1
|
de Almeida SVTF, Neves K, de Carvalho CCCR. Screening and Isolation of Bacterial Strains Able to Degrade Trimethylamine. Microorganisms 2025; 13:1369. [PMID: 40572257 PMCID: PMC12195410 DOI: 10.3390/microorganisms13061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2025] [Revised: 06/07/2025] [Accepted: 06/10/2025] [Indexed: 06/29/2025] Open
Abstract
Methylamines are present in numerous organisms and microorganisms capable of de novo trimethylamine (TMA) production are widely distributed, including microalgae. However, such compounds may hamper the application of microalgae biomass in commercially interesting products, such as food and feed products, due to the strong fishy smell. In the present study, several bacteria able to degrade TMA were isolated. Among them, a Staphylococcus saprophyticus strain was found particularly suitable to degrade TMA. After finding the best culture conditions, a bioprocess system was developed allowing the degradation of TMA from microalgae in a reactor by S. saprophyticus cells present in a second reactor without direct contact with media from both reactors. The system was found to be limited by TMA transfer through the gas phase, with the cells being able to degrade all available TMA.
Collapse
Affiliation(s)
- Sebastião V. T. F. de Almeida
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.V.T.F.d.A.); (K.N.)
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Kilian Neves
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.V.T.F.d.A.); (K.N.)
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (S.V.T.F.d.A.); (K.N.)
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
2
|
Carr CM, Göttsch F, de Oliveira BFR, Murcia PAS, Jackson SA, Wei R, Clarke DJ, Bornscheuer UT, Dobson ADW. Identification and expression of MarCE, a marine carboxylesterase with synthetic ester-degrading activity. Microb Biotechnol 2024; 17:e14479. [PMID: 38881500 PMCID: PMC11180994 DOI: 10.1111/1751-7915.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Carboxylic ester hydrolases with the capacity to degrade polyesters are currently highly sought after for their potential use in the biological degradation of PET and other chemically synthesized polymers. Here, we describe MarCE, a carboxylesterase family protein identified via genome mining of a Maribacter sp. isolate from the marine sponge Stelligera stuposa. Based on phylogenetic analysis, MarCE and its closest relatives belong to marine-associated genera from the Cytophaga-Flavobacterium-Bacteroides taxonomic group and appear evolutionarily distinct to any homologous carboxylesterases that have been studied to date in terms of structure or function. Molecular docking revealed putative binding of BHET, a short-chain PET derivative, onto the predicted MarCE three-dimensional structure. The synthetic ester-degrading activity of MarCE was subsequently confirmed by MarCE-mediated hydrolysis of 2 mM BHET substrate, indicated by the release of its breakdown products MHET and TPA, which were measured, respectively, as 1.28 and 0.12 mM following 2-h incubation at 30°C. The findings of this study provide further insight into marine carboxylic ester hydrolases, which have the potential to display unique functional plasticity resulting from their adaptation to complex and fluctuating marine environmentsw.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
| | - Frederike Göttsch
- Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | | | - Pedro A. Sánchez Murcia
- Laboratory of Computer‐Aided Molecular Design, Division of Medicinal Chemistry, Otto‐Loewi Research CenterMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Stephen A. Jackson
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | - David J. Clarke
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Uwe T. Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute of BiochemistryUniversity of GreifswaldGreifswaldGermany
| | - Alan D. W. Dobson
- School of MicrobiologyUniversity College CorkCorkIreland
- SSPC‐SFI Research Centre for PharmaceuticalsUniversity College CorkCorkIreland
- Environmental Research InstituteUniversity College CorkCorkIreland
| |
Collapse
|
3
|
Pereira RFS, Ferreira MJ, Oliveira MC, Serra MC, de Carvalho CCCR. Isolation and Characterization of a Serratia rubidaea from a Shallow Water Hydrothermal Vent. Mar Drugs 2023; 21:599. [PMID: 38132920 PMCID: PMC10745058 DOI: 10.3390/md21120599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Microbial life present in the marine environment has to be able to adapt to rapidly changing and often extreme conditions. This makes these organisms a putative source of commercially interesting compounds since adaptation provides different biochemical routes from those found in their terrestrial counterparts. In this work, the goal was the identification of a marine bacterium isolated from a sample taken at a shallow water hydrothermal vent and of its red product. Genomic, lipidomic, and biochemical approaches were used simultaneously, and the bacterium was identified as Serratia rubidaea. A high-throughput screening strategy was used to assess the best physico-chemical conditions permitting both cell growth and production of the red product. The fatty acid composition of the microbial cells was studied to assess adaptation at the lipid level under stressful conditions, whilst several state-of-the-art techniques, such as DSC, FTIR, NMR, and Ultra-High Resolution Qq-Time-of-Flight mass spectrometry, were used to characterize the structure of the pigment. We hypothesize that the pigment, which could be produced by the cells up to 62 °C, is prodigiosin linked to an aliphatic compound that acts as an anchor to keep it close to the cells in the marine environment.
