1
|
Joshi SM, Jadavji NM. Deficiencies in one-carbon metabolism led to increased neurological disease risk and worse outcome: homocysteine is a marker of disease state. Front Nutr 2024; 11:1285502. [PMID: 38450239 PMCID: PMC10915003 DOI: 10.3389/fnut.2024.1285502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Elevated plasma homocysteine levels have been identified as a significant, independent risk factor for the development of cognitive decline including Alzheimer's disease. While several studies have explored the link between homocysteine and disease risk, the associations have not been entirely clear. Elevated levels of homocysteine serve as a disease marker and understanding the underlying cause of these increased levels (e.g., dietary or genetic deficiency in one-carbon metabolism, 1C) will provide valuable insights into neurological disease risk and outcomes. Previous cell culture experiments investigating the mechanisms involved used ultra-high levels of homocysteine that are not observed in human patients. These studies have demonstrated the negative impacts of ultra-high levels of homocysteine can have on for example proliferation of neuroprogenitor cells in the adult hippocampus, as well as triggering neuronal apoptosis through a series of events, including DNA damage, PARP activation, NAD depletion, mitochondrial dysfunction, and oxidative stress. The aim of this mini-review article will summarize the literature on deficiencies in 1C and how they contribute to disease risk and outcomes and that homocysteine is a marker of disease.
Collapse
Affiliation(s)
- Sanika M. Joshi
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, United States
| | - Nafisa M. Jadavji
- College of Osteopathic Medicine, Midwestern University, Glendale, AZ, United States
- Department of Biomedical Sciences, Midwestern University, Glendale, AZ, United States
- Department of Child Health, College of Medicine – Phoenix, University of Arizona, Phoenix, AZ, United States
- College of Veterinary Medicine, Midwestern University, Glendale, AZ, United States
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
2
|
Corona-Trejo A, Gonsebatt ME, Trejo-Solis C, Campos-Peña V, Quintas-Granados LI, Villegas-Vázquez EY, Daniel Reyes-Hernández O, Hernández-Abad VJ, Figueroa-González G, Silva-Adaya D. Transsulfuration pathway: a targeting neuromodulator in Parkinson's disease. Rev Neurosci 2023; 34:915-932. [PMID: 37409540 DOI: 10.1515/revneuro-2023-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
The transsulfuration pathway (TSP) is a metabolic pathway involving sulfur transfer from homocysteine to cysteine. Transsulfuration pathway leads to many sulfur metabolites, principally glutathione, H2S, taurine, and cysteine. Key enzymes of the TSP, such as cystathionine β-synthase and cystathionine γ-lyase, are essential regulators at multiple levels in this pathway. TSP metabolites are implicated in many physiological processes in the central nervous system and other tissues. TSP is important in controlling sulfur balance and optimal cellular functions such as glutathione synthesis. Alterations in the TSP and related pathways (transmethylation and remethylation) are altered in several neurodegenerative diseases, including Parkinson's disease, suggesting their participation in the pathophysiology and progression of these diseases. In Parkinson's disease many cellular processes are comprised mainly those that regulate redox homeostasis, inflammation, reticulum endoplasmic stress, mitochondrial function, oxidative stress, and sulfur content metabolites of TSP are involved in these damage processes. Current research on the transsulfuration pathway in Parkinson's disease has primarily focused on the synthesis and function of certain metabolites, particularly glutathione. However, our understanding of the regulation of other metabolites of the transsulfuration pathway, as well as their relationships with other metabolites, and their synthesis regulation in Parkinson´s disease remain limited. Thus, this paper highlights the importance of studying the molecular dynamics in different metabolites and enzymes that affect the transsulfuration in Parkinson's disease.
