1
|
Cortella G, Lamparelli EP, Ciardulli MC, Lovecchio J, Giordano E, Maffulli N, Della Porta G. ColMA-based bioprinted 3D scaffold allowed to study tenogenic events in human tendon stem cells. Bioeng Transl Med 2025; 10:e10723. [PMID: 39801753 PMCID: PMC11711214 DOI: 10.1002/btm2.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 01/16/2025] Open
Abstract
The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material. Indeed, we successfully fabricated a 3D bioengineered scaffold and cultured it for 21 days under perfusion conditions with medium supplemented with growth/differentiation factor-5 (GDF-5). This bioprinting pipeline and the culture conditions created an exceptionally favorable 3D environment, enabling the cells to proliferate, exhibit tenogenic behaviors, and produce a new collagen type I matrix, thereby remodeling the surrounding environment. Indeed, over the 21-day culture period under perfusion condition, tenomodulin expression showed a significant upregulation on day 7, with a 2.3-fold increase, compared to days 14 and 21. Collagen type I gene expression was upregulated nearly 10-fold by day 14. This trend was further confirmed by western blot analysis, which revealed a statistically significant difference in tenomodulin expression between day 21 and both day 7 and day 14. For type I collagen, significant differences were observed between day 0 and day 21, as well as between day 0 and day 14, with a p-value of 0.01. These results indicate a progressive over-expression of type I collagen, reflecting cell differentiation towards a proper tenogenic phenotype. Cytokines, such as IL-8 and IL-6, levels peaked at 8566 and 7636 pg/mL, respectively, on day 7, before decreasing to 54 and 46 pg/mL by day 21. Overall, the data suggest that the novel ColMa bioprinting protocol effectively provided a conducive environment for the growth and proper differentiation of hTSPCs, showcasing its potential for studying cell behavior and tenogenic differentiation.
Collapse
Affiliation(s)
- Giacomo Cortella
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Erwin Pavel Lamparelli
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Maria Camilla Ciardulli
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
| | - Joseph Lovecchio
- School of Science and EngineeringReykjavík UniversityReykjavíkIceland
- Institute of Biomedical and Neural EngineeringReykjavik UniversityReykjavíkIceland
| | - Emanuele Giordano
- Laboratory of Cellular and Molecular Engineering “Silvio Cavalcanti”, Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI)University of BolognaCesenaFCItaly
- Advanced Research Center on Electronic Systems (ARCES)University of BolognaBolognaBOItaly
| | - Nicola Maffulli
- School of Pharmacy and BioengineeringKeele UniversityStoke‐on‐TrentStaffordshireUK
- Department of Trauma and Orthopaedics, Faculty of Medicine and PsychologySant'Andrea Hospital, “La Sapienza” UniversityRomeItaly
| | - Giovanna Della Porta
- Translational NanoMedicine Laboratory, Department of Medicine, Surgery and DentistryUniversity of SalernoBaronissiSAItaly
- Research Centre for Biomaterials BIONAMUniversità di SalernoFiscianoSAItaly
| |
Collapse
|
2
|
Hao M, Xue L, Wen X, Sun L, Zhang L, Xing K, Hu X, Xu J, Xing D. Advancing bone regeneration: Unveiling the potential of 3D cell models in the evaluation of bone regenerative materials. Acta Biomater 2024; 183:1-29. [PMID: 38815683 DOI: 10.1016/j.actbio.2024.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Bone, a rigid yet regenerative tissue, has garnered extensive attention for its impressive healing abilities. Despite advancements in understanding bone repair and creating treatments for bone injuries, handling nonunions and large defects remains a major challenge in orthopedics. The rise of bone regenerative materials is transforming the approach to bone repair, offering innovative solutions for nonunions and significant defects, and thus reshaping orthopedic care. Evaluating these materials effectively is key to advancing bone tissue regeneration, especially in difficult healing scenarios, making it a critical research area. Traditional evaluation methods, including two-dimensional cell models and animal models, have limitations in predicting accurately. This has led to exploring alternative methods, like 3D cell models, which provide fresh perspectives for assessing bone materials' regenerative potential. This paper discusses various techniques for constructing 3D cell models, their pros and cons, and crucial factors to consider when using these models to evaluate bone regenerative materials. We also highlight the significance of 3D cell models in the in vitro assessments of these materials, discuss their current drawbacks and limitations, and suggest future research directions. STATEMENT OF SIGNIFICANCE: This work addresses the challenge of evaluating bone regenerative materials (BRMs) crucial for bone tissue engineering. It explores the emerging role of 3D cell models as superior alternatives to traditional methods for assessing these materials. By dissecting the construction, key factors of evaluating, advantages, limitations, and practical considerations of 3D cell models, the paper elucidates their significance in overcoming current evaluation method shortcomings. It highlights how these models offer a more physiologically relevant and ethically preferable platform for the precise assessment of BRMs. This contribution is particularly significant for "Acta Biomaterialia" readership, as it not only synthesizes current knowledge but also propels the discourse forward in the search for advanced solutions in bone tissue engineering and regeneration.
Collapse
Affiliation(s)
- Minglu Hao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Linyuan Xue
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Xiaobo Wen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Li Sun
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Kunyue Xing
- Alliance Manchester Business School, The University of Manchester, Manchester M139PL, UK
| | - Xiaokun Hu
- Department of Interventional Medical Center, Affiliated Hospital of Qingdao University, Qingdao 26600, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Cancer institute, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
4
|
Gensler M, Malkmus C, Ockermann P, Möllmann M, Hahn L, Salehi S, Luxenhofer R, Boccaccini AR, Hansmann J. Perfusable Tissue Bioprinted into a 3D-Printed Tailored Bioreactor System. Bioengineering (Basel) 2024; 11:68. [PMID: 38247945 PMCID: PMC10813239 DOI: 10.3390/bioengineering11010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Bioprinting provides a powerful tool for regenerative medicine, as it allows tissue construction with a patient's specific geometry. However, tissue culture and maturation, commonly supported by dynamic bioreactors, are needed. We designed a workflow that creates an implant-specific bioreactor system, which is easily producible and customizable and supports cell cultivation and tissue maturation. First, a bioreactor was designed and different tissue geometries were simulated regarding shear stress and nutrient distribution to match cell culture requirements. These tissues were then directly bioprinted into the 3D-printed bioreactor. To prove the ability of cell maintenance, C2C12 cells in two bioinks were printed into the system and successfully cultured for two weeks. Next, human mesenchymal stem cells (hMSCs) were successfully differentiated toward an adipocyte lineage. As the last step of the presented strategy, we developed a prototype of an automated mobile docking station for the bioreactor. Overall, we present an open-source bioreactor system that is adaptable to a wound-specific geometry and allows cell culture and differentiation. This interdisciplinary roadmap is intended to close the gap between the lab and clinic and to integrate novel 3D-printing technologies for regenerative medicine.
Collapse
Affiliation(s)
- Marius Gensler
- Department Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany
| | - Christoph Malkmus
- Institute of Medical Engineering Schweinfurt, Technical University of Applied Sciences Wuerzburg-Schweinfurt, 97421 Schweinfurt, Germany (J.H.)
| | - Philipp Ockermann
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Marc Möllmann
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| | - Lukas Hahn
- Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Wuerzburg, 97070 Würzburg, Germany
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Robert Luxenhofer
- Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Wuerzburg, 97070 Würzburg, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Hansmann
- Institute of Medical Engineering Schweinfurt, Technical University of Applied Sciences Wuerzburg-Schweinfurt, 97421 Schweinfurt, Germany (J.H.)
