1
|
Tharak A, G S, Kaveti S, Jain N, Venkata Mohan S. Engineering of Microbial Cell Factories for Enhanced Acetic Acid and Ethanol Production Via Heterologous Overexpression of the CODH Gene in CO 2 Fermentation. ACS Synth Biol 2025; 14:1638-1653. [PMID: 40231752 DOI: 10.1021/acssynbio.4c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
This study evaluates the performance of carbon monoxide dehydrogenase (codh)-embedded strains in bench-scale microbial electrochemical systems (MES) for CO2 reduction to biofuels and biochemicals. CO2 fermentation efficiency was evaluated by comparing the wild-type Clostridium acetobutylicum (Wild), a negative control E. coli strain lacking the codh gene (NC-BL21), and engineered E. coli strain (Eng) alone and with IPTG induction (Eng+IPTG). Four electrochemical systems were used, viz. Wild+E, NC-BL21+E, Eng+E, and Eng+IPTG+E, with a poised potential of -0.6 V applied to the working electrode. CO2 and bicarbonate were supplemented to a total inorganic carbon (IC) concentration of 40 g/L, with a retention time of 60 h. The engineered strain demonstrated enhanced metabolic performance compared to the wild-type and negative control strains, yielding maximum formic acid (2.1 g/L) and acetic acid (9.3 g/L) under the Eng+IPTG+E condition. Solventogenesis also influenced positively in the same system with the ethanol yield of 3.9 g/L, substantially exceeding biochemicals yield observed in the wild-type strain (2.4 g/L, acetic acid). The engineered strains exhibited superior cumulative yields (0.40 g/g), enhanced CODH-mediated charge flux stability (60 vs 5 in the wild type), and upregulated expression of key genes in the Wood-Ljungdahl pathway (WLP). Bioelectrochemical performance analysis demonstrated elevated reductive catalytic currents, enhanced CO2 reduction, and optimal charge transfer kinetics. This study highlights the synergistic potential of genetic engineering, specifically CODH overexpression, combined with electro-fermentation for enhanced biofuel and biochemical production from C1 gases.
Collapse
Affiliation(s)
- Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suresh G
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Sreeram Kaveti
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nishant Jain
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Hwang JH, Kim HJ, Kim S, Lee Y, Shin Y, Choi S, Oh J, Kim SH, Park JH, Bhatia SK, Kim YG, Jang KS, Yang YH. Positive effect of phasin in biohydrogen production of non polyhydroxybutyrate-producing Clostridium acetobutylicum ATCC 824. BIORESOURCE TECHNOLOGY 2024; 395:130355. [PMID: 38272145 DOI: 10.1016/j.biortech.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
In this study, the goal was to enhance the tolerance of Clostridium acetobutylicum ATCC 824 to biomass-based inhibitory compounds for biohydrogen production and evaluate various known genes that enhance the production of biochemicals in various hosts. The introduction of phaP, the major polyhydroxyalkanoate granule-associated protein that has been reported as a chaperone-like protein resulted in increased tolerance to inhibitors and leads to higher levels of hydrogen production, cell growth, and glucose consumption in the presence of these inhibitors. It was observed that the introduction of phaP led to an increase in the transcription of the hydrogenase gene, whereas transcription of the chaperone functional genes decreased compared to the wild type. Finally, the introduction of phaP could significantly enhance biohydrogen production by 2.6-fold from lignocellulosic hydrolysates compared to that of wild type. These findings suggested that the introduction of phaP could enhance growth and biohydrogen production, even in non-polyhydroxyalkanoate-producing strains.
