1
|
Sukkasam N, Leksingto J, Incharoensakdi A, Monshupanee T. Chemical Triggering Cyanobacterial Glycogen Accumulation: Methyl Viologen Treatment Increases Synechocystis sp. PCC 6803 Glycogen Storage by Enhancing Levels of Gene Transcript and Substrates in Glycogen Synthesis. PLANT & CELL PHYSIOLOGY 2023; 63:2027-2041. [PMID: 36197756 DOI: 10.1093/pcp/pcac136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Two-stage cultivation is effective for glycogen production by cyanobacteria. Cells were first grown under adequate nitrate supply (BG11) to increase biomass and subsequently transferred to nitrogen deprivation (-N) to stimulate glycogen accumulation. However, the two-stage method is time-consuming and requires extensive energy. Thus, one-stage cultivation that enables both cell growth and glycogen accumulation is advantageous. Such one-stage method could be achieved using a chemical triggering glycogen storage. However, there is a limited study on such chemicals. Here, nine compounds previously reported to affect cyanobacterial cellular functions were examined in Synechocystis sp. PCC 6803. 2-Phenylethanol, phenoxyethanol, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and methyl viologen can stimulate glycogen accumulation. The oxidative stress agent, methyl viologen significantly increased glycogen levels up to 57% and 69% [w/w dry weight (DW)] under BG11 and -N cultivation, respectively. One-stage cultivation where methyl viologen was directly added to the pre-grown culture enhanced glycogen storage to 53% (w/w DW), compared to the 10% (w/w DW) glycogen level of the control cells without methyl viologen. Methyl viologen treatment reduced the contents of total proteins (including phycobiliproteins) but caused increased transcript levels of glycogen synthetic genes and elevated levels of metabolite substrates for glycogen synthesis. Metabolomic results suggested that upon methyl viologen treatment, proteins degraded to amino acids, some of which could be used as a carbon source for glycogen synthesis. Results of oxygen evolution and metabolomic analysis suggested that photosynthesis and carbon fixation were not completely inhibited upon methyl viologen treatment, and these two processes may partially generate upstream metabolites required for glycogen synthesis.
Collapse
Affiliation(s)
- Nannaphat Sukkasam
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jidapa Leksingto
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
You X, Chen C, Yang L, Xia X, Zhang Y, Zhou X. Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158722. [PMID: 36108851 DOI: 10.1016/j.scitotenv.2022.158722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide quantum dots (GOQDs) can convert the ultraviolet (200- 380 nm) into available wavelength (400- 700 nm) for microalgae cultivation. However, it has not been applied in large-scale microalgae culture due to its high cost and difficulties in recovery. This study proposed a new strategy for the sustainable use of GOQDs, namely, GOQDs solution was added to the outer sandwich of the reactor. Herein, the effects of direct and indirect exposure of different GOQDs concentrations (0, 100, and 1000 mg/L) on the microalgae culture were compared. When microalgae were directly exposed to the GOQDs, 100 mg/L of GOQDs increased the biomass production of microalgae by 24.0 %, while 1000 mg/L of GOQDs decreased biomass production by 31 %. High concentration of GOQDs (direct exposure) could cause extra oxidative stress in the microalgae cells and result in a significant reduction of pigment content. When microalgae were indirectly exposed to the GOQDs, the increased concentration of GOQDs enhanced the growth of microalgae. Compared to the blank group, 1000 mg/L of GOQDs increased the microalgae biomass production and bioenergy by 14.1 % and 40.17 %, respectively. The indirect exposure of GOQDs can effectively avoid photo-oxidation and organelle damage to the microalgae cells. Overall, the indirect exposure of GOQDs is a sustainable way for effectively promoting microalgae growth and reducing the application cost.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Can Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Xuefen Xia
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| |
Collapse
|
3
|
Kumar N, Kar S, Shukla P. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria. BIORESOURCE TECHNOLOGY 2022; 366:128104. [PMID: 36257524 DOI: 10.1016/j.biortech.2022.128104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacteria are known for their metabolic potential and carbon capture and sequestration capabilities. These cyanobacteria are not only an effective source for carbon minimization and resource mobilization into value-added products for biotechnological gains. The present review focuses on the detailed description of carbon capture mechanisms exerted by the various cyanobacterial strains, the role of important regulatory pathways, and their subsequent genes responsible for such mechanisms. Moreover, this review will also describe effectual mechanisms of central carbon metabolism like isoprene synthesis, ethylene production, MEP pathway, and the role of Glyoxylate shunt in the carbon sequestration mechanisms. This review also describes some interesting facets of using carbon assimilation mechanisms for valuable bio-products. The role of regulatory pathways and multi-omics approaches in cyanobacteria will not only be crucial towards improving carbon utilization but also will give new insights into utilizing cyanobacterial bioresource for carbon neutrality.