- Translational Center for Regenerative Therapies (TLC-RT), Fraunhofer Institute for Silicate Research (ISC), 97082 Würzburg, Germany
| |
Collapse
|
5
|
Cheng Q, Zhang L, Zhang J, Zhou X, Wu B, Wang D, Wei T, Shafiq M, Li S, Zhi D, Guan Y, Wang K, Kong D. Decellularized Scaffolds with Double-Layer Aligned Microchannels Induce the Oriented Growth of Bladder Smooth Muscle Cells: Toward Urethral and Ureteral Reconstruction. Adv Healthc Mater 2023; 12:e2300544. [PMID: 37638600 DOI: 10.1002/adhm.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/27/2023] [Indexed: 08/29/2023]
Abstract
There is a great clinical need for regenerating urinary tissue. Native urethras and ureters have bidirectional aligned smooth muscle cells (SMCs) layers, which plays a pivotal role in micturition and transporting urine and inhibiting reflux. Thus far, urinary scaffolds have not been designed to induce the native-mimicking aligned arrangement of SMCs. In this study, a tubular decellularized extracellular matrix (dECM) with an intact internal layer and bidirectional aligned microchannels in the tubular wall, which is realized by the subcutaneous implantation of a template, followed by the removal of the template, and decellularization, is engineered. The dense and intact internal layer effectively increases the leakage pressure of the tubular dECM scaffolds. Rat-derived dECM scaffolds with three different sizes of microchannels are fabricated by tailoring the fiber diameter of the templates. The rat-derived dECM scaffolds exhibiting microchannels of ≈65 µm show suitable mechanical properties, good ability to induce the bidirectional alignment and growth of human bladder SMCs, and elevated higher functional protein expression in vitro. These data indicate that rat-derived tubular dECM scaffolds manifesting double-layer aligned microchannels may be promising candidates to induce the native-mimicking regeneration of SMCs in urethra and ureter reconstruction.
Collapse
Affiliation(s)
- Quhan Cheng
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linli Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingai Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Boyu Wu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dezheng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shengbin Li
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yong Guan
- Department of Urology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, 300134, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Ge C, Selvaganapathy PR, Geng F. Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications. Am J Physiol Cell Physiol 2023; 325:C580-C591. [PMID: 37486066 DOI: 10.1152/ajpcell.00408.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Bioreactors are advanced biomanufacturing tools that have been widely used to develop various applications in the fields of health care and cellular agriculture. In recent years, there has been a growing interest in the use of bioreactors to enhance the efficiency and scalability of these technologies. In cell therapy, bioreactors have been used to expand and differentiate cells into specialized cell types that can be used for transplantation or tissue regeneration. In cultured meat production, bioreactors offer a controlled and efficient means of producing meat without the need for animal farming. Bioreactors can support the growth of muscle cells by providing the necessary conditions for cell proliferation, differentiation, and maturation, including the provision of oxygen and nutrients. This review article aims to provide an overview of the current state of bioreactor technology in both cell therapy and cultured meat production. It will examine the various bioreactor types and their applications in these fields, highlighting their advantages and limitations. In addition, it will explore the future prospects and challenges of bioreactor technology in these emerging fields. Overall, this review will provide valuable insights for researchers and practitioners interested in using bioreactor technology to develop innovative solutions in the biomanufacturing of therapeutic cells and cultured meat.
Collapse
Affiliation(s)
- Chang Ge
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Fei Geng
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
7
|
Yamada S, Ockermann PN, Schwarz T, Mustafa K, Hansmann J. Translation of biophysical environment in bone into dynamic cell culture under flow for bone tissue engineering. Comput Struct Biotechnol J 2023; 21:4395-4407. [PMID: 37711188 PMCID: PMC10498129 DOI: 10.1016/j.csbj.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation. The knowledge has been now translated into regenerative medicine, particularly into the field of bone tissue engineering, where multipotent stem cells are combined with three-dimensional (3D) scaffolding biomaterials to produce transplantable constructs for bone regeneration. In the presence of 3D scaffolds, the importance of suitable dynamic cell culture platforms increases further not only to improve mass transfer inside the scaffolds but to provide appropriate biophysical cues to guide cell fate. In principle, the concept of dynamic cell culture platforms is rooted to bone mechanobiology. Therefore, this review primarily focuses on biophysical environment in bone and its translation into dynamic cell culture platforms commonly used for 2D and 3D cell expansion, including their advancement, challenges, and future perspectives. Additionally, it provides the literature review of recent empirical studies using 2D and 3D flow-based dynamic cell culture systems for bone tissue engineering.
Collapse
Affiliation(s)
- Shuntaro Yamada
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Philipp Niklas Ockermann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Thomas Schwarz
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
| | - Kamal Mustafa
- Center of Translational Oral Research-Tissue Engineering, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway
| | - Jan Hansmann
- Fraunhofer Institute for Silicate Research ISC, Translational Center Regenerative Therapies, Germany
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Germany
- Department of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Germany
| |
Collapse
|
8
|
Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci 2023; 24:12594. [PMID: 37628774 PMCID: PMC10454619 DOI: 10.3390/ijms241612594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cell secretome or conditioned medium (MSC-CM) is a combination of biomolecules and growth factors in cell culture growth medium, secreted by mesenchymal stem cells (MSCs), and the starting point of several derived products. MSC-CM and its derivatives could be applied after injuries and could mediate most of the beneficial regenerative effects of MSCs without the possible side effects of using MSCs themselves. However, before the clinical application of these promising biopharmaceuticals, several issues such as manufacturing protocols and quality control must be addressed. This review aims to underline the influence of the procedure for conditioned medium production on the quality of the secretome and its derivatives and highlights the questions considering cell sources and donors, cell expansion, cell passage number and confluency, conditioning period, cell culture medium, microenvironment cues, and secretome-derived product purification. A high degree of variability in MSC secretomes is revealed based on these parameters, confirming the need to standardize and optimize protocols. Understanding how bioprocessing and manufacturing conditions interact to determine the quantity, quality, and profile of MSC-CM is essential to the development of good manufacturing practice (GMP)-compliant procedures suitable for replacing mesenchymal stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Batoul Chouaib
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100 Copenhagen, Denmark
| | - Franck Chaubron
- Institut Clinident BioPharma, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France;
| | - Frederic Cuisinier
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| |
Collapse
|
9
|
Licata JP, Schwab KH, Har-El YE, Gerstenhaber JA, Lelkes PI. Bioreactor Technologies for Enhanced Organoid Culture. Int J Mol Sci 2023; 24:11427. [PMID: 37511186 PMCID: PMC10380004 DOI: 10.3390/ijms241411427] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
An organoid is a 3D organization of cells that can recapitulate some of the structure and function of native tissue. Recent work has seen organoids gain prominence as a valuable model for studying tissue development, drug discovery, and potential clinical applications. The requirements for the successful culture of organoids in vitro differ significantly from those of traditional monolayer cell cultures. The generation and maturation of high-fidelity organoids entails developing and optimizing environmental conditions to provide the optimal cues for growth and 3D maturation, such as oxygenation, mechanical and fluidic activation, nutrition gradients, etc. To this end, we discuss the four main categories of bioreactors used for organoid culture: stirred bioreactors (SBR), microfluidic bioreactors (MFB), rotating wall vessels (RWV), and electrically stimulating (ES) bioreactors. We aim to lay out the state-of-the-art of both commercial and in-house developed bioreactor systems, their benefits to the culture of organoids derived from various cells and tissues, and the limitations of bioreactor technology, including sterilization, accessibility, and suitability and ease of use for long-term culture. Finally, we discuss future directions for improvements to existing bioreactor technology and how they may be used to enhance organoid culture for specific applications.