Collapse
Affiliation(s)
- Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Joong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong-Hoon Park
- Clean Energy Transition Group, Korea Institute of Industrial Technology (KITECH), Jeju 63243, Republic of Korea; Convergence Manufacturing System Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Li J, Wang L, Chen H. Periodic peristalsis increasing acetone–butanol–ethanol productivity during simultaneous saccharification and fermentation of steam-exploded corn straw. J Biosci Bioeng 2016; 122:620-626. [DOI: 10.1016/j.jbiosc.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
|
4
|
Schmideder A, Hensler S, Lang M, Stratmann A, Giesecke U, Weuster-Botz D. High-cell-density cultivation and recombinant protein production with Komagataella pastoris in stirred-tank bioreactors from milliliter to cubic meter scale. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors. J Biotechnol 2015; 210:19-24. [DOI: 10.1016/j.jbiotec.2015.06.402] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022]
|
6
|
Janzen NH, Schmidt M, Krause C, Weuster-Botz D. Evaluation of fluorimetric pH sensors for bioprocess monitoring at low pH. Bioprocess Biosyst Eng 2015; 38:1685-92. [PMID: 25969385 DOI: 10.1007/s00449-015-1409-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/28/2015] [Indexed: 12/24/2022]
Abstract
Optical chemical sensors are the standard for pH monitoring in small-scale bioreactors such as microtiter plates, shaking flasks or other single-use bioreactors. The dynamic pH range of the so far commercially available fluorescent pH sensors applied in small-scale bioreactors is restricted to pH monitoring around neutral pH, although many fermentation processes are performed at pH < 6 on industrial scale. Thus, two new prototype acidic fluorescence pH sensors immobilized in single-use stirred-tank bioreactors, one with excitation at 470 nm and emission at 550 nm (sensor 470/550) and the other with excitation at 505 nm and emission at 600 nm (sensor 505/600), were characterized with respect to dynamic ranges and operational stability in representative fermentation media. Best resolution and dynamic range was observed with pH sensor 505/600 in mineral medium (dynamic range of 3.9 < pH < 7.2). Applying the same pH sensors to complex medium results in a drastic reduction of resolution and dynamic ranges. Yeast extract in complex medium was found to cause background fluorescence at the sensors' operating wavelength combinations. Optical isolation of the sensor by adding a black colored polymer layer above the sensor spot and fixing an aperture made of adhesive photoresistant foil between the fluorescence reader and the transparent bottom of the polystyrene reactors enabled full re-establishment of the sensor's characteristics. Reliability and operational stability of sensor 505/600 was shown by online pH monitoring (4.5 < pH < 5.8) of parallel anaerobic batch fermentations of Clostridium acetobutylicum for the production of acetone, butanol and ethanol (ABE) with offline pH measurements with a standard glass electrode as reference.
Collapse
Affiliation(s)
- Nils H Janzen
- Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Boltzmannstr. 15, 85748, Garching, Germany,
| | | | | | | |
Collapse
|
7
|
Faust G, Janzen NH, Bendig C, Römer L, Kaufmann K, Weuster-Botz D. Feeding strategies enhance high cell density cultivation and protein expression in milliliter scale bioreactors. Biotechnol J 2014; 9:1293-303. [DOI: 10.1002/biot.201400346] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/23/2022]
|
8
|
Jang YS, Im JA, Choi SY, Lee JI, Lee SY. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity. Metab Eng 2014; 23:165-74. [DOI: 10.1016/j.ymben.2014.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022]
|
9
|
Jang YS, Han MJ, Lee J, Im JA, Lee YH, Papoutsakis ET, Bennett G, Lee SY. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Appl Microbiol Biotechnol 2014; 98:5105-15. [PMID: 24743985 DOI: 10.1007/s00253-014-5738-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/07/2023]
Abstract
The fermentation carried out by the solvent-producing bacterium, Clostridium acetobutylicum, is characterized by two distinct phases: acidogenic and solventogenic phases. Understanding the cellular physiological changes occurring during the phase transition in clostridial fermentation is important for the enhanced production of solvents. To identify protein changes upon entry to stationary phase where solvents are typically produced, we herein analyzed the proteomic profiles of the parental wild type C. acetobutylicum strains, ATCC 824, the non-solventogenic strain, M5 that has lost the solventogenic megaplasmid pSOL1, and the synthetic simplified alcohol forming strain, M5 (pIMP1E1AB) expressing plasmid-based CoA-transferase (CtfAB) and aldehyde/alcohol dehydrogenase (AdhE1). A total of 68 protein spots, corresponding to 56 unique proteins, were unambiguously identified as being differentially present after the phase transitions in the three C. acetobutylicum strains. In addition to changes in proteins known to be involved in solventogenesis (AdhE1 and CtfB), we identified significant alterations in enzymes involved in sugar transport and metabolism, fermentative pathway, heat shock proteins, translation, and amino acid biosynthesis upon entry into the stationary phase. Of these, four increased proteins (AdhE1, CAC0233, CtfB and phosphocarrier protein HPr) and six decreased proteins (butyrate kinase, ferredoxin:pyruvate oxidoreductase, phenylalanyl-tRNA synthetase, adenylosuccinate synthase, pyruvate kinase and valyl-tRNA synthetase) showed similar patterns in the two strains capable of butanol formation. Interestingly, significant changes of several proteins by post-translational modifications were observed in the solventogenic phase. The proteomic data from this study will improve our understanding on how cell physiology is affected through protein levels patterns in clostridia.
