent antioxidant activities.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Universidad Pablo de Olavide, Centro Andaluz de Biología Del Desarrollo, CABD-CSIC, CIBERER, Instituto de Salud Carlos III, Carretera de Utrera Km. 1, 41013, Sevilla, Spain.
| |
Collapse
|
7
|
Makrecka‐Kuka M, Liepinsh E, Murray AJ, Lemieux H, Dambrova M, Tepp K, Puurand M, Käämbre T, Han WH, Goede P, O'Brien KA, Turan B, Tuncay E, Olgar Y, Rolo AP, Palmeira CM, Boardman NT, Wüst RCI, Larsen TS. Altered mitochondrial metabolism in the insulin-resistant heart. Acta Physiol (Oxf) 2020; 228:e13430. [PMID: 31840389 DOI: 10.1111/apha.13430] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus can ultimately result in various complications, including diabetic cardiomyopathy. In this case, cardiac dysfunction is characterized by metabolic disturbances such as impaired glucose oxidation and an increased reliance on fatty acid (FA) oxidation. Mitochondrial dysfunction has often been associated with the altered metabolic function in the diabetic heart, and may result from FA-induced lipotoxicity and uncoupling of oxidative phosphorylation. In this review, we address the metabolic changes in the diabetic heart, focusing on the loss of metabolic flexibility and cardiac mitochondrial function. We consider the alterations observed in mitochondrial substrate utilization, bioenergetics and dynamics, and highlight new areas of research which may improve our understanding of the cause and effect of cardiac mitochondrial dysfunction in diabetes. Finally, we explore how lifestyle (nutrition and exercise) and pharmacological interventions can prevent and treat metabolic and mitochondrial dysfunction in diabetes.
Collapse
Affiliation(s)
| | | | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Hélène Lemieux
- Department of Medicine Faculty Saint‐Jean, Women and Children's Health Research Institute University of Alberta Edmonton AB Canada
| | | | - Kersti Tepp
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Marju Puurand
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Tuuli Käämbre
- National Institute of Chemical Physics and Biophysics Tallinn Estonia
| | - Woo H. Han
- Faculty Saint‐Jean University of Alberta Edmonton AB Canada
| | - Paul Goede
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Katie A. O'Brien
- Department of Physiology, Development and Neuroscience University of Cambridge Cambridge UK
| | - Belma Turan
- Laboratory of Endocrinology Amsterdam Gastroenterology & Metabolism Amsterdam University Medical Center University of Amsterdam Amsterdam The Netherlands
| | - Erkan Tuncay
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Yusuf Olgar
- Department of Biophysics Faculty of Medicine Ankara University Ankara Turkey
| | - Anabela P. Rolo
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences University of Coimbra and Center for Neurosciences and Cell Biology University of Coimbra Coimbra Portugal
| | - Neoma T. Boardman
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| | - Rob C. I. Wüst
- Laboratory for Myology Department of Human Movement Sciences Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Terje S. Larsen
- Cardiovascular Research Group Department of Medical Biology UiT the Arctic University of Norway Tromso Norway
| |
Collapse
|
8
|
de Oliveira MR, Duarte AR, Chenet AL, de Almeida FJS, Andrade CMB. Carnosic Acid Pretreatment Attenuates Mitochondrial Dysfunction in SH-SY5Y Cells in an Experimental Model of Glutamate-Induced Excitotoxicity. Neurotox Res 2019; 36:551-562. [PMID: 31016690 DOI: 10.1007/s12640-019-00044-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/29/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
Mitochondria are the major site of adenosine triphosphate (ATP) production in mammalian cells. Moreover, mitochondria produce most of the reactive oxygen species (ROS) in nucleated cells. Redox and bioenergetic abnormalities have been seen in mitochondria during the onset and progression of neurodegenerative diseases. In that context, excitotoxicity induced by glutamate (GLU) plays an important role in mediating neurotoxicity. Several drugs have been used in the treatment of diseases involving excitotoxicity. Nonetheless, some patients (20-30%) present drug resistance. Thus, it is necessary to find chemicals able to attenuate mitochondrial dysfunction in the case of excitotoxicity. In this work, we treated the human neuroblastoma SH-SY5Y cell line with the diterpene carnosic acid (CA) at 1 μM for 12 h prior to the exposure to GLU for further 24 h. We found that CA prevented the GLU-induced mitochondrion-related redox impairment and bioenergetic decline in SH-SY5Y cells. CA also downregulated the pro-apoptotic stimulus elicited by GLU in this experimental model. CA exerted mitochondrial protection by a mechanism associated with the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since silencing of this protein with small interfering RNA (siRNA) suppressed the CA-induced protective effects. Future directions include investigating whether CA would be able to modulate mitochondrial function and/or dynamics in in vivo experimental models of excitotoxicity.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil. .,Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil.