Collapse
Affiliation(s)
- Joseph P Licata
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Kyle H Schwab
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yah-El Har-El
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Jonathan A Gerstenhaber
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
10
|
Pieroth S, Heras‐Bautista CO, Hamad S, Brockmeier K, Hescheler J, Pfannkuche K, Schmidt AM. Poly(acrylamide) Spheroids with Tunable Elasticity for Scalable Cell Culture Applications. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Stephanie Pieroth
- Chemistry Department Institute for Physical Chemistry University of Cologne 50939 Cologne Germany
| | - Carlos O. Heras‐Bautista
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
| | - Sarkawt Hamad
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
- Biology Department Faculty of Science Soran University Soran Kurdistan Region JGXP+9QW Iraq
- Marga‐and‐Walter‐Boll Laboratory for Cardiac Tissue Engineering University of Cologne 50931 Cologne Germany
| | - Konrad Brockmeier
- Department of Pediatric Cardiology University Hospital of Cologne 50937 Cologne Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
| | - Kurt Pfannkuche
- Center for Physiology and Pathophysiology Institute for Neurophysiology University of Cologne Medical Faculty and University Hospital 50931 Cologne Germany
- Department of Pediatric Cardiology University Hospital of Cologne 50937 Cologne Germany
- Marga‐and‐Walter‐Boll Laboratory for Cardiac Tissue Engineering University of Cologne 50931 Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) University of Cologne 50931 Cologne Germany
| | - Annette M. Schmidt
- Chemistry Department Institute for Physical Chemistry University of Cologne 50939 Cologne Germany
| |
Collapse
|
11
|
Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, Azar HK, Zalouli V, Rajavand H, Farzin A, Lotfibakhshaiesh N, Sefat F, Azami M, Webster TJ, Rezaei N. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed Pharmacother 2022; 153:113431. [DOI: 10.1016/j.biopha.2022.113431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022] Open
|
12
|
Gabetti S, Masante B, Cochis A, Putame G, Sanginario A, Armando I, Fiume E, Scalia AC, Daou F, Baino F, Salati S, Morbiducci U, Rimondini L, Bignardi C, Massai D. An automated 3D-printed perfusion bioreactor combinable with pulsed electromagnetic field stimulators for bone tissue investigations. Sci Rep 2022; 12:13859. [PMID: 35974079 PMCID: PMC9381575 DOI: 10.1038/s41598-022-18075-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
In bone tissue engineering research, bioreactors designed for replicating the main features of the complex native environment represent powerful investigation tools. Moreover, when equipped with automation, their use allows reducing user intervention and dependence, increasing reproducibility and the overall quality of the culture process. In this study, an automated uni-/bi-directional perfusion bioreactor combinable with pulsed electromagnetic field (PEMF) stimulation for culturing 3D bone tissue models is proposed. A user-friendly control unit automates the perfusion, minimizing the user dependency. Computational fluid dynamics simulations supported the culture chamber design and allowed the estimation of the shear stress values within the construct. Electromagnetic field simulations demonstrated that, in case of combination with a PEMF stimulator, the construct can be exposed to uniform magnetic fields. Preliminary biological tests on 3D bone tissue models showed that perfusion promotes the release of the early differentiation marker alkaline phosphatase. The histological analysis confirmed that perfusion favors cells to deposit more extracellular matrix (ECM) with respect to the static culture and revealed that bi-directional perfusion better promotes ECM deposition across the construct with respect to uni-directional perfusion. Lastly, the Real-time PCR results of 3D bone tissue models cultured under bi-directional perfusion without and with PEMF stimulation revealed that the only perfusion induced a ~ 40-fold up-regulation of the expression of the osteogenic gene collagen type I with respect to the static control, while a ~ 80-fold up-regulation was measured when perfusion was combined with PEMF stimulation, indicating a positive synergic pro-osteogenic effect of combined physical stimulations.
Collapse
Affiliation(s)
- Stefano Gabetti
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Beatrice Masante
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Andrea Cochis
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alessandro Sanginario
- Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Ileana Armando
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Alessandro Calogero Scalia
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Farah Daou
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Francesco Baino
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | | | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Lia Rimondini
- Laboratory of Biomedical Materials, Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, University of Piemonte Orientale UPO, Novara, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy.
| |
Collapse
|
13
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|
14
|
Sani M, Hosseinie R, Latifi M, Shadi M, Razmkhah M, Salmannejad M, Parsaei H, Talaei-Khozani T. Engineered artificial articular cartilage made of decellularized extracellular matrix by mechanical and IGF-1 stimulation. BIOMATERIALS ADVANCES 2022; 139:213019. [PMID: 35882114 DOI: 10.1016/j.bioadv.2022.213019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/19/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Cartilage engineering has the potential to overcome clinical deficiency in joint disorders. Decellularized extracellular matrix (dECM) has great biocompatibility and bioactivity and can be considered an appropriate natural scaffold for tissue engineering applications. Both insulin-like growth factor-1 (IGF-1) and mechanical compression stimulate the production of cartilage ECM, modulate mechanical properties, and gene expression. The current investigation aimed to fabricate a high-quality moldable artificial cartilage by exposing the chondrocytes in biomimicry conditions using cartilage dECM, IGF-1, and mechanical stimulations. In this study, an ad hoc bioreactor was designed to apply dynamic mechanical stimuli (10 % strain, 1 Hz) on chondrocyte-laden cartilage dECM-constructs with/without IGF-1 supplementation for 2 weeks, 3 h/day. Our data revealed that mechanical stimulation had no adverse effect on cell viability and proliferation. However, it elevated the expression of chondrogenic markers such as collagen type II (COL2A1), aggrecan (ACAN), and proteoglycan-4 (PRG-4), and reduced the expression of matrix metalloproteinase-3 (MMP-3). Mechanical stimulation also promoted higher newly formed glycosaminoglycan (GAG) and produced more aligned fibers that can be responsible for higher Young's modulus of the engineered construct. Even though IGF-1 demonstrated some extent of improvement in developing neocartilage, it was not as effective as mechanical stimulation. Neither IGF-1 nor compression elevated the collagen type I expression. Compression and IGF-1 showed a synergistic impact on boosting the level of COL2A1 but not the other factors. In conclusion, mechanical stimulation on moldable cartilage dECM can be considered a good technique to fabricate artificial cartilage with higher functionality.
Collapse
Affiliation(s)
- Mahsa Sani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran.
| | - Radmarz Hosseinie
- Department of Mechanical Engineering College of Engineering, Fasa University, Fasa, Iran
| | - Mona Latifi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehri Shadi
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahin Salmannejad
- Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Parsaei
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Tissue Engineering Department, School of Advanced Medical Science and Technology, Shiraz University of Medical Science, Shiraz, Iran; Tissue Engineering Lab, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research center, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
De Stefano P, Bianchi E, Dubini G. The impact of microfluidics in high-throughput drug-screening applications. BIOMICROFLUIDICS 2022; 16:031501. [PMID: 35646223 PMCID: PMC9142169 DOI: 10.1063/5.0087294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/02/2022] [Indexed: 05/05/2023]
Abstract
Drug discovery is an expensive and lengthy process. Among the different phases, drug discovery and preclinical trials play an important role as only 5-10 of all drugs that begin preclinical tests proceed to clinical trials. Indeed, current high-throughput screening technologies are very expensive, as they are unable to dispense small liquid volumes in an accurate and quick way. Moreover, despite being simple and fast, drug screening assays are usually performed under static conditions, thus failing to recapitulate tissue-specific architecture and biomechanical cues present in vivo even in the case of 3D models. On the contrary, microfluidics might offer a more rapid and cost-effective alternative. Although considered incompatible with high-throughput systems for years, technological advancements have demonstrated how this gap is rapidly reducing. In this Review, we want to further outline the role of microfluidics in high-throughput drug screening applications by looking at the multiple strategies for cell seeding, compartmentalization, continuous flow, stimuli administration (e.g., drug gradients or shear stresses), and single-cell analyses.
Collapse
Affiliation(s)
- Paola De Stefano
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Elena Bianchi
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| | - Gabriele Dubini
- Laboratory of Biological Structure Mechanics, Department of Chemistry, Materials and Chemical Engineering “G. Natta,” Politecnico di Milano, Italy
| |
Collapse
|
16
|
Marei I, Abu Samaan T, Al-Quradaghi MA, Farah AA, Mahmud SH, Ding H, Triggle CR. 3D Tissue-Engineered Vascular Drug Screening Platforms: Promise and Considerations. Front Cardiovasc Med 2022; 9:847554. [PMID: 35310996 PMCID: PMC8931492 DOI: 10.3389/fcvm.2022.847554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the efforts devoted to drug discovery and development, the number of new drug approvals have been decreasing. Specifically, cardiovascular developments have been showing amongst the lowest levels of approvals. In addition, concerns over the adverse effects of drugs to the cardiovascular system have been increasing and resulting in failure at the preclinical level as well as withdrawal of drugs post-marketing. Besides factors such as the increased cost of clinical trials and increases in the requirements and the complexity of the regulatory processes, there is also a gap between the currently existing pre-clinical screening methods and the clinical studies in humans. This gap is mainly caused by the lack of complexity in the currently used 2D cell culture-based screening systems, which do not accurately reflect human physiological conditions. Cell-based drug screening is widely accepted and extensively used and can provide an initial indication of the drugs' therapeutic efficacy and potential cytotoxicity. However, in vitro cell-based evaluation could in many instances provide contradictory findings to the in vivo testing in animal models and clinical trials. This drawback is related to the failure of these 2D cell culture systems to recapitulate the human physiological microenvironment in which the cells reside. In the body, cells reside within a complex physiological setting, where they interact with and respond to neighboring cells, extracellular matrix, mechanical stress, blood shear stress, and many other factors. These factors in sum affect the cellular response and the specific pathways that regulate variable vital functions such as proliferation, apoptosis, and differentiation. Although pre-clinical in vivo animal models provide this level of complexity, cross species differences can also cause contradictory results from that seen when the drug enters clinical trials. Thus, there is a need to better mimic human physiological conditions in pre-clinical studies to improve the efficiency of drug screening. A novel approach is to develop 3D tissue engineered miniaturized constructs in vitro that are based on human cells. In this review, we discuss the factors that should be considered to produce a successful vascular construct that is derived from human cells and is both reliable and reproducible.