Collapse
Affiliation(s)
- Niwas Kumar
- Society for Research and Initiatives for Sustainable Technologies and Institutions, Navrangapura, Ahmedabad 380009, India
| | - Srabani Kar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Pichaiyotinkul P, Ruankaew N, Incharoensakdi A, Monshupanee T. Enhanced polyglucan contents in divergent cyanobacteria under nutrient-deprived photoautotrophy: transcriptional and metabolic changes in response to increased glycogen accumulation in nitrogen-deprived Synechocystis sp. PCC 6803. World J Microbiol Biotechnol 2022; 39:27. [PMID: 36437374 DOI: 10.1007/s11274-022-03476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Cyanobacteria accumulate polyglucan as main carbohydrate storage. Here, the cellular polyglucan content was determined in 27 cyanobacterial strains from 25 genera. The polyglucan contents were significantly enhanced in 20 and 23 strains under nitrogen (-N) and phosphate (-P) deprivation, respectively. High polyglucan accumulation was not associated with particular evolutionary groups but was strain specific. The highest polyglucan accumulations of 46.2% and 52.5% (w/w dry weight; DW) were obtained under -N in Synechocystis sp. PCC 6803 (hereafter Synechocystis) and Chroococcus limneticus, respectively. In Synechocystis, 80-97% (w/w) of the polyglucan was glycogen. Transcriptome and metabolome analyses during glycogen accumulation under -N were determined in Synechocystis. The genes responsible for the supply of the substrates for glycogen synthesis: glycerate-1,3-phosphate and fructose-1,6-phosphate, were significantly up-regulated. The genes encoding the enzymes converting succinate to malate in TCA cycle, were significantly down-regulated. The genes encoding the regulator proteins which inhibits metabolism at lower part of glycolysis pathway, were also significantly up-regulated. The transcript levels of PII protein and the level of 2-oxoglutarate, which form a complex that inhibits lower part of glycolysis pathway, were significantly increased. Thus, the increased Synechocystis glycogen accumulation under -N was likely to be mediated by the increased supply of glycogen synthesis substrates and metabolic inhibitions at lower part of glycolysis pathway and TCA cycle.
Collapse
Affiliation(s)
| | - Nathanich Ruankaew
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.,Academy of Science, Royal Society of Thailand, 10300, Bangkok, Thailand
| | - Tanakarn Monshupanee
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 10330, Bangkok, Thailand.
| |
Collapse
|
5
|
Mirzaei D, Jazini M, Rahimi M, Mahdieh M, Karimi K. Production of astaxanthin, ethanol and methane from Chromochloris zofingiensis microalga in an integrated biorefinery. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Mensi F, Ben Ghedifa A, Rajhi H. Effects of seawater sulfur starvation and enrichment on Gracilaria gracilis growth and biochemical composition. Sci Rep 2022; 12:11095. [PMID: 35773380 PMCID: PMC9247063 DOI: 10.1038/s41598-022-15303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Gracilaria, largest biomass producer in coastal regions, encompasses a wide range of species including Gracilaria gracilis. Nowadays, there is a spate of interest in its culture in lagoon where the water sulfate concentration is variable. A laboratory culture was carried out to determine the sulfate concentration effect on their growth as well as their biochemical composition, which were 2.5, 27 or 50 mM, referred to as SSS (sulfur starved seawater), SW (seawater) and SES (sulfur enriched seawater).We found that the sulfate content of the surrounding medium is a key parameter influencing both the alga growth and its composition. However, seawater proved to be the most suitable environment to sustain alga growth, proteins, R-phycoerythrin and agar yields, but sulfur enrichment and starvation affects them. The sulfate degree of agar and therefore its quality is related to the medium sulfate concentration. We conclude that sulfur starvation (2.5 mM) for three weeks, led to severe growth retardation, lower agar yield and quality and indicated the limit potential of G. gracilis for mariculture under these conditions. These results demonstrated that the success of G. gracilis culture in the lagoon is feasible if sulfate concentration is closer to that of seawater.