| | - Adriane Ribeiro Duarte
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.,Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
| | - Aline Lukasievicz Chenet
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.,Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
| | - Claudia Marlise Balbinotti Andrade
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.,Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
| |
Collapse
|
9
|
Chenet AL, Duarte AR, de Almeida FJS, Andrade CMB, de Oliveira MR. Carvacrol Depends on Heme Oxygenase-1 (HO-1) to Exert Antioxidant, Anti-inflammatory, and Mitochondria-Related Protection in the Human Neuroblastoma SH-SY5Y Cells Line Exposed to Hydrogen Peroxide. Neurochem Res 2019; 44:884-896. [DOI: 10.1007/s11064-019-02724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
|
10
|
de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Inhibition of the Nrf2/HO-1 Axis Suppresses the Mitochondria-Related Protection Promoted by Gastrodin in Human Neuroblastoma Cells Exposed to Paraquat. Mol Neurobiol 2018; 56:2174-2184. [PMID: 29998398 DOI: 10.1007/s12035-018-1222-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022]
Abstract
Mitochondria are double-membrane organelles involved in the transduction of energy from different metabolic substrates into adenosine triphosphate (ATP) in mammalian cells. The oxidative phosphorylation system is comprised by the activity of the respiratory chain and the complex V (ATP synthase/ATPase). This system is dependent on oxygen gas (O2) in order to maintain a flux of electrons in the respiratory chain, since O2 is the final acceptor of these electrons. Electron leakage from this complex system leads to the continuous generation of reactive species in the cells. The mammalian cells exhibit certain mechanisms to attenuate the consequences originated from the constant exposure to these reactive species. In this context, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and one of the enzymes whose expression is modulated by Nrf2, heme oxygenase-1 (HO-1), take a central role in inducing cytoprotection in humans. Mitochondrial abnormalities are observed during intoxication and in certain diseases, including neurodegeneration. Mitochondrial protection promoted by natural compounds has attracted the attention of researchers due to the promising effects these agents induce experimentally. In this regard, we examined here whether and how gastrodin (GAS), a phenolic glucoside, would prevent the paraquat (PQ)-induced mitochondrial impairment in the SH-SY5Y cells. The cells were exposed to GAS (25 μM) for 4 h prior to the challenge with PQ at 100 μM for additional 24 h. The silencing of Nrf2 by siRNA or the inhibition of HO-1 by ZnPP IX suppressed the GAS-elicited cytoprotection. Therefore, GAS promoted mitochondrial protection by an Nrf2/HO-1-dependent manner.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, 78060-900, Brazil.
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil.
| | - Flávia de Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras, Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Cristina Ribas Fürstenau
- Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil
| |
Collapse
|
11
|
The Organization of Mitochondrial Supercomplexes is Modulated by Oxidative Stress In Vivo in Mouse Models of Mitochondrial Encephalopathy. Int J Mol Sci 2018; 19:ijms19061582. [PMID: 29861458 PMCID: PMC6032222 DOI: 10.3390/ijms19061582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
We examine the effect of oxidative stress on the stability of mitochondrial respiratory complexes and their association into supercomplexes (SCs) in the neuron-specific Rieske iron sulfur protein (RISP) and COX10 knockout (KO) mice. Previously we reported that these two models display different grades of oxidative stress in distinct brain regions. Using blue native gel electrophoresis, we observed a redistribution of the architecture of SCs in KO mice. Brain regions with moderate levels of oxidative stress (cingulate cortex of both COX10 and RISP KO and hippocampus of the RISP KO) showed a significant increase in the levels of high molecular weight (HMW) SCs. High levels of oxidative stress in the piriform cortex of the RISP KO negatively impacted the stability of CI, CIII and SCs. Treatment of the RISP KO with the mitochondrial targeted antioxidant mitoTEMPO preserved the stability of respiratory complexes and formation of SCs in the piriform cortex and increased the levels of glutathione peroxidase. These results suggest that mild to moderate levels of oxidative stress can modulate SCs into a more favorable architecture of HMW SCs to cope with rising levels of free radicals and cover the energetic needs.