Collapse
Affiliation(s)
- Isra Marei
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- *Correspondence: Isra Marei
| | - Tala Abu Samaan
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Asmaa A. Farah
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | | | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Doha, Qatar
- Chris R. Triggle
| |
Collapse
|
17
|
Bioengineered Living Bone Grafts-A Concise Review on Bioreactors and Production Techniques In Vitro. Int J Mol Sci 2022; 23:ijms23031765. [PMID: 35163687 PMCID: PMC8836415 DOI: 10.3390/ijms23031765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/26/2022] Open
Abstract
It has been observed that bone fractures carry a risk of high mortality and morbidity. The deployment of a proper bone healing method is essential to achieve the desired success. Over the years, bone tissue engineering (BTE) has appeared to be a very promising approach aimed at restoring bone defects. The main role of the BTE is to apply new, efficient, and functional bone regeneration therapy via a combination of bone scaffolds with cells and/or healing promotive factors (e.g., growth factors and bioactive agents). The modern approach involves also the production of living bone grafts in vitro by long-term culture of cell-seeded biomaterials, often with the use of bioreactors. This review presents the most recent findings concerning biomaterials, cells, and techniques used for the production of living bone grafts under in vitro conditions. Particular attention has been given to features of known bioreactor systems currently used in BTE: perfusion bioreactors, rotating bioreactors, and spinner flask bioreactors. Although bioreactor systems are still characterized by some limitations, they are excellent platforms to form bioengineered living bone grafts in vitro for bone fracture regeneration. Moreover, the review article also describes the types of biomaterials and sources of cells that can be used in BTE as well as the role of three-dimensional bioprinting and pulsed electromagnetic fields in both bone healing and BTE.
Collapse
|
18
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
19
|
Rios-Galacho M, Martinez-Moreno D, López-Ruiz E, Galvez-Martin P, Marchal JA. An overview on the manufacturing of functional and mature cellular skin substitutes. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1035-1052. [PMID: 34652978 DOI: 10.1089/ten.teb.2021.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are different types of skin diseases due to chronic injuries that impede the natural healing process of the skin. Tissue engineering (TE) has focused on the development of bioengineered skin or skin substitutes that cover the wound, providing the necessary care to restore the functionality of injured skin. There are two types of substitutes: acellular skin substitutes (ASSs), which offer a low response of the body, and cellular skin substitutes (CSSs), which incorporate living cells and appear as a great alternative in the treatment of skin injuries due to them presenting a greater interaction and integration with the rest of the body. For the development of a CSS, it is necessary to select the most suitable biomaterials, cell components, and methodology of biofabrication for the wound to be treated. Moreover, these CSSs are immature substitutes that must undergo a maturing process in specific bioreactors, guaranteeing their functionality. The bioreactor simulates the natural state of maturation of the skin by controlling parameters such as temperature, pressure, or humidity, allowing a homogeneous maturation of the CSSs in an aseptic environment. The use of bioreactors not only contributes to the maturation of the CSSs, but also offers a new way of obtaining large sections of skin substitutes or natural skin from small portions acquired from the patient, donor, or substitute. Based on the innovation of this technology and the need to develop efficient CSSs, this work offers an update on bioreactor technology in the field of skin regeneration.
Collapse
Affiliation(s)
| | | | - Elena López-Ruiz
- Universidad de Jaen, 16747, Department of Health Sciences, Jaen, Andalucía, Spain;
| | | | - Juan Antonio Marchal
- University of Granada, humqn Anatomy and embriology, avd del conocimiento nº 11, Granada, Granada, Spain, 18016;
| |
Collapse
|
20
|
Cappellozza E, Zanzoni S, Malatesta M, Calderan L. Integrated Microscopy and Metabolomics to Test an Innovative Fluid Dynamic System for Skin Explants In Vitro. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:923-934. [PMID: 34311807 DOI: 10.1017/s1431927621012010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in vitro models are receiving growing attention in studies on skin permeation, penetration, and irritancy, especially for the preclinical development of new transcutaneous drugs. However, synthetic membranes or cell cultures are unable to effectively mimic the permeability and absorption features of the cutaneous barrier. The use of explanted skin samples maintained in a fluid dynamic environment would make it possible for an in vitro experimentation closer to in vivo physiological conditions. To this aim, in the present study, we have modified a bioreactor designed for cell culture to host explanted skin samples. The preservation of the skin was evaluated by combining light, transmission, and scanning electron microscopy, for the histo/cytological characterization, with nuclear magnetic resonance spectroscopy, for the identification in the culture medium of metabolites indicative of the functional state of the explants. Our morphological and metabolomics results demonstrated that fluid dynamic conditions ameliorate significantly the structural and functional preservation of skin explants in comparison with conventional culture conditions. Our in vitro system is, therefore, reliable to test novel therapeutic agents intended for transdermal administration in skin samples from biopsies or surgical materials, providing predictive information suitable for focused in vivo research and reducing animal experimentation.
Collapse
Affiliation(s)
- Enrica Cappellozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, School of Medicine and Surgery, University of Verona, Verona37134, Italy
| | - Serena Zanzoni
- Centro Piattaforme Tecnologiche, Spectroscopy, Diffractometry and Molecular Interaction Study Platform, University of Verona, Verona37100, Italy
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, School of Medicine and Surgery, University of Verona, Verona37134, Italy
| | - Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, School of Medicine and Surgery, University of Verona, Verona37134, Italy
| |
Collapse
|
21
|
Digital Twins for Tissue Culture Techniques—Concepts, Expectations, and State of the Art. Processes (Basel) 2021. [DOI: 10.3390/pr9030447] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Techniques to provide in vitro tissue culture have undergone significant changes during the last decades, and current applications involve interactions of cells and organoids, three-dimensional cell co-cultures, and organ/body-on-chip tools. Efficient computer-aided and mathematical model-based methods are required for efficient and knowledge-driven characterization, optimization, and routine manufacturing of tissue culture systems. As an alternative to purely experimental-driven research, the usage of comprehensive mathematical models as a virtual in silico representation of the tissue culture, namely a digital twin, can be advantageous. Digital twins include the mechanistic of the biological system in the form of diverse mathematical models, which describe the interaction between tissue culture techniques and cell growth, metabolism, and the quality of the tissue. In this review, current concepts, expectations, and the state of the art of digital twins for tissue culture concepts will be highlighted. In general, DT’s can be applied along the full process chain and along the product life cycle. Due to the complexity, the focus of this review will be especially on the design, characterization, and operation of the tissue culture techniques.
Collapse
|
22
|
Morrissey J, Mesquita FCP, Hochman-Mendez C, Taylor DA. Whole Heart Engineering: Advances and Challenges. Cells Tissues Organs 2021; 211:395-405. [PMID: 33640893 DOI: 10.1159/000511382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
Bioengineering a solid organ for organ replacement is a growing endeavor in regenerative medicine. Our approach - recellularization of a decellularized cadaveric organ scaffold with human cells - is currently the most promising approach to building a complex solid vascularized organ to be utilized in vivo, which remains the major unmet need and a key challenge. The 2008 publication of perfusion-based decellularization and partial recellularization of a rat heart revolutionized the tissue engineering field by showing that it was feasible to rebuild an organ using a decellularized extracellular matrix scaffold. Toward the goal of clinical translation of bioengineered tissues and organs, there is increasing recognition of the underlying need to better integrate basic science domains and industry. From the perspective of a research group focusing on whole heart engineering, we discuss the current approaches and advances in whole organ engineering research as they relate to this multidisciplinary field's 3 major pillars: organ scaffolds, large numbers of cells, and biomimetic bioreactor systems. The success of whole organ engineering will require optimization of protocols to produce biologically-active scaffolds for multiple organ systems, and further technological innovation both to produce the massive quantities of high-quality cells needed for recellularization and to engineer a bioreactor with physiologic stimuli to recapitulate organ function. Also discussed are the challenges to building an implantable vascularized solid organ.