Collapse
Affiliation(s)
- Ricardo F. S. Pereira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria J. Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.J.F.); (M.C.O.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.J.F.); (M.C.O.)
| | - Maria C. Serra
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal;
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Rodrigues CJC, de Carvalho CCCR. Marine Bioprospecting, Biocatalysis and Process Development. Microorganisms 2022; 10:1965. [PMID: 36296241 PMCID: PMC9610463 DOI: 10.3390/microorganisms10101965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022] Open
Abstract
Oceans possess tremendous diversity in microbial life. The enzymatic machinery that marine bacteria present is the result of extensive evolution to assist cell survival under the harsh and continuously changing conditions found in the marine environment. Several bacterial cells and enzymes are already used at an industrial scale, but novel biocatalysts are still needed for sustainable industrial applications, with benefits for both public health and the environment. Metagenomic techniques have enabled the discovery of novel biocatalysts, biosynthetic pathways, and microbial identification without their cultivation. However, a key stage for application of novel biocatalysts is the need for rapid evaluation of the feasibility of the bioprocess. Cultivation of not-yet-cultured bacteria is challenging and requires new methodologies to enable growth of the bacteria present in collected environmental samples, but, once a bacterium is isolated, its enzyme activities are easily measured. High-throughput screening techniques have also been used successfully, and innovative in vitro screening platforms to rapidly identify relevant enzymatic activities continue to improve. Small-scale approaches and process integration could improve the study and development of new bioprocesses to produce commercially interesting products. In this work, the latest studies related to (i) the growth of marine bacteria under laboratorial conditions, (ii) screening techniques for bioprospecting, and (iii) bioprocess development using microreactors and miniaturized systems are reviewed and discussed.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Rodrigues CJC, de Carvalho CCCR. Cultivating marine bacteria under laboratory conditions: Overcoming the “unculturable” dogma. Front Bioeng Biotechnol 2022; 10:964589. [PMID: 36061424 PMCID: PMC9428589 DOI: 10.3389/fbioe.2022.964589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Underexplored seawater environments may contain biological resources with potential for new biotechnological applications. Metagenomic techniques revolutionized the study of bacterial communities but culture dependent methods will still be important to help the biodiscovery of new products and enzymes from marine bacteria. In this context, we promoted the growth of bacteria from a marine rock pond by culture dependent techniques and compared the results with culture independent methods. The total number of bacteria and diversity were studied in different agar plate media during 6 weeks. Agar plate counting was of the same order of magnitude of direct microscopy counts. The highest efficiency of cultivation was 45% attained in marine agar medium. Molecular analysis revealed 10 different phyla of which only four were isolated by the culture dependent method. On the other hand, four taxonomic orders were detected by cultivation but not by the molecular technique. These include bacteria from the phyla Bacillota and Actinomycetota. Our study shows that it is possible to grow more than the traditionally considered 1% of bacteria from a seawater sample using standard agar plate techniques and laboratorial conditions. The results also demonstrate the importance of culture methods to grow bacteria not detected by molecular approaches for future biotechnological applications.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory I4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Carla C. C. R. de Carvalho,
| |
Collapse
|
6
|
Barbato M, Vacchini V, Engelen AH, Patania G, Mapelli F, Borin S, Crotti E. What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria. AMB Express 2022; 12:98. [PMID: 35895126 PMCID: PMC9329506 DOI: 10.1186/s13568-022-01440-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.