Collapse
Affiliation(s)
- Fethi Mensi
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie.
| | - Aziz Ben Ghedifa
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie
| | - Hayfa Rajhi
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie
| |
Collapse
|
7
|
Pan Y, Shen Y, Zhang H, Ran X, Xie T, Zhang Y, Yao C. Fine-tuned regulation of photosynthetic performance via γ-aminobutyric acid (GABA) supply coupled with high initial cell density culture for economic starch production in microalgae. BIORESOUR BIOPROCESS 2022; 9:52. [PMID: 38647858 PMCID: PMC10992858 DOI: 10.1186/s40643-022-00541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgal starch is considered as renewable and sustainable feedstock for biofuels and biorefinery. High cell density culture is favourable for photoautotrophic starch production in microalgae in the aspects of productivity and economy, but it often encounters low starch content or extra stress exposure that limits the production. This study aimed to economically enhance photosynthetic starch production from CO2 fixation in a green microalga Tetraselmis subcordiformis by regulating photosynthetic stress status with a signalling molecule γ-aminobutyric acid (GABA) combined with the application of high initial cell density culture. By increasing initial cell density (ICD) from the normal of 1.1 g L-1 (NICD) to as high as 2.8 g L-1 (HICD), the starch content, yield, and theoretical productivity were improved by 7%, 63%, and 42%, respectively. The addition of GABA under HICD resulted in 14%, 19%, and 26% of further enhancement in starch content, yield, and theoretical productivity, respectively. GABA exhibited distinct regulatory mechanisms on photosynthesis and stress status under HICD relative to NICD. GABA augmented excessive light energy absorption and electron transfer through photosystem II that reinforced the photoinhibition under NICD, while alleviated the stress reversely under HICD, both of which facilitated starch production by enabling a suitable stress status while simultaneously maintaining a sufficient photosynthetic activity. The increase of ICD and/or GABA supply particularly boosted amylopectin accumulation, leading to the changes in starch composition and was more favourable for fermentation-based biofuels production. Preliminary techno-economic analysis showed that the highest net extra benefit of 9.64 $ m-3 culture could be obtained under HICD with 2.5 mM GABA supply where high starch content (62%DW) and yield (2.5 g L-1) were achieved. The combined HICD-GABA regulation was a promising strategy for economic starch production from CO2 by microalgae for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuhan Shen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Haoyu Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiuyuan Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
8
|
Ringgani R, Azis MM, Rochmadi, Budiman A. Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Appl Biochem Biotechnol 2022; 194:2684-2699. [PMID: 35243560 DOI: 10.1007/s12010-022-03806-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Microalgae have the potential to emerge as renewable feedstocks to replace fossil resources in producing biofuels and chemicals. Levulinic acid is one of the most promising substances which may serve as chemical building blocks. This work investigated the use of Spirulina platensis residue (solid residue after lipids extraction) to produce LA via acid hydrolysis reaction. In this study, Spirulina platensis residue was set to have a solid-liquid ratio of 5% (w/v). The effect of process parameters on the Spirulina platensis residue to levulinic acid hydrolysis reaction was observed at temperatures ranging from 140 to 180 °C under four acid concentrations, i.e., 0.25, 0.5, 0.8, and 1 M. A simplified kinetic model was also developed to describe the behavior of Spirulina platensis residue conversion to levulinic acid, based on the pseudo-homogeneous-irreversible-1st order reaction. The results showed that the proposed model could capture the experimental data well. The reaction network also considered involvement of intermediate products namely glucose and 5-hydroxymethylfurfural. The results showed that Spirulina platensis residue, with acid catalysts, can be used to produce levulinic acid, and the kinetic model can provide useful information for understanding the Spirulina platensis residue to levulinic acid hydrolysis reaction.