Collapse
Affiliation(s)
- Jacquelynn Morrissey
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Fernanda C P Mesquita
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | - Camila Hochman-Mendez
- Regenerative Medicine Research Department, Texas Heart Institute, Houston, Texas, USA
| | | |
Collapse
|
23
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Peng B, Wang J, Li M, Wang M, Tan S, Zhang Z. Activation of different C–F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00376c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The graft polymerization of MMA initiated from PVDF-based fluoropolymers via single electron transfer controlled radical polymerization (SET-CRP) is reported.
Collapse
Affiliation(s)
- Biyun Peng
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Jian Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Meng Li
- School of Materials Science and Chemical Engineering
- Xi'an Technological University
- Xi'an 710032
- P. R. China
| | - Miao Wang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Shaobo Tan
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| | - Zhicheng Zhang
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry
- School of Chemistry
- Xi'an Jiaotong University
- Xi'an 710049
- P. R. China
| |
Collapse
|
25
|
Tirendi S, Saccà SC, Vernazza S, Traverso C, Bassi AM, Izzotti A. A 3D Model of Human Trabecular Meshwork for the Research Study of Glaucoma. Front Neurol 2020; 11:591776. [PMID: 33335510 PMCID: PMC7736413 DOI: 10.3389/fneur.2020.591776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glaucoma is a multifactorial syndrome in which the development of pro-apoptotic signals are the causes for retinal ganglion cell (RGC) loss. Most of the research progress in the glaucoma field have been based on experimentally inducible glaucoma animal models, which provided results about RGC loss after either the crash of the optic nerve or IOP elevation. In addition, there are genetically modified mouse models (DBA/2J), which make the study of hereditary forms of glaucoma possible. However, these approaches have not been able to identify all the molecular mechanisms characterizing glaucoma, possibly due to the disadvantages and limits related to the use of animals. In fact, the results obtained with small animals (i.e., rodents), which are the most commonly used, are often not aligned with human conditions due to their low degree of similarity with the human eye anatomy. Although the results obtained from non-human primates are in line with human conditions, they are little used for the study of glaucoma and its outcomes at cellular level due to their costs and their poor ease of handling. In this regard, according to at least two of the 3Rs principles, there is a need for reliable human-based in vitro models to better clarify the mechanisms involved in disease progression, and possibly to broaden the scope of the results so far obtained with animal models. The proper selection of an in vitro model with a "closer to in vivo" microenvironment and structure, for instance, allows for the identification of the biomarkers involved in the early stages of glaucoma and contributes to the development of new therapeutic approaches. This review summarizes the most recent findings in the glaucoma field through the use of human two- and three-dimensional cultures. In particular, it focuses on the role of the scaffold and the use of bioreactors in preserving the physiological relevance of in vivo conditions of the human trabecular meshwork cells in three-dimensional cultures. Moreover, data from these studies also highlight the pivotal role of oxidative stress in promoting the production of trabecular meshwork-derived pro-apoptotic signals, which are one of the first marks of trabecular meshwork damage. The resulting loss of barrier function, increase of intraocular pressure, as well the promotion of neuroinflammation and neurodegeneration are listed as the main features of glaucoma. Therefore, a better understanding of the first molecular events, which trigger the glaucoma cascade, allows the identification of new targets for an early neuroprotective therapeutic approach.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Sergio Claudio Saccà
- Ophthalmology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Vernazza
- Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Bietti, Rome, Italy
| | - Carlo Traverso
- Clinica Oculistica, Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili, University of Genoa and Istituto di Ricovero e Cura a Carattere Scientifico Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
- Mutagenesis Unit, IST National Institute for Cancer Research, Istituto di Ricovero e Cura a Carattere Scientifico San Martino University Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
26
|
Gensler M, Leikeim A, Möllmann M, Komma M, Heid S, Müller C, Boccaccini AR, Salehi S, Groeber-Becker F, Hansmann J. 3D printing of bioreactors in tissue engineering: A generalised approach. PLoS One 2020; 15:e0242615. [PMID: 33253240 PMCID: PMC7703892 DOI: 10.1371/journal.pone.0242615] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
3D printing is a rapidly evolving field for biological (bioprinting) and non-biological applications. Due to a high degree of freedom for geometrical parameters in 3D printing, prototype printing of bioreactors is a promising approach in the field of Tissue Engineering. The variety of printers, materials, printing parameters and device settings is difficult to overview both for beginners as well as for most professionals. In order to address this problem, we designed a guidance including test bodies to elucidate the real printing performance for a given printer system. Therefore, performance parameters such as accuracy or mechanical stability of the test bodies are systematically analysed. Moreover, post processing steps such as sterilisation or cleaning are considered in the test procedure. The guidance presented here is also applicable to optimise the printer settings for a given printer device. As proof of concept, we compared fused filament fabrication, stereolithography and selective laser sintering as the three most used printing methods. We determined fused filament fabrication printing as the most economical solution, while stereolithography is most accurate and features the highest surface quality. Finally, we tested the applicability of our guidance by identifying a printer solution to manufacture a complex bioreactor for a perfused tissue construct. Due to its design, the manufacture via subtractive mechanical methods would be 21-fold more expensive than additive manufacturing and therefore, would result in three times the number of parts to be assembled subsequently. Using this bioreactor we showed a successful 14-day-culture of a biofabricated collagen-based tissue construct containing human dermal fibroblasts as the stromal part and a perfusable central channel with human microvascular endothelial cells. Our study indicates how the full potential of biofabrication can be exploited, as most printed tissues exhibit individual shapes and require storage under physiological conditions, after the bioprinting process.
Collapse
Affiliation(s)
- Marius Gensler
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- * E-mail:
| | - Anna Leikeim
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Marc Möllmann
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Miriam Komma
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne Heid
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudia Müller
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sahar Salehi
- Department Biomaterials, University of Bayreuth, Bayreuth, Germany
| | - Florian Groeber-Becker
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research, Würzburg, Germany
| | - Jan Hansmann
- Department Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Faculty of Electrical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany
| |
Collapse
|
27
|
Preliminary evaluations of 3-dimensional human skin models for their ability to facilitate in vitro the long-term development of the debilitating obligatory human parasite Onchocerca volvulus. PLoS Negl Trop Dis 2020; 14:e0008503. [PMID: 33151944 PMCID: PMC7671495 DOI: 10.1371/journal.pntd.0008503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/17/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022] Open
Abstract
Onchocerciasis also known as river blindness is a neglected tropical disease and the world's second-leading infectious cause of blindness in humans; it is caused by Onchocerca volvulus. Current treatment with ivermectin targets microfilariae and transmission and does not kill the adult parasites, which reside within subcutaneous nodules. To support the development of macrofilaricidal drugs that target the adult worm to further support the elimination of onchocerciasis, an in-depth understanding of O. volvulus biology especially the factors that support the longevity of these worms in the human host (>10 years) is required. However, research is hampered by a lack of access to adult worms. O. volvulus is an obligatory human parasite and no small animal models that can propagate this parasite were successfully developed. The current optimized 2-dimensional (2-D) in vitro culturing method starting with O. volvulus infective larvae does not yet support the development of mature adult worms. To overcome these limitations, we have developed and applied 3-dimensional (3-D) culture systems with O. volvulus larvae that simulate the human in vivo niche using in vitro engineered skin and adipose tissue. Our proof of concept studies have shown that an optimized indirect co-culture of in vitro skin tissue supported a significant increase in growth of the fourth-stage larvae to the pre-adult stage with a median length of 816–831 μm as compared to 767 μm of 2-D cultured larvae. Notably, when larvae were co-cultured directly with adipose tissue models, a significant improvement for larval motility and thus fitness was observed; 95% compared to 26% in the 2-D system. These promising co-culture concepts are a first step to further optimize the culturing conditions and improve the long-term development of adult worms in vitro. Ultimately, it could provide the filarial research community with a valuable source of O. volvulus worms at various developmental stages, which may accelerate innovative unsolved biomedical inquiries into the parasite’s biology. The filarial nematode Onchocerca volvulus is an obligatory human parasite and the causative agent of onchocerciasis, better known as river blindness. In 2017, more than 20 million infections with O. volvulus were estimated worldwide, 99% of the patients live in Africa. Current international control programs focus on the reduction of microfilaridermia by mass drug administration of ivermectin. However, to meet the elimination goals, additional treatment strategies are needed that also target the adult worms. As this parasite is obliged to humans, there are no small animal models that sustain the full life cycle of the parasite, thus greatly impeding the research on this filarial nematode. To overcome these drawbacks, we have developed co-culture systems based on engineered human skin and adipose tissue that represent the in vivo niche of O. volvulus adult worms that improved the culturing conditions and the development to the pre-adult stages of the parasite. Furthermore, our new culture approach could significantly reduce the use of surrogate animal models currently used for macrofilaricidal drug testing.