Collapse
Affiliation(s)
- Marta Barbato
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.,Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Giovanni Patania
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
7
|
Rodrigues CJC, de Carvalho CCCR. Process Development for Benzyl Alcohol Production by Whole-Cell Biocatalysis in Stirred and Packed Bed Reactors. Microorganisms 2022; 10:microorganisms10050966. [PMID: 35630410 PMCID: PMC9147996 DOI: 10.3390/microorganisms10050966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
The ocean is an excellent source for new biocatalysts due to the tremendous genetic diversity of marine microorganisms, and it may contribute to the development of sustainable industrial processes. A marine bacterium was isolated and selected for the conversion of benzaldehyde to benzyl alcohol, which is an important chemical employed as a precursor for producing esters for cosmetics and other industries. Enzymatic production routes are of interest for sustainable processes. To overcome benzaldehyde low water solubility, DMSO was used as a biocompatible cosolvent up to a concentration of 10% (v/v). A two-phase system with n-hexane, n-heptane, or n-hexadecane as organic phase allowed at least a 44% higher relative conversion of benzaldehyde than the aqueous system, and allowed higher initial substrate concentrations. Cell performance decreased with increasing product concentration but immobilization of cells in alginate improved four-fold the robustness of the biocatalyst: free and immobilized cells were inhibited at concentrations of benzyl alcohol of 5 and 20 mM, respectively. Scaling up to a 100 mL stirred reactor, using a fed-batch approach, enabled a 1.5-fold increase in benzyl alcohol productivity when compared with batch mode. However, product accumulation in the reactor hindered the conversion. The use of a continuous flow reactor packed with immobilized cells enabled a 9.5-fold increase in productivity when compared with the fed-batch stirred reactor system.
Collapse
Affiliation(s)
- Carlos J. C. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: ; Tel.: +351-21-841-9594
| |
Collapse
|
8
|
ω-Transaminase-Mediated Asymmetric Synthesis of (S)-1-(4-Trifluoromethylphenyl)Ethylamine. Catalysts 2021. [DOI: 10.3390/catal11030307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pivotal role played by ω-transaminases (ω-TAs) in the synthesis of chiral amines used as building blocks for drugs and pharmaceuticals is widely recognized. However, chiral bulky amines are challenging to produce. Herein, a ω-TA (TR8) from a marine bacterium was used to synthesize a fluorine chiral amine from a bulky ketone. An analysis of the reaction conditions for process development showed that isopropylamine concentrations above 75 mM had an inhibitory effect on the enzyme. Five different organic solvents were investigated as co-solvents for the ketone (the amine acceptor), among which 25–30% (v/v) dimethyl sulfoxide (DMSO) produced the highest enzyme activity. The reaction reached equilibrium after 18 h at 30% of conversion. An in situ product removal (ISPR) approach using an aqueous organic two-phase system was tested to mitigate product inhibition. However, the enzyme activity initially decreased because the ketone substrate preferentially partitioned into the organic phase, n-hexadecane. Consequently, DMSO was added to the system to increase substrate mass transfer without affecting the ability of the organic phase to prevent inhibition of the enzyme activity by the product. Thus, the enzyme reaction was maintained, and the product amount was increased for a 62 h reaction time. The investigated ω-TA can be used in the bioconversion of bulky ketones to chiral amines for future bioprocess applications.