Collapse
|
12
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
13
|
|
14
|
Moreno-Loshuertos R, Enríquez JA. Respiratory supercomplexes and the functional segmentation of the CoQ pool. Free Radic Biol Med 2016; 100:5-13. [PMID: 27105951 DOI: 10.1016/j.freeradbiomed.2016.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/14/2022]
Abstract
The evidence accumulated during the last fifteen years on the existence of respiratory supercomplexes and their proposed functional implications has changed our understanding of the OXPHOS system complexity and regulation. The plasticity model is a point of encounter accounting for the apparently contradictory experimental observations claimed to support either the solid or the fluid models. It allows the explanation of previous observations such as the dependence between respiratory complexes, supercomplex assembly dynamics or the existence of different functional ubiquinone pools. With the general acceptation of respiratory supercomplexes as true entities, this review evaluates the supporting evidences in favor or against the existence of different ubiquinone pools and the relationship between supercomplexes, ROS production and pathology.
Collapse
Affiliation(s)
- Raquel Moreno-Loshuertos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza 50009, Spain
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza 50009, Spain.
| |
Collapse
|
15
|
Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease. Biosci Rep 2016; 36:BSR20150295. [PMID: 26839416 PMCID: PMC4793296 DOI: 10.1042/bsr20150295] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/02/2016] [Indexed: 12/20/2022] Open
Abstract
Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis.
Collapse
|
16
|
Tong L, Chuang CC, Wu S, Zuo L. Reactive oxygen species in redox cancer therapy. Cancer Lett 2015; 367:18-25. [DOI: 10.1016/j.canlet.2015.07.008] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 12/21/2022]
|
17
|
Wang Y, Hekimi S. Mitochondrial respiration without ubiquinone biosynthesis. Hum Mol Genet 2013; 22:4768-83. [PMID: 23847050 DOI: 10.1093/hmg/ddt330] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ubiquinone (UQ), a.k.a. coenzyme Q, is a redox-active lipid that participates in several cellular processes, in particular mitochondrial electron transport. Primary UQ deficiency is a rare but severely debilitating condition. Mclk1 (a.k.a. Coq7) encodes a conserved mitochondrial enzyme that is necessary for UQ biosynthesis. We engineered conditional Mclk1 knockout models to study pathogenic effects of UQ deficiency and to assess potential therapeutic agents for the treatment of UQ deficiencies. We found that Mclk1 knockout cells are viable in the total absence of UQ. The UQ biosynthetic precursor DMQ9 accumulates in these cells and can sustain mitochondrial respiration, albeit inefficiently. We demonstrated that efficient rescue of the respiratory deficiency in UQ-deficient cells by UQ analogues is side chain length dependent, and that classical UQ analogues with alkyl side chains such as idebenone and decylUQ are inefficient in comparison with analogues with isoprenoid side chains. Furthermore, Vitamin K2, which has an isoprenoid side chain, and has been proposed to be a mitochondrial electron carrier, had no efficacy on UQ-deficient mouse cells. In our model with liver-specific loss of Mclk1, a large depletion of UQ in hepatocytes caused only a mild impairment of respiratory chain function and no gross abnormalities. In conjunction with previous findings, this surprisingly small effect of UQ depletion indicates a nonlinear dependence of mitochondrial respiratory capacity on UQ content. With this model, we also showed that diet-derived UQ10 is able to functionally rescue the electron transport deficit due to severe endogenous UQ deficiency in the liver, an organ capable of absorbing exogenous UQ.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada H3A 1B1
| | | |
Collapse
|
18
|