Collapse
Affiliation(s)
- Retno Ringgani
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia.,Chemical Engineering Department, Faculty of Industrial Engineering, UPN Veteran Yogyakarta, Jalan SWK 104 (Lingkar Utara), Condongcatur, Yogyakarta, Indonesia
| | - Muhammad Mufti Azis
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia
| | - Rochmadi
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia
| | - Arief Budiman
- Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada, Jalan Grafika 2, Kampus UGM, Yogyakarta, Indonesia. .,Center of Excellence for Microalgae Biorefinery, Universitas Gadjah Mada, Sekip K1A, Kampus UGM, Yogyakarta, Indonesia.
| |
Collapse
|
9
|
Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148636. [PMID: 34323759 DOI: 10.1016/j.scitotenv.2021.148636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial biomass has constituted a crucial third and fourth-generation biofuel material, with great potential to synthesize a wide range of metabolites, mainly carbohydrates. Lately, carbohydrate-based biofuels from cyanobacteria, such as bioethanol, biohydrogen, and biobutanol, have attracted attention as a sustainable alternative to petroleum-based products. Cyanobacteria can perform a simple process of saccharification, and extracted carbohydrates can be converted into biofuels with two alternatives; the first one consists of a fermentative process based on bacteria or yeasts, while the second alternative consists of an internal metabolic process of their own in intracellular carbohydrate content, either by the natural or genetic engineered process. This study reviewed carbohydrate-enriched cyanobacterial biomass as feedstock for biofuels. Detailed insights on technical strategies and limitations of cultivation, polysaccharide accumulation strategies for further fermentation process were provided. Advances and challenges in bioethanol, biohydrogen, and biobutanol production by cyanobacteria synthesis and an independent fermentative process are presented. Critical outlook on life-cycle assessment and techno-economical aspects for large-scale application of these technologies were discussed.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, Jiutepec, Morelos CP, 62550, Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico.
| | - Hector Rodríguez-Rangel
- Division de Estudios de Posgrado e Investigación, Tecnológico Nacional de México Campus Culiacán, Juan de Dios Batiz 310 pte. Col Guadalupe, CP, 80220 Culiacàn, Mexico
| | - A Balbuena Ortega
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Adriana Longoria
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Ruth Domínguez-Espíndola
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| |
Collapse
|
10
|
Xiang Q, Wei X, Yang Z, Xie T, Zhang Y, Li D, Pan X, Liu X, Zhang X, Yao C. Acclimation to a broad range of nitrate strength on a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and high-quality biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146687. [PMID: 33812104 DOI: 10.1016/j.scitotenv.2021.146687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Industrial wastewaters usually possess a wide range of nitrate strength. Microalgae-based nitrate-rich wastewater treatment could realize nitrate recovery along with CO2 sequestration for sustainable biomass production, but the low tolerance of the microalgal strains to high-strength nitrate restricted the treatment process. The present study comprehensively evaluated a euryhaline marine microalga Tetraselmis subcordiformis for photosynthetic nitrate removal and biomass production in synthetic wastewater with a broad range of nitrate strength (0.24-7.0 g NO3--N/L). This alga could acclimate to high nitrate strength up to 3.5 g NO3--N/L (HN) without compromising biomass production. Nitrate could be completely removed within four days when low nitrate (0.24 g NO3--N/L, LN) was loaded. The maximum nitrate removal rate of 331 mg N/L/day and specific nitrate removal rate of 360 mg N/day/g cell was obtained under medium nitrate condition (1.8 g NO3--N/L, MN). High-nitrate stress under 7.0 g NO3--N/L (SHN) caused an increased light energy dissipation while decreased the density of photosystem II active reaction center, which partially protect the cells from photodamage and contributed to their acclimation to SHN. The algae also enhanced amino acid/fatty acid proportions essential for maintaining intracellular redox states to cope with the stress caused by LN or SHN. HN and SHN was in favor of protein accumulation and maintenance with enhanced proportion of essential amino acids, which entitled the algal biomass to be of high quality for animal feed applied in livestock graziery and aquaculture. LN facilitated productive starch and lipid accumulation with good quality for biofuels production. The nitrate removal rate and biomass productivity exceeded most of the microalgae reported in literature under similar conditions, which highlighted Tetraselmis subcordiformis as a potent strain for flexible nitrate-rich wastewater remediation coupled with fast CO2 bio-mitigation and high-quality biomass production for sustainable algal biorefinery.