Collapse
Affiliation(s)
- Andrea Corona-Trejo
- Carrera de Biología, Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Cristina Trejo-Solis
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| | | | - Edgar Yebrán Villegas-Vázquez
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico
| | - Vicente Jesús Hernández-Abad
- Laboratorio de Investigación Farmacéutica, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla de 5 de mayo s/n, Col, Ejército de Oriente, 09230 Mexico City, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Mexico City, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Mexico, 14269, Mexico
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, Batiha GES. Parkinson's Disease Risk and Hyperhomocysteinemia: The Possible Link. Cell Mol Neurobiol 2023; 43:2743-2759. [PMID: 37074484 PMCID: PMC10333143 DOI: 10.1007/s10571-023-01350-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/09/2023] [Indexed: 04/20/2023]
Abstract
Parkinson's disease (PD) is one of the most common degenerative brain disorders caused by the loss of dopaminergic neurons in the substantia nigra (SN). Lewy bodies and -synuclein accumulation in the SN are hallmarks of the neuropathology of PD. Due to lifestyle changes and prolonged L-dopa administration, patients with PD frequently have vitamin deficiencies, especially folate, vitamin B6, and vitamin B12. These disorders augment circulating levels of Homocysteine with the development of hyperhomocysteinemia, which may contribute to the pathogenesis of PD. Therefore, this review aimed to ascertain if hyperhomocysteinemia may play a part in oxidative and inflammatory signaling pathways that contribute to PD development. Hyperhomocysteinemia is implicated in the pathogenesis of neurodegenerative disorders, including PD. Hyperhomocysteinemia triggers the development and progression of PD by different mechanisms, including oxidative stress, mitochondrial dysfunction, apoptosis, and endothelial dysfunction. Particularly, the progression of PD is linked with high inflammatory changes and systemic inflammatory disorders. Hyperhomocysteinemia induces immune activation and oxidative stress. In turn, activated immune response promotes the development and progression of hyperhomocysteinemia. Therefore, hyperhomocysteinemia-induced immunoinflammatory disorders and abnormal immune response may aggravate abnormal immunoinflammatory in PD, leading to more progression of PD severity. Also, inflammatory signaling pathways like nuclear factor kappa B (NF-κB) and nod-like receptor pyrin 3 (NLRP3) inflammasome and other signaling pathways are intricate in the pathogenesis of PD. In conclusion, hyperhomocysteinemia is involved in the development and progression of PD neuropathology either directly via induction degeneration of dopaminergic neurons or indirectly via activation of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
- Faculty of Veterinary medicine , Hokkaido University, Sapporo, Japan.
| | - Mahmoud Hosny Zahran
- Internal Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira, 22511, Egypt.
| |
Collapse
|
4
|
Fan X, Zhang L, Li H, Chen G, Qi G, Ma X, Jin Y. Role of homocysteine in the development and progression of Parkinson's disease. Ann Clin Transl Neurol 2020; 7:2332-2338. [PMID: 33085841 PMCID: PMC7664283 DOI: 10.1002/acn3.51227] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
Homocysteine is an essential intermediate product of biochemical reactions that is present in various tissues of the human body. Homocysteine may be associated with the development and progression of Parkinson's disease. Plasma homocysteine levels in patients with Parkinson's disease are elevated compared to those of healthy individuals. High homocysteine drives PD development and progression while aggregating the clinical symptoms of PD patients. The relationship between PD and homocysteine involves multiple pathways, including nerve cell apoptosis, oxidative stress, and DNA damage. This is crucial for explaining how high homocysteine drives the PD procession. Elevated homocysteine level during PD development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Lixia Zhang