Magalhães J, Fraga M, Lumini-Oliveira J, Gonçalves I, Costa M, Ferreira R, Oliveira PJ, Ascensão A. Eccentric exercise transiently affects mice skeletal muscle mitochondrial function. Appl Physiol Nutr Metab 2013; 38:401-9. [DOI: 10.1139/apnm-2012-0226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eccentric exercise (EE) is known to induce damage and dysfunction in skeletal muscle. However, the possible role of mitochondrial (dys)function, including the vulnerability to mitochondrial permeability transition pore (MPTP) opening, is unclear. Therefore, this study aimed to analyze the impact of a single acute bout of downhill running on skeletal muscle mitochondrial function. Thirty 12-week-old Charles River CD1 male mice were randomly assigned into control (C) or exercised groups. EE consisted of 120 min of downhill treadmill running at a –16° gradient. Exercised animals were sacrificed immediately (Ecc0h) and 48 h (Ecc48h) after the end of the running bout. Plasma and skeletal muscles were then obtained. Muscle mitochondrial function, including oxygen consumption prior to and after anoxia and reoxygenation, membrane potential, and MPTP opening, were evaluated. Respiratory chain complexI, II, and V activities were determined. EE significantly increased plasma creatine kinase activity (119.4 ± 5.6 vs. 1061.3 ± 46.3 vs. 256.8 ± 15.3 U·L–1, C, Ecc0h and Ecc48h, respectively) and myoglobin and interleukin-6 content. Impaired state 3 and respiratory control ratio (8.4 ± 0.4 vs. 5.6 ± 0.9 vs. 8.4 ± 0.5, C, Ecc0h and Ecc48h, respectively), as well as increased susceptibility to MPTP opening, seen by cyclosporin A-sensitive high swelling amplitude, lower time to maximal swelling velocity (313.8 ± 17.7 vs. 244.5 ± 19.4 vs. 298.5 ± 8.7 s, C, Ecc0h and Ecc48h, respectively), and calcium release immediately after the end of exercise (C vs. Ecc0h) were observed. EE induced a transient impairment in the activity of complex V (C vs. Ecc0h). No significant changes from the C group were observed 48 h after the end of EE (C vs. Ecc48h) in any analyzed parameters. In conclusion, prolonged EE transiently impaired mice skeletal muscle mitochondrial function and increased susceptibility to calcium-induced MPTP opening.
Collapse
Affiliation(s)
- José Magalhães
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Marta Fraga
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - José Lumini-Oliveira
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Inês Gonçalves
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| | - Manoel Costa
- School of Sport, University of Pernambuco, Recife, Brasil
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Portugal
| | - Paulo J. Oliveira
- CNC – Center for Neuroscience and Cellular Biology, Department of Life Sciences, University of Coimbra, Portugal
| | - António Ascensão
- Research Center in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Rua Dr. Plácido Costa, 91, 4200-450 Porto, Portugal
| |
Collapse
|
19
|
Pujol C, Bratic-Hench I, Sumakovic M, Hench J, Mourier A, Baumann L, Pavlenko V, Trifunovic A. Succinate dehydrogenase upregulation destabilize complex I and limits the lifespan of gas-1 mutant. PLoS One 2013; 8:e59493. [PMID: 23555681 PMCID: PMC3610896 DOI: 10.1371/journal.pone.0059493] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
Abstract
Many Caenorhabditis elegans mutants with dysfunctional mitochondrial electron transport chain are surprisingly long lived. Both short-lived (gas-1(fc21)) and long-lived (nuo-6(qm200)) mutants of mitochondrial complex I have been identified. However, it is not clear what are the pathways determining the difference in longevity. We show that even in a short-lived gas-1(fc21) mutant, many longevity assurance pathways, shown to be important for lifespan prolongation in long-lived mutants, are active. Beside similar dependence on alternative metabolic pathways, short-lived gas-1(fc21) mutants and long-lived nuo-6(qm200) mutants also activate hypoxia-inducible factor –1α (HIF-1α) stress pathway and mitochondrial unfolded protein response (UPRmt). The major difference that we detected between mutants of different longevity, is in the massive loss of complex I accompanied by upregulation of complex II levels, only in short-lived, gas-1(fc21) mutant. We show that high levels of complex II negatively regulate longevity in gas-1(fc21) mutant by decreasing the stability of complex I. Furthermore, our results demonstrate that increase in complex I stability, improves mitochondrial function and decreases mitochondrial stress, putting it inside a “window” of mitochondrial dysfunction that allows lifespan prolongation.