Collapse
|
28
|
Putame G, Gabetti S, Carbonaro D, Meglio FD, Romano V, Sacco AM, Belviso I, Serino G, Bignardi C, Morbiducci U, Castaldo C, Massai D. Compact and tunable stretch bioreactor advancing tissue engineering implementation. Application to engineered cardiac constructs. Med Eng Phys 2020; 84:1-9. [DOI: 10.1016/j.medengphy.2020.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 12/24/2022]
|
29
|
Castro N, Ribeiro S, Fernandes MM, Ribeiro C, Cardoso V, Correia V, Minguez R, Lanceros‐Mendez S. Physically Active Bioreactors for Tissue Engineering Applications. ACTA ACUST UNITED AC 2020; 4:e2000125. [DOI: 10.1002/adbi.202000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Indexed: 01/09/2023]
Affiliation(s)
- N. Castro
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
| | - S. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- Centre of Molecular and Environmental Biology (CBMA) University of Minho Campus de Gualtar Braga 4710‐057 Portugal
| | - M. M. Fernandes
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - C. Ribeiro
- Physics Centre University of Minho Campus de Gualtar Braga 4710‐057 Portugal
- CEB – Centre of Biological Engineering University of Minho Braga 4710‐057 Portugal
| | - V. Cardoso
- CMEMS‐UMinho Universidade do Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - V. Correia
- Algoritmi Research Centre University of Minho Campus de Azurém Guimarães 4800‐058 Portugal
| | - R. Minguez
- Department of Graphic Design and Engineering Projects University of the Basque Country UPV/EHU Bilbao E‐48013 Spain
| | - S. Lanceros‐Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures University of the Basque Country UPV/EHU Science Park Leioa E‐48940 Spain
- IKERBASQUE Basque Foundation for Science Bilbao E‐48013 Spain
| |
Collapse
|
30
|
Frassica MT, Grunlan MA. Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair. ACS Biomater Sci Eng 2020; 6:4324-4336. [PMID: 33455185 DOI: 10.1021/acsbiomaterials.0c00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Regenerative engineering holds the potential to treat clinically pervasive osteochondral defects (OCDs). In a synthetic materials-guided approach, the scaffold's chemical and physical properties alone instruct cellular behavior in order to effect regeneration, referred to herein as "instructive" properties. While this alleviates the costs and off-target risks associated with exogenous growth factors, the scaffold must be potently instructive to achieve tissue growth. Moreover, toward achieving functionality, such a scaffold should also recapitulate the spatial complexity of the osteochondral tissues. Thus, in addition to the regeneration of the articular cartilage and underlying cancellous bone, the complex osteochondral interface, composed of calcified cartilage and subchondral bone, should also be restored. In this Perspective, we highlight recent synthetic-based, instructive osteochondral scaffolds that have leveraged new material chemistries as well as innovative fabrication strategies. In particular, scaffolds with spatially complex chemical and morphological features have been prepared with electrospinning, solvent-casting-particulate-leaching, freeze-drying, and additive manufacturing. While few synthetic scaffolds have advanced to clinical studies to treat OCDs, these recent efforts point to the promising use of the chemical and physical properties of synthetic materials for regeneration of osteochondral tissues.
Collapse
Affiliation(s)
- Michael T Frassica
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States
| | - Melissa A Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-2120, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843-3003, United States.,Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| |
Collapse
|
31
|
Tsiapalis D, De Pieri A, Spanoudes K, Sallent I, Kearns S, Kelly JL, Raghunath M, Zeugolis DI. The synergistic effect of low oxygen tension and macromolecular crowding in the development of extracellular matrix-rich tendon equivalents. Biofabrication 2020; 12:025018. [PMID: 31855856 DOI: 10.1088/1758-5090/ab6412] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular therapies play an important role in tendon tissue engineering, with tenocytes being the most prominent and potent cell population available. However, for the development of a rich extracellular matrix tenocyte-assembled tendon equivalent, prolonged in vitro culture is required, which is associated with phenotypic drift. Recapitulation of tendon tissue microenvironment in vitro with cues that enhance and accelerate extracellular matrix synthesis and deposition, whilst maintaining tenocyte phenotype, may lead to functional cell therapies. Herein, we assessed the synergistic effect of low oxygen tension (enhances extracellular matrix synthesis) and macromolecular crowding (enhances extracellular matrix deposition) in human tenocyte culture. Protein analysis demonstrated that human tenocytes at 2% oxygen tension and with 50 μg ml-1 carrageenan (macromolecular crowder used) significantly increased synthesis and deposition of collagen types I, III, V and VI. Gene analysis at day 7 illustrated that human tenocytes at 2% oxygen tension and with 50 μg ml-1 carrageenan significantly increased the expression of prolyl 4-hydroxylase subunit alpha 1, procollagen-lysine 2- oxoglutarate 5-dioxygenase 2, scleraxis, tenomodulin and elastin, whilst chondrogenic (e.g. runt-related transcription factor 2, cartilage oligomeric matrix protein, aggrecan) and osteogenic (e.g. secreted phosphoprotein 1, bone gamma-carboxyglutamate protein) trans-differentiation markers were significantly down-regulated or remained unchanged. Collectively, our data clearly illustrates the beneficial synergistic effect of low oxygen tension and macromolecular crowding in the accelerated development of tissue equivalents.
Collapse
Affiliation(s)
- Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland. Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schulte LN, Schweinlin M, Westermann AJ, Janga H, Santos SC, Appenzeller S, Walles H, Vogel J, Metzger M. An Advanced Human Intestinal Coculture Model Reveals Compartmentalized Host and Pathogen Strategies during Salmonella Infection. mBio 2020; 11:e03348-19. [PMID: 32071273 PMCID: PMC7029144 DOI: 10.1128/mbio.03348-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens.IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen's infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.
Collapse
Affiliation(s)
- Leon N Schulte
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Institute for Lung Research, Philipps University, Marburg, Germany
| | - Matthias Schweinlin
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | | | - Sara C Santos
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Silke Appenzeller
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Core Facility Tissue Engineering, University of Magdeburg, Magdeburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Centre for Regenerative Therapies TLC-RT, Würzburg, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, Würzburg, Germany
- Fraunhofer Institute for Silicate Research ISC, Translational Centre for Regenerative Therapies TLC-RT, Würzburg, Germany
| |
Collapse
|
33
|
Silva JC, Moura CS, Borrecho G, de Matos APA, da Silva CL, Cabral JMS, Bártolo PJ, Linhardt RJ, Ferreira FC. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Biotechnol J 2019; 15:e1900078. [PMID: 31560160 DOI: 10.1002/biot.201900078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/09/2019] [Indexed: 01/12/2023]
Abstract
Novel bioengineering strategies for the ex vivo fabrication of native-like tissue-engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost-effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone-marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(ɛ-caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC-PCL constructs are then transferred to 3D-extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8-fold) in comparison to their non-perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.
Collapse
Affiliation(s)
- João C Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal.,Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Carla S Moura
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande, 2430-028, Portugal
| | - Gonçalo Borrecho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Quinta da Granja, Monte da Caparica, 2829-511, Caparica, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| | - Paulo J Bártolo
- School of Mechanical and Aerospace and Civil Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biological Sciences, Biomedical Engineering and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB - Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, 1049-001, Portugal
| |
Collapse
|
34
|
A fully automated bioreactor system for precise control of stem cell proliferation and differentiation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Schmid J, Schwarz S, Meier-Staude R, Sudhop S, Clausen-Schaumann H, Schieker M, Huber R. A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures. Tissue Eng Part C Methods 2019; 24:585-595. [PMID: 30234443 PMCID: PMC6208160 DOI: 10.1089/ten.tec.2018.0204] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bioreactor systems facilitate three-dimensional (3D) cell culture by coping with limitations of static cultivation techniques. To allow for the investigation of proper cultivation conditions and the reproducible generation of tissue-engineered grafts, a bioreactor system, which comprises the control of crucial cultivation parameters in independent-operating parallel bioreactors, is beneficial. Furthermore, the use of a bioreactor as an automated cell seeding tool enables even cell distributions on stable scaffolds. In this study, we developed a perfusion microbioreactor system, which enables the cultivation of 3D cell cultures in an oxygen-controlled environment in up to four independent-operating bioreactors. Therefore, perfusion microbioreactors were designed with the help of computer-aided design, and manufactured using the 3D printing technologies stereolithography and fused deposition modeling. A uniform flow distribution in the microbioreactor was shown using a computational fluid dynamics model. For oxygen measurements, microsensors were integrated in the bioreactors to measure the oxygen concentration (OC) in the geometric center of the 3D cell cultures. To control the OC in each bioreactor independently, an automated feedback loop was developed, which adjusts the perfusion velocity according to the oxygen sensor signal. Furthermore, an automated cell seeding protocol was implemented to facilitate the even distribution of cells within a stable scaffold in a reproducible way. As proof of concept, the human mesenchymal stem cell line SCP-1 was seeded on bovine cancellous bone matrix of 1 cm3 and cultivated in the developed microbioreactor system at different oxygen levels. The oxygen control was capable to maintain preset oxygen levels ±0.5% over a cultivation period of several days. Using the automated cell seeding procedure resulted in evenly distributed cells within a stable scaffold. In summary, the developed microbioreactor system enables the cultivation of 3D cell cultures in an automated and thus reproducible way by providing up to four independently operating, oxygen-controlled bioreactors. In combination with the automated cell seeding procedure, the bioreactor system opens up new possibilities to conduct more reproducible experiments to investigate optimal cultivation parameters and to generate tissue-engineering grafts in an oxygen-controlled environment.