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Haijun Li
- Department of NeurologyTaizhou Second People’s HospitalTaizhouChina
| | - Guang Chen
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
| | - Gangqiao Qi
- Department of Sleep Medicine CenterTaizhou Second People’s HospitalTaizhouChina
| | - Xueqiang Ma
- Department of Respiratory MedicineMunicipal Hospital Affiliated to Medical School of Taizhou UniversityTaizhouChina
| | - Yuelei Jin
- Department of Basic Medical SciencesTaizhou UniversityTaizhouChina
| |
Collapse
|
5
|
Marcelino H, Nogueira VC, Santos CRA, Quelhas P, Carvalho TMA, Fonseca-Gomes J, Tomás J, Diógenes MJ, Sebastião AM, Cascalheira JF. Adenosine inhibits human astrocyte proliferation independently of adenosine receptor activation. J Neurochem 2019; 153:455-467. [PMID: 31811731 DOI: 10.1111/jnc.14937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
Brain adenosine concentrations can reach micromolar concentrations in stressful situations such as stroke, neurodegenerative diseases or hypoxic regions of brain tumours. Adenosine can act by receptor-independent mechanism by reversing the reaction catalysed by S-adenosylhomocysteine (SAH) hydrolase, leading to SAH accumulation and inhibition of S-adenosylmethionine (SAM)-dependent methyltransferases. Astrocytes are essential in maintaining brain homeostasis but their pathological activation and uncontrolled proliferation plays a role in neurodegeneration and glioma. Adenosine can affect cell proliferation, but the effect of increased adenosine concentration on proliferation of astrocytes is not clarified and was addressed in present work. Human astrocytes (HA) were treated for 3 days with test drugs. Cell proliferation/viability was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay and by cell counting. Cell death was evaluated by assessing lactate dehydrogenase release and by western blot analysis of αII-Spectrin cleavage. 30 µM-Adenosine caused a 40% ± 3% (p < .05, n = 5) reduction in cell proliferation/viability, an effect reversed by 2U/ml-adenosine deaminase, but unchanged in the presence of antagonists of any of the adenosine receptors. Adenosine alone did not induce cell death. 100 µM-Homocysteine alone caused 16% ± 3% (p < .05) decrease in HA proliferation. Combined action of adenosine and homocysteine decreased HA proliferation by 76% ± 4%, an effect higher (p < .05) than the sum of the effects of adenosine and homocysteine alone (56% ± 5%). The inhibitory effect of adenosine on HA proliferation/viability was mimicked by two adenosine kinase inhibitors and attenuated in the presence of folate (100 µM) or SAM (50-100 µM). The results suggest that adenosine reduces HA proliferation by a receptor-independent mechanism probably involving reversal of SAH hydrolase-catalysed reaction.
Collapse
Affiliation(s)
- Helena Marcelino
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| | - Vanda C Nogueira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Cecília R A Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Quelhas
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - João Fonseca-Gomes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Maria J Diógenes
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisboa, Portugal.,Institute of Molecular Medicine, University of Lisbon, Lisboa, Portugal
| | - José F Cascalheira
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,Department of Chemistry, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
7
|