Collapse
Affiliation(s)
- Claire Pujol
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
| | - Ivana Bratic-Hench
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marija Sumakovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
| | - Jürgen Hench
- Department of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Arnaud Mourier
- Max Planck Institute for Biology of Aging, Cologne, Germany
| | - Linda Baumann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
| | - Victor Pavlenko
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne University, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
20
|
Abstract
Ubiquinone (UQ), also known as coenzyme Q (CoQ), is a redox-active lipid present in all cellular membranes where it functions in a variety of cellular processes. The best known functions of UQ are to act as a mobile electron carrier in the mitochondrial respiratory chain and to serve as a lipid soluble antioxidant in cellular membranes. All eukaryotic cells synthesize their own UQ. Most of the current knowledge on the UQ biosynthetic pathway was obtained by studying Escherichia coli and Saccharomyces cerevisiae UQ-deficient mutants. The orthologues of all the genes known from yeast studies to be involved in UQ biosynthesis have subsequently been found in higher organisms. Animal mutants with different genetic defects in UQ biosynthesis display very different phenotypes, despite the fact that in all these mutants the same biosynthetic pathway is affected. This review summarizes the present knowledge of the eukaryotic biosynthesis of UQ, with focus on the biosynthetic genes identified in animals, including Caenorhabditis elegans, rodents, and humans. Moreover, we review the phenotypes of mutants in these genes and discuss the functional consequences of UQ deficiency in general.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | | |
Collapse
|
21
|
Gambino R, Musso G, Cassader M. Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities. Antioxid Redox Signal 2011; 15:1325-65. [PMID: 20969475 DOI: 10.1089/ars.2009.3058] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease in the world. It encompasses a histological spectrum, ranging from simple, nonprogressive steatosis to nonalcoholic steatohepatitis (NASH), which may progress to cirrhosis and hepatocellular carcinoma. While liver-related complications are confined to NASH, emerging evidence suggests both simple steatosis and NASH predispose to type 2 diabetes and cardiovascular disease. The pathogenesis of NAFLD is currently unknown, but accumulating data suggest that oxidative stress and altered redox balance play a crucial role in the pathogenesis of steatosis, steatohepatitis, and fibrosis. We will examine intracellular mechanisms, including mitochondrial dysfunction and impaired oxidative free fatty acid metabolism, leading to reactive oxygen species generation; additionally, the potential pathogenetic role of extracellular sources of reactive oxygen species in NAFLD, including increased myeloperoxidase activity and oxidized low density lipoprotein accumulation, will be reviewed. We will discuss how these mechanisms converge to determine the whole pathophysiological spectrum of NAFLD, including hepatocyte triglyceride accumulation, hepatocyte apoptosis, hepatic inflammation, hepatic stellate cell activation, and fibrogenesis. Finally, available animal and human data on treatment opportunities with older and newer antioxidant will be presented.
Collapse
Affiliation(s)
- Roberto Gambino
- Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | |
Collapse
|
22
|
Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, Galinier A, Casteilla L, Leverve XM. Effects of a high-fat diet on energy metabolism and ROS production in rat liver. J Hepatol 2011; 54:348-56. [PMID: 21109325 DOI: 10.1016/j.jhep.2010.06.044] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. METHODS We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. RESULTS Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative phosphorylation stoichiometry was unaffected, as were ATPase and adenine nucleotide translocator proteins and mRNAs. Mitochondrial acylcarnitine-related H(2)O(2) production was substantially higher and the mitochondrial quinone pool was smaller and more reduced. Cellular consequences of these mitochondrial alterations were investigated in perifused, freshly isolated hepatocytes. Ketogenesis and fatty acid-dependent respiration were lower, indicating a lower β-oxidation rate contrasting with higher RNA contents of CD36, FABP, CPT-1, and AcylCoA dehydrogenases. Concomitantly, the cellular redox state was more reduced in the mitochondrial matrix but more oxidized in the cytosol: these opposing changes are in agreement with a significantly higher in situ mitochondrial proton motive force. CONCLUSIONS A high-fat diet results in both a decrease in mitochondrial quinone pool and a profound modification in mitochondrial lipid composition. These changes appear to play a key role in the resulting inhibition of fatty acid oxidation and of mitochondrial oxidative-phosphorylation associated with an increased mitochondrial ROS production. Mitochondrial quinone pool could have prospects as a crucial event, potentially leading to interesting therapeutic perspectives.