Collapse
|
9
|
Rodrigues CJC, Sanches JM, de Carvalho CCCR. Determining transaminase activity in bacterial libraries by time-lapse imaging. Chem Commun (Camb) 2019; 55:13538-13541. [PMID: 31647085 DOI: 10.1039/c9cc07507k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transaminase activity was determined by time-lapse imaging using a colourimetric reaction and image analysis. A correlation between the benzaldehyde conversion and relative luminance was determined, allowing the identification of the most promising biocatalysts, the determination of kinetic parameters, and the assessment of the effect of the substrate concentration on activity.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - João M Sanches
- Institute for Systems and Robotics (ISR/IST), LARSyS, Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Birolli WG, Lima RN, Porto ALM. Applications of Marine-Derived Microorganisms and Their Enzymes in Biocatalysis and Biotransformation, the Underexplored Potentials. Front Microbiol 2019; 10:1453. [PMID: 31481935 PMCID: PMC6710449 DOI: 10.3389/fmicb.2019.01453] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Biodiversity has been explored in the search for novel enzymes, including forests, savannas, tundras, deserts, and finally the sea. Marine microorganisms and their enzymes are capable of being active in high-salt concentration, large range of temperature, and high incidence of light and pressure, constituting an important source of unique biocatalysts. This review presents studies employing whole-cell processes of marine bacteria and fungi, aiming for new catalysts for different reactions in organic synthesis, such as reduction, oxidation, hydroxylation, hydrolysis, elimination, and conjugation. Genomics and protein engineering studies were also approached, and reactions employing isolated enzymes from different classes (oxidoreductases, hydrolases, lyases, and ligases) were described and summarized. Future biotechnological studies and process development should focus on molecular biology for the obtention of enzymes with interesting, fascinating and enhanced properties, starting from the exploration of microorganisms from the marine environment. This review approaches the literature about the use of marine-derived bacteria, fungi, and their enzymes for biocatalytic reactions of organic compounds, promoting a discussion about the possibilities of these microorganisms in the synthesis of different substances.
Collapse
Affiliation(s)
- Willian G Birolli
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Rafaely N Lima
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil.,Center of Exact Sciences and Technology, Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - André L M Porto
- Laboratory of Organic Chemistry and Biocatalysis, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
11
|
Castilla IA, Woods DF, Reen FJ, O'Gara F. Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies. Mar Drugs 2018; 16:E227. [PMID: 29973493 PMCID: PMC6071119 DOI: 10.3390/md16070227] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/13/2018] [Accepted: 06/22/2018] [Indexed: 01/24/2023] Open
Abstract
In a demanding commercial world, large-scale chemical processes have been widely utilised to satisfy consumer related needs. Chemical industries are key to promoting economic growth and meeting the requirements of a sustainable industrialised society. The market need for diverse commodities produced by the chemical industry is rapidly expanding globally. Accompanying this demand is an increased threat to the environment and to human health, due to waste produced by increased industrial production. This increased demand has underscored the necessity to increase reaction efficiencies, in order to reduce costs and increase profits. The discovery of novel biocatalysts is a key method aimed at combating these difficulties. Metagenomic technology, as a tool for uncovering novel biocatalysts, has great potential and applicability and has already delivered many successful achievements. In this review we discuss, recent developments and achievements in the field of biocatalysis. We highlight how green chemistry principles through the application of biocatalysis, can be successfully promoted and implemented in various industrial sectors. In addition, we demonstrate how two novel lipases/esterases were mined from the marine environment by metagenomic analysis. Collectively these improvements can result in increased efficiency, decreased energy consumption, reduced waste and cost savings for the chemical industry.
Collapse
Affiliation(s)
- Ignacio Abreu Castilla
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - F Jerry Reen
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 K8AF Cork, Ireland.
- Telethon Kids Institute, Perth, WA 6008, Australia.
- Human Microbiome Programme, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
12
|
Ferreira GNM, Glassey J. Editorial: The European Symposium on Biochemical Engineering Sciences, Dublin 2016. Biotechnol J 2017; 12. [PMID: 28675668 DOI: 10.1002/biot.201600634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The European Symposium on Biochemical Engineering Sciences, Dublin 2016.
Collapse
Affiliation(s)
- Guilherme N M Ferreira
- DSM Biotechnology Center, Delft, The Netherlands.,Universidade do Algarve, Faro, Portugal
| | | |
Collapse
|