Collapse
Affiliation(s)
- Yu-Sin Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 plus program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen SK, Chin WC, Tsuge K, Huang CC, Li SY. Fermentation approach for enhancing 1-butanol production using engineered butanologenic Escherichia coli. BIORESOURCE TECHNOLOGY 2013; 145:204-9. [PMID: 23453982 DOI: 10.1016/j.biortech.2013.01.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 05/16/2023]
Abstract
In this study, engineered butanologenic Escherichia coli T5 constructed by the OGAB method was used for 1-butanol production. The results showed the feasibility of the artificial butanologenic operon, (Promoter Pr)-thil-crt-bcd-etfB-etfA-hbd-adhe1-adhe, where the 1-butanol titer, specific BuOH yield, and BuOH yield were 4.50 mg/L, 4.50 mg-BuOH/g cell, and 0.35 mg-BuOH/g-glucose, respectively. Fermentation conditions of anaerobic, low initial concentrations of carbon sources, low oxidation state of carbon source, pH of 6, addition of glutathione and citrate, had been shown for efficiently improving the 1-butanol production. The premise behind these fermentation approaches can be categorized into two lines of reasoning, either elevated the availability of acetyl-CoA or lowered the intracellular redox state. By comparing the fermentation conditions tested in this study, pH has been shown to be the most efficiency strategies for 1-butanol production while the replacement of glucose with glycerol provides the highest improvement in butanol yield.
Collapse
Affiliation(s)
- Shang-Kai Chen
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
11
|
Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol 2013; 97:9355-63. [DOI: 10.1007/s00253-013-5161-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
|
12
|
Jang YS, Malaviya A, Lee SY. Acetone-butanol-ethanol production with high productivity usingClostridium acetobutylicumBKM19. Biotechnol Bioeng 2013; 110:1646-53. [DOI: 10.1002/bit.24843] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/29/2012] [Accepted: 01/07/2013] [Indexed: 01/07/2023]
|
13
|
Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio 2012; 3:mBio.00314-12. [PMID: 23093384 PMCID: PMC3482502 DOI: 10.1128/mbio.00314-12] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1D485G gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD**) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. Renewable biofuel is one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has the potential to replace gasoline. Due to the lack of efficient genetic manipulation tools, however, strain improvement has been rather slow. Furthermore, complex metabolic characteristics of acidogenesis followed by solventogenesis in this strain have hampered development of engineered clostridia having highly efficient and selective butanol production capability. Here we report for the first time the results of systems metabolic engineering studies of two butanol-forming routes and their relative importances in butanol production. Based on these findings, a metabolically engineered Clostridium acetobutylicum strain capable of producing butanol to a high titer with high yield and selectivity could be developed by reinforcing the direct butanol-forming flux.
Collapse
|
14
|
Lehmann D, Hönicke D, Ehrenreich A, Schmidt M, Weuster-Botz D, Bahl H, Lütke-Eversloh T. Modifying the product pattern of Clostridium acetobutylicum. Appl Microbiol Biotechnol 2012; 94:743-54. [DOI: 10.1007/s00253-011-3852-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 01/20/2023]
|