Kumar M, Ray RS, Sandhir R. Hydrogen sulfide attenuates homocysteine-induced neurotoxicity by preventing mitochondrial dysfunctions and oxidative damage: In vitro and in vivo studies. Neurochem Int 2018; 120:87-98. [PMID: 30055195 DOI: 10.1016/j.neuint.2018.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Elevated homocysteine (Hcy) levels have been implicated in neurodevelopmental and neurodegenerative disorders. Induction of oxidative stress and apoptosis has been reported as major mechanism in Hcy-induced neurotoxicity. Hydrogen sulfide (H2S), as an antioxidant molecule has been reported to exhibit novel protective effect against Hcy-induced cell damage. However, the mechanisms involved in protective effect of H2S against Hcy-induced toxicity in neurons have not been fully elucidated. Herein, effect of sodium hydrogen sulfide (NaHS, a source of H2S) on Hcy-induced neurotoxicity was studied on Neuro-2a (N2a) cells in vitro and in animals subjected to hyperhomocysteinemia. DCFH-DA staining revealed that NaHS effectively attenuated Hcy-induced oxidative damage by reducing intracellular reactive oxygen species (ROS) generation. JC-1 staining and western blot results showed that NaHS pre-treatment prevented Hcy-induced mitochondrial dysfunctions and mitochondria-mediated apoptosis. MTT assay, cell cycle analysis, ethidium bromide/acridine orange (EB/AO) and Hoechst staining results demonstrated that NaHS significantly alleviated Hcy-induced cytotoxicity in N2a cells by preventing oxidative damage. Importantly, the results from agarose gel electrophoresis, comet and TUNEL assay indicated that NaHS also prevented neurodegeneration by reducing DNA damage and apoptotic cell death in animals with hyperhomocysteinemia. Taken together, the results demonstrate that the protective potential of H2S against Hcy-induced neurotoxicity is mediated by preventing oxidative DNA damage and mitochondrial dysfunctions. The findings validate that H2S is a promising therapeutic molecule in neurodegenerative conditions associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Ratan Singh Ray
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Övey İS, Naziroğlu M. Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 2014; 284:225-233. [PMID: 25305668 DOI: 10.1016/j.neuroscience.2014.09.078] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 11/15/2022]
Abstract
Oxidative stress and apoptosis were induced in neuronal cultures by inhibition of glutathione (GSH) biosynthesis with d,l-buthionine-S,R-sulfoximine (BSO). Transient receptor potential melastatin 2 (TRPM2) and transient receptor potential vanilloid 1 (TRPV1) cation channels are gated by oxidative stress. The oxidant effects of homocysteine (Hcy) may induce activation of TRPV1 and TRPM2 channels in aged mice as a model of Alzheimer's disease (AD). We tested the effects of Hcy, BSO and GSH on oxidative stress, apoptosis and Ca2+ and influx via TRPM2 and TRPV1 channels in the hippocampus of mice. Native mice hippocampal neurons were divided into five groups as follows; control, Hcy, BSO, Hcy+BSO and Hcy+BSO+GSH groups. The neurons in TRPM2 and TRPV1 experiments were stimulated by hydrogen peroxide and capsaicin, respectively. BSO and Hcy incubations increased intracellular free Ca2+ concentrations, reactive oxygen species, apoptosis, mitochondrial depolarization, and levels of caspase 3 and 9. All of these increases were reduced by GSH treatments. Treatment with 2-aminoethoxydiphenyl borate (2-APB) and N-(p-amylcinnamoyl)anthranilic acid (ACA) as potent inhibitors of TRPM2, capsazepine as a potent inhibitor of TRPV1, verapamil+diltiazem (V+D) as inhibitors of the voltage-gated Ca2+ channels (VGCC) and MK-801 as a N-methyl-d-aspartate (NMDA) channel antagonist indicated that GSH depletion and Hcy elevation activated Ca2+ entry into the neurons through TRPM2, TRPV1, VGCC and NMDA channels. Inhibitor roles of 2-APB and capsazepine on the Ca2+ entry higher than in V+D and MK-801 antagonists. In conclusion, these findings support the idea that GSH depletion and Hcy elevation can have damaging effects on hippocampal neurons by perturbing calcium homeostasis, mainly through TRPM2 and TRPV1 channels. GSH treatment can partially reverse these effects.
Collapse
Affiliation(s)
- İ S Övey
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey
| | - M Naziroğlu
- Department of Biophysics, Faculty of Medicine, University of Suleyman Demirel, Isparta, Turkey; Neuroscience Research Center, University of Suleyman Demirel, Isparta, Turkey.