Collapse
Affiliation(s)
- Jakob Schmid
- 1 Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences Munich , Munich, Germany .,2 Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University Munich , Munich, Germany .,3 Department of Industrial Engineering and Management, University of Applied Sciences Munich , Munich, Germany
| | - Sascha Schwarz
- 1 Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences Munich , Munich, Germany .,4 Department of Mechanical Engineering, Technical University Munich , Garching, Germany
| | - Robert Meier-Staude
- 3 Department of Industrial Engineering and Management, University of Applied Sciences Munich , Munich, Germany
| | - Stefanie Sudhop
- 1 Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences Munich , Munich, Germany .,5 Center for Nanoscience (CeNS), Ludwig-Maximilians University Munich , Munich, Germany
| | - Hauke Clausen-Schaumann
- 1 Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences Munich , Munich, Germany .,5 Center for Nanoscience (CeNS), Ludwig-Maximilians University Munich , Munich, Germany
| | - Matthias Schieker
- 2 Laboratory of Experimental Surgery and Regenerative Medicine (ExperiMed), Ludwig-Maximilians University Munich , Munich, Germany
| | - Robert Huber
- 1 Center for Applied Tissue Engineering and Regenerative Medicine (CANTER), University of Applied Sciences Munich , Munich, Germany .,3 Department of Industrial Engineering and Management, University of Applied Sciences Munich , Munich, Germany
| |
Collapse
|
36
|
Pereira H, Fatih Cengiz I, Gomes S, Espregueira-Mendes J, Ripoll PL, Monllau JC, Reis RL, Oliveira JM. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev 2019; 4:279-295. [PMID: 31210969 PMCID: PMC6549113 DOI: 10.1302/2058-5241.4.180103] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Clinical management of meniscal injuries has changed radically in recent years. We have moved from the model of systematic tissue removal (meniscectomy) to understanding the need to preserve the tissue.Based on the increased knowledge of the basic science of meniscal functions and their role in joint homeostasis, meniscus preservation and/or repair, whenever indicated and possible, are currently the guidelines for management.However, when repair is no longer possible or when facing the fact of the previous partial, subtotal or total loss of the meniscus, meniscus replacement has proved its clinical value. Nevertheless, meniscectomy remains amongst the most frequent orthopaedic procedures.Meniscus replacement is currently possible by means of meniscal allograft transplantation (MAT) which provides replacement of the whole meniscus with or without bone plugs/slots. Partial replacement has been achieved by means of meniscal scaffolds (mainly collagen or polyurethane-based). Despite the favourable clinical outcomes, it is still debatable whether MAT is capable of preventing progression to osteoarthritis. Moreover, current scaffolds have shown some fundamental limitations, such as the fact that the newly formed tissue may be different from the native fibrocartilage of the meniscus.Regenerative tissue engineering strategies have been used in an attempt to provide a new generation of meniscal implants, either for partial or total replacement. The goal is to provide biomaterials (acellular or cell-seeded constructs) which provide the biomechanical properties but also the biological features to replace the loss of native tissue. Moreover, these approaches include possibilities for patient-specific implants of correct size and shape, as well as advanced strategies combining cells, bioactive agents, hydrogels or gene therapy.Herein, the clinical evidence and tips concerning MAT, currently available meniscus scaffolds and future perspectives are discussed. Cite this article: EFORT Open Rev 2019;4 DOI: 10.1302/2058-5241.4.180103.
Collapse
Affiliation(s)
- Hélder Pereira
- Orthopedic Department of Póvoa de Varzim - Vila do Conde Hospital Centre, Vila do Conde, Portugal
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ibrahim Fatih Cengiz
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sérgio Gomes
- International Centre of Sports Traumatology of the Ave, Vila do Conde, Portugal
| | - João Espregueira-Mendes
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Porto, Portugal
- Orthopedic Department, University of Minho, Braga, Portugal
| | - Pedro L. Ripoll
- Ripoll y De Prado Sports Clinic, Murcia-Madrid, FIFA Medical Centre of Excellence, Madrid, Spain
| | - Joan C. Monllau
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rui L. Reis
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| | - J. Miguel Oliveira
- 3Bs Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Orthopaedic Department, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães, Portugal
| |
Collapse
|
37
|
Hansmann J, Egger D, Kasper C. Advanced Dynamic Cell and Tissue Culture. Bioengineering (Basel) 2018; 5:bioengineering5030065. [PMID: 30103477 PMCID: PMC6163565 DOI: 10.3390/bioengineering5030065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/09/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Roentgenring 11, 97070 Wuerzburg, Germany.
- Translational Center Regenerative Therapies, Fraunhofer Institute for Silicate Research ISC, Roentgenring 11, 97070 Wuerzburg, Germany.
| | - Dominik Egger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
38
|
Ding I, Shendi DM, Rolle MW, Peterson AM. Growth-Factor-Releasing Polyelectrolyte Multilayer Films to Control the Cell Culture Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1178-1189. [PMID: 28976765 DOI: 10.1021/acs.langmuir.7b02846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are of great interest as cell culture surfaces because of their ability to modify topography and surface energy and release biologically relevant molecules such as growth factors. In this work, fibroblast growth factor 2 (FGF2) was adsorbed directly onto polystyrene, plasma-treated polystyrene, and glass surfaces with a poly(methacrylic acid) and poly-l-histidine PEM assembled above it. Up to 14 ng/cm2 of FGF2 could be released from plasma-treated polystyrene surfaces over the course of 7 days with an FGF2 solution concentration of 100 μg/mL applied during the adsorption process. This release rate could be modulated by adjusting the adsorption concentration, decreasing to as low as 2 ng/cm2 total release over 7 days using a 12.5 μg/mL FGF2 solution. The surface energy and roughness could also be regulated using the adsorbed PEM. These properties were found to be substrate- and first-layer-dependent, supporting current theories of PEM assembly. When released, FGF2 from the PEMs was found to significantly enhance fibroblast proliferation as compared to culture conditions without FGF2. The results showed that growth factor release profiles and surface properties are easily controllable through modification of the PEM assembly steps and that these strategies can be effectively applied to common cell culture surfaces to control the cell fate.
Collapse
Affiliation(s)
- Ivan Ding
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, Worcester Polytechnic Institute , 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Dalia M Shendi
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, Worcester Polytechnic Institute , 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Marsha W Rolle
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, Worcester Polytechnic Institute , 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Amy M Peterson
- Department of Chemical Engineering and ‡Department of Biomedical Engineering, Worcester Polytechnic Institute , 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
39
|
Hirashima S, Ohta K, Hagihara M, Shimizu M, Kanazawa T, Nakamura KI. Effect of Surface Texture of a Polyimide Porous Membrane on the Bone Formation Rate. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine
- Dental and Oral Medical Center, Kurume University School of Medicine
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine
- Advanced Imaging Research Center, Kurume University School of Medicine
| | - Masahiko Hagihara
- Ube Industries, LTD. Corporate Research and Development, Hagihara Research Group
| | - Motohisa Shimizu
- Ube Industries, LTD. Corporate Research and Development, Hagihara Research Group
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine
| | - Kei-ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine
| |
Collapse
|
40
|
A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci Rep 2017; 7:16997. [PMID: 29208903 PMCID: PMC5717235 DOI: 10.1038/s41598-017-16523-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.