Collapse
Affiliation(s)
- Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaolong Wei
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zezhou Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Defu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xuerong Pan
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiaolong Liu
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Xiang Zhang
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, Sichuan 610213, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
11
|
Arias DM, Uggetti E, García J. Assessing the potential of soil cyanobacteria for simultaneous wastewater treatment and carbohydrate-enriched biomass production. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Hiramatsu K, Yamada K, Lindley M, Suzuki K, Goda K. Large-scale label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry. BIOMEDICAL OPTICS EXPRESS 2020; 11:1752-1759. [PMID: 32341845 PMCID: PMC7173913 DOI: 10.1364/boe.382957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 06/11/2023]
Abstract
Microalga-based biomaterial production has attracted attention as a new source of drugs, foods, and biofuels. For enhancing the production efficiency, it is essential to understand its differences between heterogeneous microalgal subpopulations. However, existing techniques are not adequate to address the need due to the lack of single-cell resolution or the inability to perform large-scale analysis and detect small molecules. Here we demonstrated large-scale single-cell analysis of Euglena gracilis (a unicellular microalgal species that produces paramylon as a potential drug for HIV and colon cancer) with our recently developed high-throughput broadband Raman flow cytometer at a throughput of >1,000 cells/s. Specifically, we characterized the intracellular content of paramylon from single-cell Raman spectra of 10,000 E. gracilis cells cultured under five different conditions and found that paramylon contents in E. gracilis cells cultured in an identical condition is given by a log-normal distribution, which is a good model for describing the number of chemicals in a reaction network. The capability of characterizing distribution functions in a label-free manner is an important basis for isolating specific cell populations for synthetic biology via directed evolution based on the intracellular content of metabolites.
Collapse
Affiliation(s)
- Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Centre for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | | | - Matthew Lindley
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., Tokyo 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN, Kanagawa, 230-0045, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
13
|
Ran W, Xiang Q, Pan Y, Xie T, Zhang Y, Yao C. Enhancing Photosynthetic Starch Production by γ-Aminobutyric Acid Addition in a Marine Green Microalga Tetraselmis subcordiformis under Nitrogen Stress. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives. N Biotechnol 2020; 55:46-57. [DOI: 10.1016/j.nbt.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/20/2022]
|
15
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
Qi M, Yao C, Sun B, Cao X, Fei Q, Liang B, Ran W, Xiang Q, Zhang Y, Lan X. Application of an in situ CO 2-bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:184. [PMID: 31341515 PMCID: PMC6631860 DOI: 10.1186/s13068-019-1523-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Microalgal starch is regarded as a promising alternative to crop-based starch for biorefinery such as the production of biofuels and bio-based chemicals. The single or separate use of inorganic carbon source, e.g., CO2 and NaHCO3, caused aberrant pH, which restricts the biomass and starch production. The present study applied an in situ CO2-NaHCO3 system to regulate photosynthetic biomass and starch production along with starch quality in a marine green microalga Tetraselmis subcordiformis under nitrogen-depletion (-N) and nitrogen-limitation (±N) conditions. RESULTS The CO2 (2%)-NaHCO3 (1 g L-1) system stabilized the pH at 7.7 in the -N cultivation, under which the optimal biomass and starch accumulation were achieved. The biomass and starch productivity under -N were improved by 2.1-fold and 1.7-fold, respectively, with 1 g L-1 NaHCO3 addition compared with the one without NaHCO3 addition. NaHCO3 addition alleviated the high-dCO2 inhibition caused by the single CO2 aeration, and provided sufficient effective carbon source HCO3 - for the maintenance of adequate photosynthetic efficiency and increase in photoprotection to facilitate the biomass and starch production. The amylose content was also increased by 44% under this CO2-bicarbonate system compared to the single use of CO2. The highest starch productivity of 0.73 g L-1 day-1 under -N cultivation and highest starch concentration of 4.14 g L-1 under ±N cultivation were both achieved with the addition of 1 g L-1 NaHCO3. These levels were comparable to or exceeded the current achievements reported in studies. The addition of 5 g L-1 NaHCO3 under ±N cultivation led to a production of high-amylose starch (59.3% of total starch), which could be used as a source of functional food. CONCLUSIONS The in situ CO2-NaHCO3 system significantly improved the biomass and starch production in T. subcordiformis. It could also regulate the starch quality with varied relative amylose content under different cultivation modes for diverse downstream applications that could promote the economic feasibility of microalgal starch-based biofuel production. Adoption of this system in T. subcordiformis would facilitate the CO2 mitigation couple with its starch-based biorefinery.