| |
Collapse
|
9
|
Li Z, Hu H, Lin R, Mao J, Zhu X, Hong Z, Tao J, Zhang Y, Chen L. Neuroprotective effects of Gua Lou Gui Zhi decoction against glutamate-induced apoptosis in BV-2 cells. Int J Mol Med 2013; 33:597-604. [PMID: 24378639 DOI: 10.3892/ijmm.2013.1612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/19/2013] [Indexed: 11/06/2022] Open
Abstract
Gua Lou Gui Zhi decoction (GLGZD), a traditional Chinese medicine consisting of different herbal medicines, has been used for centuries in the treatment of muscular spasticity following stroke, epilepsy or spinal cord injury. However, the precise mechanisms involved remain poorly understood. In the present study, we investigated the neuroprotective effects of GLGZD on glutamate-induced apoptosis in cultured BV-2 cells, as well as the underlying mechanisms. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to assess the viability of the cells. An Annexin V/propidium iodide (PI) assay was utilized to analyze cellular apoptosis. Mitochondrial membrane potential (MMP) was evaluated by flow cytometry and laser scanning confocal microscopy. The gene and protein expression of the apoptosis-related genes, Bcl-2 and Bax, was analyzed by RT-PCR and western blot analysis, respectively. Furthermore, the expression of cleaved caspase-3 protein was detected by immunofluorescence. Glutamate treatment induced the loss of BV-2 cell viability, which was associated with an increase in the apoptotic rate, as well as an increase in the Bax/Bcl-2 ratio and the extracellular levels of cleaved caspase-3. Treatment with GLGZD significantly reversed these phenotypes, with its maximum protective effects observed at the concentration of 1,000 µg/ml. These results indicate that GLGZD protects BV-2 cells from glutamate-induced cytotoxicity. These protective effects may be ascribed to its anti-apoptotic activities, in part, associated with the decrease in the Bax/Bcl-2 ratio and caspase-3 expression, as well as with the stability of high mitochondrial membrane potential.
Collapse
Affiliation(s)
- Zuanfang Li
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Haixia Hu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ruhui Lin
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jingjie Mao
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Xiaoqin Zhu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Zhenfeng Hong
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Yun Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
10
|
S-Adenosylhomocysteine induces apoptosis and phosphatidylserine exposure in endothelial cells independent of homocysteine. Atherosclerosis 2012; 221:48-54. [DOI: 10.1016/j.atherosclerosis.2011.11.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 11/09/2011] [Accepted: 11/22/2011] [Indexed: 11/23/2022]
|
11
|
Kumar A, John L, Maity S, Manchanda M, Sharma A, Saini N, Chakraborty K, Sengupta S. Converging evidence of mitochondrial dysfunction in a yeast model of homocysteine metabolism imbalance. J Biol Chem 2011; 286:21779-95. [PMID: 21504896 DOI: 10.1074/jbc.m111.228072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An elevated level of homocysteine, a thiol amino acid, is associated with various complex disorders. The cellular effects of homocysteine and its precursors S-adenosylhomocysteine (AdoHcy) and S-adenosylmethionine (AdoMet) are, however, poorly understood. We used Saccharomyces cerevisiae as a model to understand the basis of pathogenicity induced by homocysteine and its precursors. Both homocysteine and AdoHcy but not AdoMet inhibited the growth of the str4Δ strain (which lacks the enzyme that converts homocysteine to cystathionine-mimicking vascular cells). Addition of AdoMet abrogated the inhibitory effect of AdoHcy but not that of homocysteine indicating that an increase in the AdoMet/AdoHcy ratio is sufficient to overcome the AdoHcy-mediated growth defect but not that of homocysteine. Also, the transcriptomic profile of AdoHcy and homocysteine showed gross dissimilarity based on gene enrichment analysis. Furthermore, compared with homocysteine, AdoHcy treatment caused a higher level of oxidative stress in the cells. However, unlike a previously reported response in wild type (Kumar, A., John, L., Alam, M. M., Gupta, A., Sharma, G., Pillai, B., and Sengupta, S. (2006) Biochem. J. 396, 61-69), the str4Δ strain did not exhibit an endoplasmic reticulum stress response. This suggests that homocysteine induces varied response depending on the flux of homocysteine metabolism. We also observed altered expression of mitochondrial genes, defective membrane potential, and fragmentation of the mitochondrial network together with the increased expression of fission genes indicating that the imbalance in homocysteine metabolism has a major effect on mitochondrial functions. Furthermore, treatment of cells with homocysteine or AdoHcy resulted in apoptosis as revealed by annexin V staining and TUNEL assay. Cumulatively, our results suggest that elevated levels of homocysteine lead to mitochondrial dysfunction, which could potentially initiate pro-apoptotic pathways, and this could be one of the mechanisms underlying homocysteine-induced pathogenicity.
Collapse
Affiliation(s)
- Arun Kumar
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mall Road, Delhi-110007, India
| | | | | | | | | | | | | | | |
Collapse
|