Collapse
|
23
|
Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog Lipid Res 2010; 49:407-19. [DOI: 10.1016/j.plipres.2010.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 04/30/2010] [Indexed: 12/22/2022]
|
24
|
Bao D, Ramu S, Contreras A, Upadhyayula S, Vasquez JM, Beran G, Vullev VI. Electrochemical Reduction of Quinones: Interfacing Experiment and Theory for Defining Effective Radii of Redox Moieties. J Phys Chem B 2010; 114:14467-79. [DOI: 10.1021/jp101730e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Duoduo Bao
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Sangeetha Ramu
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Antonio Contreras
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Srigokul Upadhyayula
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Jacob M. Vasquez
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Gregory Beran
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
25
|
Helbig AO, de Groot MJL, van Gestel RA, Mohammed S, de Hulster EAF, Luttik MAH, Daran-Lapujade P, Pronk JT, Heck AJR, Slijper M. A three-way proteomics strategy allows differential analysis of yeast mitochondrial membrane protein complexes under anaerobic and aerobic conditions. Proteomics 2010; 9:4787-98. [PMID: 19750512 DOI: 10.1002/pmic.200800951] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the effect of anaerobiosis on the Saccharomyces cerevisiae mitochondrial proteome and the formation of respiratory chain and other protein complexes, we analyzed mitochondrial protein extracts that were enriched from lysates of aerobic and anaerobic steady-state chemostat cultures. We chose an innovative approach in which native mitochondrial membrane protein complexes were separated by 1-D blue native PAGE, which was combined with quantitative analysis of each complex subunit using stable isotope labeling. LC-FT(ICR)-MS/MS analysis was applied to identify and quantify the mitochondrial proteins. In addition, to establish if changes in mitochondrial complex composition occurred under anaerobiosis, we investigated the 1-D blue native PAGE protein migration patterns by Pearson correlation analysis. Surprisingly, we discovered that under anaerobic conditions, where the yeast respiratory chain is not active, the respiratory chain supercomplexes, such as complex V dimer, complex (III)(2)(IV)(2) and complex (III)(2)(IV) were still present, although at reduced levels. Pearson correlation analysis showed that the composition of the mitochondrial complexes was unchanged under aerobic or anaerobic conditions, with the exception of complex II. In addition, this latter approach allowed screening for possible novel complex interaction partners, since for example protein Aim38p, with a yet unknown function, was identified as a possible component of respiratory chain complex IV.
Collapse
Affiliation(s)
- Andreas O Helbig
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The fundamental role of coenzyme Q(10) (CoQ(10)) in mitochondrial bioenergetics and its well-acknowledged antioxidant properties constitute the basis for its clinical applications, although some of its effects may be related to a gene induction mechanism. Cardiovascular disease is still the main field of study and the latest findings confirm a role of CoQ(10) in improving endothelial function. The possible relation between CoQ(10) deficiency and statin side effects is highly debated, particularly the key issue of whether CoQ(10) supplementation counteracts statin myalgias. Furthermore, in cardiac patients, plasma CoQ(10) was found to be an independent predictor of mortality. Studies on CoQ(10) and physical exercise have confirmed its effect in improving subjective fatigue sensation and physical performance and in opposing exercise-related damage. In the field of mitochondrial myopathies, primary CoQ(10) deficiencies have been identified, involving different genes of the CoQ(10) biosynthetic pathway; some of these conditions were found to be highly responsive to CoQ(10) administration. The initial observations of CoQ(10) effects in Parkinson's and Huntington's diseases have been extended to Friedreich's ataxia, where CoQ(10) and other quinones have been tested. CoQ(10) is presently being used in a large phase III trial in Parkinson's disease. CoQ(10) has been found to improve sperm count and motility on asthenozoospermia. Moreover, for the first time CoQ(10) was found to decrease the incidence of preeclampsia in pregnancy. The ability of CoQ(10) to mitigate headache symptoms in adults was also verified in pediatric and adolescent populations.