Collapse
|
41
|
Model of Murine Ventricular Cardiac Tissue for In Vitro Kinematic-Dynamic Studies of Electromagnetic and β-Adrenergic Stimulation. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:4204085. [PMID: 29065600 PMCID: PMC5591919 DOI: 10.1155/2017/4204085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
In a model of murine ventricular cardiac tissue in vitro, we have studied the inotropic effects of electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of beating cardiac syncytia starting from the video registration of their contraction movement. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic effect of isoproterenol and to elicit an antihypertrophic response.
Collapse
|
42
|
Tang X, Teng S, Liu C, Jagodzinski M. Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. J Biomed Mater Res A 2017; 105:3445-3455. [DOI: 10.1002/jbm.a.36197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyu Tang
- Department of Radiology; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan P. R. China
| | - Songsong Teng
- Department of Orthopedic Trauma; Hanover Medical School (MHH); Hanover Germany
| | - Chaoxu Liu
- Department of Orthopedics; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan P. R. China
| | - Michael Jagodzinski
- Department of Orthopedic Trauma; Hanover Medical School (MHH); Hanover Germany
| |
Collapse
|
43
|
Towards a Bioengineered Kidney: Recellularization Strategies for Decellularized Native Kidney Scaffolds. Int J Artif Organs 2017; 40:150-158. [DOI: 10.5301/ijao.5000564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
Patients with end-stage renal disease often undergo dialysis as a partial substitute for kidney function while waiting for their only treatment option: a kidney transplant. Several research directions emerged for alternatives in support of the ever-growing numbers of patients. Recent years brought big steps forward in the field, with researchers questioning and improving the current dialysis devices as well as moving towards the design of a bioengineered kidney. Whole-organ engineering is also being explored as a possibility, making use of animal or human kidney scaffolds for engineering a transplantable organ. While this is not a new strategy, having been applied so far for thin tissues, it is a novel approach for complex organs such as the kidneys. Kidneys can be decellularized and the remaining scaffold consisting of an extracellular matrix can be repopulated with (autologous) cells, aiming at growing ex vivo a fully transplantable organ. In a broader view, such organs might also be used for a better understanding of fundamental biological concepts and disease mechanisms, drug screening and toxicological investigations, opening new pathways in the treatment of kidney disease. Decellularization of whole organs has been widely explored and described; therefore, this manuscript only briefly reviews some important considerations with an emphasis on scaffold decontamination, but focuses further on recellularization strategies. Critical aspects, including cell types and sources that can be used for recellularization, seeding strategies and possible applications beyond renal replacement are discussed.
Collapse
|
44
|
Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture. Bioengineering (Basel) 2017; 4:bioengineering4020051. [PMID: 28952530 PMCID: PMC5590478 DOI: 10.3390/bioengineering4020051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/11/2017] [Accepted: 05/23/2017] [Indexed: 12/19/2022] Open
Abstract
The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.
Collapse
|
45
|
Al-Himdani S, Jessop ZM, Al-Sabah A, Combellack E, Ibrahim A, Doak SH, Hart AM, Archer CW, Thornton CA, Whitaker IS. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice. Front Surg 2017; 4:4. [PMID: 28280722 PMCID: PMC5322281 DOI: 10.3389/fsurg.2017.00004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 01/05/2023] Open
Abstract
Recent advances in microsurgery, imaging, and transplantation have led to significant refinements in autologous reconstructive options; however, the morbidity of donor sites remains. This would be eliminated by successful clinical translation of tissue-engineered solutions into surgical practice. Plastic surgeons are uniquely placed to be intrinsically involved in the research and development of laboratory engineered tissues and their subsequent use. In this article, we present an overview of the field of tissue engineering, with the practicing plastic surgeon in mind. The Medical Research Council states that regenerative medicine and tissue engineering “holds the promise of revolutionizing patient care in the twenty-first century.” The UK government highlighted regenerative medicine as one of the key eight great technologies in their industrial strategy worthy of significant investment. The long-term aim of successful biomanufacture to repair composite defects depends on interdisciplinary collaboration between cell biologists, material scientists, engineers, and associated medical specialties; however currently, there is a current lack of coordination in the field as a whole. Barriers to translation are deep rooted at the basic science level, manifested by a lack of consensus on the ideal cell source, scaffold, molecular cues, and environment and manufacturing strategy. There is also insufficient understanding of the long-term safety and durability of tissue-engineered constructs. This review aims to highlight that individualized approaches to the field are not adequate, and research collaboratives will be essential to bring together differing areas of expertise to expedite future clinical translation. The use of tissue engineering in reconstructive surgery would result in a paradigm shift but it is important to maintain realistic expectations. It is generally accepted that it takes 20–30 years from the start of basic science research to clinical utility, demonstrated by contemporary treatments such as bone marrow transplantation. Although great advances have been made in the tissue engineering field, we highlight the barriers that need to be overcome before we see the routine use of tissue-engineered solutions.
Collapse
Affiliation(s)
- Sarah Al-Himdani
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Zita M Jessop
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Ayesha Al-Sabah
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School , Swansea , UK
| | - Emman Combellack
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| | - Amel Ibrahim
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK; Institute of Child Health, University College London, London, UK
| | - Shareen H Doak
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Andrew M Hart
- Canniesburn Plastic Surgery Unit, Centre for Cell Engineering, University of Glasgow , Glasgow , UK
| | - Charles W Archer
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; Cartilage Biology Research Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Catherine A Thornton
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; Human Immunology Group, Institute of Life Science, Swansea University Medical School, Swansea, UK
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Research Group (ReconRegen), Institute of Life Science, Swansea University Medical School, Swansea, UK; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, UK
| |
Collapse
|
46
|
Treatments of Meniscus Lesions of the Knee: Current Concepts and Future Perspectives. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0025-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced Regenerative Strategies for Human Knee Meniscus. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 2017; 5:1382-1392. [DOI: 10.1039/c7bm00146k] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone tissue engineering uses the principles and methods of engineering and life sciences to study bone structure, function and growth mechanism for the purposes of repairing, maintaining and improving damaged bone tissue.
Collapse
Affiliation(s)
- Zhichao Hao
- Guanghua School of Stomatology
- Hospital of Stomatology
- Sun Yat-sen University
- Guangdong Provincial Key Laboratory of Stomatology
- Guangzhou 510055
| | - Zhenhua Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Keqing Huang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | | | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
49
|
|
50
|
Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, Schweinlin M, Walles H, Hansmann J. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J 2016; 12. [PMID: 27492568 PMCID: PMC5333457 DOI: 10.1002/biot.201600326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 12/24/2022]
Abstract
Tissue Engineering (TE) bears potential to overcome the persistent shortage of donor organs in transplantation medicine. Additionally, TE products are applied as human test systems in pharmaceutical research to close the gap between animal testing and the administration of drugs to human subjects in clinical trials. However, generating a tissue requires complex culture conditions provided by bioreactors. Currently, the translation of TE technologies into clinical and industrial applications is limited due to a wide range of different tissue‐specific, non‐disposable bioreactor systems. To ensure a high level of standardization, a suitable cost‐effectiveness, and a safe graft production, a generic modular bioreactor platform was developed. Functional modules provide robust control of culture processes, e.g. medium transport, gas exchange, heating, or trapping of floating air bubbles. Characterization revealed improved performance of the modules in comparison to traditional cell culture equipment such as incubators, or peristaltic pumps. By combining the modules, a broad range of culture conditions can be achieved. The novel bioreactor platform allows using disposable components and facilitates tissue culture in closed fluidic systems. By sustaining native carotid arteries, engineering a blood vessel, and generating intestinal tissue models according to a previously published protocol the feasibility and performance of the bioreactor platform was demonstrated.
Collapse
Affiliation(s)
- Sebastian Schuerlein
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Thomas Schwarz
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Steffan Krziminski
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Sabine Gätzner
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Anke Hoppensack
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Ivo Schwedhelm
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Matthias Schweinlin
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
| | - Heike Walles
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| | - Jan Hansmann
- University Hospital Wuerzburg; Department Tissue Engineering and Regenerative Medicine (TERM); Wuerzburg Germany
- Translational Center Wuerzburg of the Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB); Wuerzburg Germany
| |
Collapse
|