Collapse
Affiliation(s)
- Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Binhuan Sun
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
- Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian, 116023 Liaoning China
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Bobo Liang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| |
Collapse
|
17
|
Liu Q, Yao C, Sun Y, Chen W, Tan H, Cao X, Xue S, Yin H. Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:131. [PMID: 31143244 PMCID: PMC6533678 DOI: 10.1186/s13068-019-1470-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Carbohydrates are major biomass source in fuel-targeted biorefinery. Arthrospira platensis is the largest commercialized microalgae with good environmental tolerance and high biomass production. However, the traditional target of A. platensis cultivation is the protein, which is the downstream product of carbohydrates. Aiming to provide the alternative non-food carbohydrates source, the feasible manipulation technology on the cultivation is needed, as well as new separation methodology to achieve maximum utilization of overall biomass. RESULTS The present study aimed to demonstrate the feasibility of industrially producing carbohydrate-enriched A. platensis and characterize the structure of the polysaccharide involved. Cultivated in industrial-scale outdoor open raceway ponds under nitrogen limitation, A. platensis accumulated maximally 64.3%DW of carbohydrate. The maximum biomass and carbohydrate productivity reached 27.5 g m-2 day-1 and 26.2 g m-2 day-1, respectively. The efficient extraction and purification of the polysaccharides include a high-pressure homogenization-assisted hot water extraction followed by flocculation with a non-toxic flocculant ZTC1 + 1, with the polysaccharide purity and total recovery reaching 81% and 75%, respectively. The purified polysaccharide was mainly composed of (1→3)(1→4)- or (1→3)(1→2)-α-glucan with a molecular weight of 300-700 kDa, which differed from the commonly acknowledged glycogen. CONCLUSIONS By the way of controlled nitrogen limitation, the high carbohydrate production of A. platensis in the industrial scale was achieved. The α-glucan from A. platensis could be a potential glucose source for industrial applications. A non-toxic separation method of carbohydrate was applied to maintain the possibility of utilization of residue in high-value field.
Collapse
Affiliation(s)
- Qishun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Changhong Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongxin Sun
- Dalian Biotechnology Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024 China
| | - Wei Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Haidong Tan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Song Xue
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Liaoning Provincial Key Laboratory of Carbohydrates; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
18
|
Yao C, Jiang J, Cao X, Liu Y, Xue S, Zhang Y. Phosphorus Enhances Photosynthetic Storage Starch Production in a Green Microalga (Chlorophyta) Tetraselmis subcordiformis in Nitrogen Starvation Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10777-10787. [PMID: 30270616 DOI: 10.1021/acs.jafc.8b04798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microalgae are potential starch producers as alternatives to agricultural crops. This study disclosed the effects and mechanism of phosphorus availability exerted on storage starch production in a starch-producing microalga Tetraselmis subcordiformis in nitrogen starvation conditions. Excessive phosphorus supply facilitated starch production, which differed from the conventional cognition that phosphorus would inhibit transitory starch biosynthesis in plants. Phosphorus enhanced energy utilization efficiency for biomass and storage starch production. ADP-glucose pyrophosphorylase (AGPase), conventionally known to be critical for starch biosynthesis, was negatively correlated to storage starch biosynthesis. Excessive phosphorus supply maintained large cell volumes, enhanced activities of starch phosphorylases (SPs) along with branching enzymes and isoamylases, and increased phosphoenolpyruvate and trehalose-6-phosphate levels to alleviate the inhibition of high phosphate availability to AGPase, all of which improved starch production. This work highlighted the importance of phosphorus in the production of microalgal starch and provided further evidence for the SP-based storage starch biosynthesis pathway.