Collapse
|
27
|
Wong R, Aponte AM, Steenbergen C, Murphy E. Cardioprotection leads to novel changes in the mitochondrial proteome. Am J Physiol Heart Circ Physiol 2009; 298:H75-91. [PMID: 19855063 DOI: 10.1152/ajpheart.00515.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is proposed that ischemic preconditioning (PC) initiates signaling that converges on mitochondria and results in cardioprotection. The outcome of this signaling on mitochondrial enzyme complexes is yet to be understood. We therefore used proteomic methods to test the hypothesis that PC and pharmacological preconditioning similarly alter mitochondrial signaling complexes. Langendorff-perfused murine hearts were treated with the specific GSK-3 inhibitor AR-A014418 (GSK Inhib VIII) for 10 min or subjected to four cycles of 5-min ischemia-reperfusion (PC) before 20-min global ischemia and 120-min reperfusion. PC and GSK Inhib VIII both improved recovery of postischemic left ventricular developed pressure, decreased infarct size, and reduced lactate production during ischemia compared with their time-matched controls. We used proteomics to examine mitochondrial protein levels/posttranslational modifications that were common between PC and GSK Inhib VIII. Levels of cytochrome-c oxidase subunits Va and VIb, ATP synthase-coupling factor 6, and cytochrome b-c1 complex subunit 6 were increased while cytochrome c was decreased with PC and GSK Inhib VIII. Furthermore, the amount of cytochrome-c oxidase subunit VIb was found to be increased in PC and GSK Inhib VIII mitochondrial supercomplexes, which are comprised of complexes I, III, and IV. This result would suggest that changes in complex subunits associated with cardioprotection may affect supercomplex composition. Thus the ability of PC and GSK inhibition to alter the expression levels of electron transport complexes will have important implications for mitochondrial function.
Collapse
Affiliation(s)
- Renee Wong
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
28
|
Benard G, Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 2008; 10:1313-42. [PMID: 18435594 DOI: 10.1089/ars.2007.2000] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The recently ascertained network and dynamic organization of the mitochondrion, as well as the demonstration of energy proteins and metabolites subcompartmentalization, have led to a reconsideration of the relationships between organellar form and function. In particular, the impact of mitochondrial morphological changes on bioenergetics is inseparable. Several observations indicate that mitochondrial energy production may be controlled by structural rearrangements of the organelle both interiorly and globally, including the remodeling of cristae morphology and elongation or fragmentation of the tubular network organization, respectively. These changes are mediated by fusion or fission reactions in response to physiological signals that remain unidentified. They lead to important changes in the internal diffusion of energy metabolites, the sequestration and conduction of the electric membrane potential (Delta Psi), and possibly the delivery of newly synthesized ATP to various cellular areas. Moreover, the physiological or even pathological context also determines the morphology of the mitochondrion, suggesting a tight and mutual control between mitochondrial form and bioenergetics. In this review, we delve into the link between mitochondrial structure and energy metabolism.
Collapse
|
29
|
Lipids in the assembly of membrane proteins and organization of protein supercomplexes: implications for lipid-linked disorders. Subcell Biochem 2008; 49:197-239. [PMID: 18751913 DOI: 10.1007/978-1-4020-8831-5_8] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids play important roles in cellular dysfunction leading to disease. Although a major role for phospholipids is in defining the membrane permeability barrier, phospholipids play a central role in a diverse range of cellular processes and therefore are important factors in cellular dysfunction and disease. This review is focused on the role of phospholipids in normal assembly and organization of the membrane proteins, multimeric protein complexes, and higher order supercomplexes. Since lipids have no catalytic activity, it is difficult to determine their function at the molecular level. Lipid function has generally been defined by affects on protein function or cellular processes. Molecular details derived from genetic, biochemical, and structural approaches are presented for involvement of phosphatidylethanolamine and cardiolipin in protein organization. Experimental evidence is presented that changes in phosphatidylethanolamine levels results in misfolding and topological misorientation of membrane proteins leading to dysfunctional proteins. Examples are presented for diseases in which proper protein folding or topological organization is not attained due to either demonstrated or proposed involvement of a lipid. Similar changes in cardiolipin levels affects the structure and function of individual components of the mitochondrial electron transport chain and their organization into supercomplexes resulting in reduced mitochondrial oxidative phosphorylation efficiency and apoptosis. Diseases in which mitochondrial dysfunction has been linked to reduced cardiolipin levels are described. Therefore, understanding the principles governing lipid-dependent assembly and organization of membrane proteins and protein complexes will be useful in developing novel therapeutic approaches for disorders in which lipids play an important role.
Collapse
|
30
|
Regulation of mitochondrial oxidative phosphorylation through cell signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1701-20. [DOI: 10.1016/j.bbamcr.2007.10.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
31
|
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 2007; 37:31-7. [PMID: 17914161 DOI: 10.1007/s12033-007-0052-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/31/2022]
Abstract
For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.
Collapse
Affiliation(s)
- Gian Paolo Littarru
- Institute of Biochemistry, Polytechnic University of the Marche, Via Ranieri, Ancona 60131, Italy.
| | | |
Collapse
|