Collapse
Affiliation(s)
- Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering , Sichuan University , Chengdu , Sichuan 610065 , China
| | - Junpeng Jiang
- Marine Bioengineering Group , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
- University of Chinese Academy of Sciences , Beijing 100039 , China
| | - Xupeng Cao
- Marine Bioengineering Group , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yinghui Liu
- Marine Bioengineering Group , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Song Xue
- Marine Bioengineering Group , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering , Sichuan University , Chengdu , Sichuan 610065 , China
| |
Collapse
|
19
|
Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Hasunuma T, Matsuda M, Kato Y, Vavricka CJ, Kondo A. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803. Metab Eng 2018; 48:109-120. [DOI: 10.1016/j.ymben.2018.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022]
|
21
|
Clark RL, McGinley LL, Purdy HM, Korosh TC, Reed JL, Root TW, Pfleger BF. Light-optimized growth of cyanobacterial cultures: Growth phases and productivity of biomass and secreted molecules in light-limited batch growth. Metab Eng 2018; 47:230-242. [PMID: 29601856 PMCID: PMC5984190 DOI: 10.1016/j.ymben.2018.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022]
Abstract
Cyanobacteria are photosynthetic microorganisms whose metabolism can be modified through genetic engineering for production of a wide variety of molecules directly from CO2, light, and nutrients. Diverse molecules have been produced in small quantities by engineered cyanobacteria to demonstrate the feasibility of photosynthetic biorefineries. Consequently, there is interest in engineering these microorganisms to increase titer and productivity to meet industrial metrics. Unfortunately, differing experimental conditions and cultivation techniques confound comparisons of strains and metabolic engineering strategies. In this work, we discuss the factors governing photoautotrophic growth and demonstrate nutritionally replete conditions in which a model cyanobacterium can be grown to stationary phase with light as the sole limiting substrate. We introduce a mathematical framework for understanding the dynamics of growth and product secretion in light-limited cyanobacterial cultures. Using this framework, we demonstrate how cyanobacterial growth in differing experimental systems can be easily scaled by the volumetric photon delivery rate using the model organisms Synechococcus sp. strain PCC7002 and Synechococcus elongatus strain UTEX2973. We use this framework to predict scaled up growth and product secretion in 1L photobioreactors of two strains of Synechococcus PCC7002 engineered for production of l-lactate or L-lysine. The analytical framework developed in this work serves as a guide for future metabolic engineering studies of cyanobacteria to allow better comparison of experiments performed in different experimental systems and to further investigate the dynamics of growth and product secretion.
Collapse
Affiliation(s)
- Ryan L Clark
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Laura L McGinley
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Hugh M Purdy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Travis C Korosh
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States; Department of Environmental Chemistry and Technology, University of Wisconsin - Madison, 660 N Park St., Madison, WI 53706, United States.
| | - Jennifer L Reed
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Thatcher W Root
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, 1415 Engineering Dr., Madison, WI 53706, United States.
| |
Collapse
|
22
|
Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS, Hasunuma T, Kondo A. Direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl 2 addition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:50. [PMID: 29492105 PMCID: PMC5828149 DOI: 10.1186/s13068-018-1050-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The cyanobacterium Arthrospira platensis shows promise as a carbohydrate feedstock for biofuel production. The glycogen accumulated in A. platensis can be extracted by lysozyme-degrading the peptidoglycan layer of the bacterial cell walls. The extracted glycogen can be converted to ethanol through hydrolysis by amylolytic enzymes and fermentation by the yeast Saccharomyces cerevisiae. Thus, in the presence of lysozyme, a recombinant yeast expressing α-amylase and glucoamylase can convert A. platensis directly to ethanol, which would simplify the procedure for ethanol production. However, the ethanol titer and productivity in this process are lower than in ethanol production from cyanobacteria and green algae in previous reports. RESULTS To increase the ethanol titer, a high concentration of A. platensis biomass was employed as the carbon source for the ethanol production using a recombinant amylase-expressing yeast. The addition of lysozyme to the fermentation medium increased the ethanol titer, but not the ethanol productivity. The addition of CaCl2 increased both the ethanol titer and productivity by causing the delamination of polysaccharide layer on the cell surface of A. platensis. In the presence of lysozyme and CaCl2, ethanol titer, yield, and productivity improved to 48 g L-1, 93% of theoretical yield, and 1.0 g L-1 h-1 from A. platensis, corresponding to 90 g L-1 of glycogen. CONCLUSIONS We developed an ethanol conversion process using a recombinant amylase-expressing yeast from A. platensis with a high titer, yield, and productivity by adding both lysozyme and CaCl2. The direct and highly productive conversion process from A. platensis via yeast fermentation could be applied to multiple industrial bulk chemicals.
Collapse
Affiliation(s)
- Shimpei Aikawa
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
- Present Address: Biological Resources and Post-Harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686 Japan
| | - Kentaro Inokuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Satoshi Wakai
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Chiaki Ogino
- Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701 Taiwan
- Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, 701 Taiwan
- Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701 Taiwan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 3-5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro, Tsurumi-ku, Yokohama, 230-0045 Japan
| |
Collapse
|
23
|
Arias DM, Uggetti E, García-Galán MJ, García J. Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: Effect of nutrients limitation and photoperiods. N Biotechnol 2018; 42:1-11. [PMID: 29306000 DOI: 10.1016/j.nbt.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 11/29/2022]
Abstract
In the present study, different photoperiods and nutritional conditions were applied to a mixed wastewater-borne cyanobacterial culture in order to enhance the intracellular accumulation of polyhydroxybutyrates (PHBs) and carbohydrates. Two different experimental set-ups were used. In the first, the culture was permanently exposed to illumination, while in the second it was submitted to light/dark alternation (12 h cycles). In both cases, two different nutritional regimes were also evaluated, N-limitation and P-limitation. Results showed that the highest PHB concentration (104 mg L-1) was achieved under P limited conditions and permanent illumination, whereas the highest carbohydrate concentration (838 mg L-1) was obtained under N limited condition and light/dark alternation. With regard to bioplastics and biofuel generation, this study demonstrates that the accumulation of PHBs (bioplastics) and carbohydrates (potential biofuel substrate) is favored in wastewater-borne cyanobacteria under conditions where nutrients are limited.
Collapse
Affiliation(s)
- Dulce María Arias
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Enrica Uggetti
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - María Jesús García-Galán
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| | - Joan García
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain
| |
Collapse
|
24
|
Jiang J, Yao C, Cao X, Liu Y, Xue S. Characterization of starch phosphorylase from the marine green microalga (Chlorophyta) Tetraselmis subcordiformis reveals its potential role in starch biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:84-93. [PMID: 28787650 DOI: 10.1016/j.jplph.2017.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
In a marine green starch-producing microalga Tetraselmis subcordiformis, the role of starch phosphorylase (SP) in the starch biosynthesis was disclosed by characterizing the enzyme properties and activity variations during the starch accumulation process. TsSP4, a SP isoform accounting for the major SP activity in T. subcordiformis, was unique to be active in a monomer form with a molecular weight of approximately 110kDa. It resembled one of the chloroplast-located SPs (PhoA) in Chlamydomonas reinhardtii with a similarity of 63.3% in sequence, though it possessed the typical L78/80 domain found in the plastidial SPs (Pho1) of higher plants that was absent in PhoA. TsSP4 exhibited moderate sensitivity to ADP-Glc inhibition and had a high activity for longer-chain linear maltooligosacchride (MOS) and amylopectin against highly branched glycogen as the substrates. TsSP4 had 2-fold higher affinity for Glc-1-P in the synthetic direction than for Pi in the phosphorolytic direction, and the catalytic constant kcat for Glc-1-P was 2-fold of that for Pi. Collectively, TsSP4 preferred synthetic rather than phosphorolytic direction. TsSP4 could elongate MOSs even initially with Pi alone in the absence of Glc-1-P, which further supported its synthetic role in the starch biosynthesis. TsSP4 displayed increased activities in the developing and mature stage of starch biosynthesis under nitrogen-starvation conditions, indicating its possible contribution to the amylopectin amplification.
Collapse
Affiliation(s)
- Junpeng Jiang
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xupeng Cao
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yinghui Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Ng I, Tan S, Kao P, Chang Y, Chang J. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio‐Based Chemicals. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600644] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Hsun Kao
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
| | - Jo‐Shu Chang
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
26
|
Solé-Bundó M, Carrère H, Garfí M, Ferrer I. Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Wang Y, Chiu SY, Ho SH, Liu Z, Hasunuma T, Chang TT, Chang KF, Chang JS, Ren NQ, Kondo A. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation. Biotechnol J 2016; 11:1072-81. [PMID: 27312599 DOI: 10.1002/biot.201500270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/28/2016] [Accepted: 06/07/2016] [Indexed: 11/07/2022]
Abstract
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate-mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate-amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate-contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES-2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85-90%), which is very suitable for bio-alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES-2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China
| | - Sheng-Yi Chiu
- Water Technology Division, Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China.
| | - Zhuo Liu
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Organization of Advanced Science and Technology, Kobe University, Kobe, Japan
| | - Ting-Ting Chang
- Water Technology Division, Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kuan-Fu Chang
- Water Technology Division, Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jo-Shu Chang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China.,Department of Chemical Engineering, National Cheng Kung University, Cheng Kung, Taiwan.,Research Center for Energy Technology and Strategy, National Cheng Kung University, Cheng Kung, Taiwan
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Kobe University, Kobe, Japan.,Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
28
|
Qu Y, Wu WT. Editorial: bioenergy and biorefinery - biological solution for sustainable development of human society. Biotechnol J 2015; 10:823-4. [PMID: 26047136 DOI: 10.1002/biot.201500291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, China.
| | - Wen-Teng Wu
- Department of Chemical Engineering, National Cheng-Kung University, Taiwan.
| |
Collapse
|