1
|
Xu X, Qiao W, Dong Y, Yang H, Xu H, Qiao M. 2,3-Butanediol dehydrogenase is more efficient than acetoin reductase at metabolizing reserve carbon to improve carbon cycling pathways in Lactococcus lactis N8. Int J Biol Macromol 2025; 299:140023. [PMID: 39828149 DOI: 10.1016/j.ijbiomac.2025.140023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Acetoin (AC) and 2,3-butanediol (2,3-BDO) are metabolites produced by lactic acid bacteria using glucose as a carbon source. These two metabolites act as carbon reserves and can be reutilised by the cells. In this study, we investigated the enzymatic characteristics of acetoin reductase (ButA) and 2,3-butanediol dehydrogenase (ButB). The performance of butA or/and butB knockout mutants of Lactococcus lactis N8 was evaluated. ButA and ButB were heterologously expressed in E. coli, and their enzymatic characteristics were measured in vitro under different pH, temperature, and metal ion conditions. Kinetic parameters of the two enzymes indicated that ButA exhibited better catalytic efficiency with AC, whereas ButB performed better with 2,3-BDO. The dehydrogenase activity of ΔbutA, ΔbutB, and ΔbutBA strains were detected in vitro with AC or 2,3-BDO added medium. The ΔbutA mutant was found to metabolize both AC and 2,3-BDO more efficiently than the ΔbutB mutant. This study provides a comprehensive insight about the metabolic carbon reserve pool and cyclic pathways involving AC and 2,3-BDO in L. lactis N8.
Collapse
Affiliation(s)
- Xian Xu
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wanjin Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Dong
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huan Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Haijin Xu
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingqiang Qiao
- School of Life Science, Shanxi University, Taiyuan 030006, China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
2
|
Tian K, Hong X, Guo M, Li Y, Wu H, Caiyin Q, Qiao J. Development of Base Editors for Simultaneously Editing Multiple Loci in Lactococcus lactis. ACS Synth Biol 2022; 11:3644-3656. [PMID: 36065829 DOI: 10.1021/acssynbio.1c00561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lactococcus lactis serves as the most extensively studied model organism and an important dairy species. Though CRISPR-Cas9 systems have been developed for robust genetic manipulations, simultaneously editing multiple endogenous loci in L. lactis is still challenging. Herein, we first report the development of a double-strand break-free, robust, multiloci editing system CRISPR-deaminase-assisted base editor (CRISPR-DBE), which comprises a cytidine (CRISPR-cDBE) and an adenosine deaminase-assisted base editor (CRISPR-aDBE). Specifically targeted by a sgRNA, CRISPR-cDBE can efficiently introduce a cytidine-to-thymidine mutation and CRISPR-aDBE can high-efficiently convert adenosine to guanosine within a 5 nt editing window. CRISPR-cDBE was validated and successfully applied to simultaneously inactivate multiple genes using a single plasmid in L. lactis strain NZ9000. Meanwhile, the temperature-sensitive plasmid of CRISPR-DBE can be cured quickly, and the continuous gene editing of L. lactis has been achieved. Furthermore, CRISPR-cDBE can also efficiently convert the targeted C to T in a nisin-producing, industrial L. lactis strain F44. Finally, we applied genome-wide bioinformatics analysis to determine the scope of gene inactivation for these base editors using different Cas9 variants and evaluated the preference of SpGn and SpRYn variants for the protospacer adjacent motif in L. lactis NZ9000. Taken together, our study provides a powerful tool for simultaneously editing multiple loci in L. lactis, which may have a wide range of industrial applications in the future.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Xia Hong
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Manman Guo
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Hao Wu
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| | - Qinggele Caiyin
- Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P. R. China.,SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, P. R. China
| |
Collapse
|
3
|
Kazi TA, Acharya A, Mukhopadhyay BC, Mandal S, Arukha AP, Nayak S, Biswas SR. Plasmid-Based Gene Expression Systems for Lactic Acid Bacteria: A Review. Microorganisms 2022; 10:1132. [PMID: 35744650 PMCID: PMC9229153 DOI: 10.3390/microorganisms10061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Lactic acid bacteria (LAB) play a very vital role in food production, preservation, and as probiotic agents. Some of these species can colonize and survive longer in the gastrointestinal tract (GIT), where their presence is crucially helpful to promote human health. LAB has also been used as a safe and efficient incubator to produce proteins of interest. With the advent of genetic engineering, recombinant LAB have been effectively employed as vectors for delivering therapeutic molecules to mucosal tissues of the oral, nasal, and vaginal tracks and for shuttling therapeutics for diabetes, cancer, viral infections, and several gastrointestinal infections. The most important tool needed to develop genetically engineered LABs to produce proteins of interest is a plasmid-based gene expression system. To date, a handful of constitutive and inducible vectors for LAB have been developed, but their limited availability, host specificity, instability, and low carrying capacity have narrowed their spectrum of applications. The current review discusses the plasmid-based vectors that have been developed so far for LAB; their functionality, potency, and constraints; and further highlights the need for a new, more stable, and effective gene expression platform for LAB.
Collapse
Affiliation(s)
- Tawsif Ahmed Kazi
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Aparupa Acharya
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Bidhan Chandra Mukhopadhyay
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India;
| | - Ananta Prasad Arukha
- Researcher 5 Department of Neurosurgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Subhendu Nayak
- Sr. Scientist, Clorox, Better Health VMS, Durham, NC 27701, USA;
| | - Swadesh Ranjan Biswas
- Department of Botany, Visva-Bharati University, Santiniketan 731235, West Bengal, India; (T.A.K.); (A.A.); (B.C.M.)
| |
Collapse
|
4
|
NIE Y, JIA Y, ZHANG X, LU S, LI B. Screening of mixed lactic acid bacteria starter and its effects on the quality and flavor compounds of fermented Lentinus edodes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.39222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Sen LU
- School of Food Science, China
| | - Bo LI
- School of Food Science, China
| |
Collapse
|
5
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Sun W, Jiang B, Zhang Y, Guo J, Zhao D, Pu Z, Bao Y. Enabling the biosynthesis of malic acid in Lactococcus lactis by establishing the reductive TCA pathway and promoter engineering. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cho SW, Yim J, Seo SW. Engineering Tools for the Development of Recombinant Lactic Acid Bacteria. Biotechnol J 2020; 15:e1900344. [DOI: 10.1002/biot.201900344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sung Won Cho
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Jaewoo Yim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| | - Sang Woo Seo
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University 1 Gwanak‐ro Gwanak‐gu Seoul 08826 Republic of Korea
| |
Collapse
|
8
|
Liu J, Chan SHJ, Chen J, Solem C, Jensen PR. Systems Biology - A Guide for Understanding and Developing Improved Strains of Lactic Acid Bacteria. Front Microbiol 2019; 10:876. [PMID: 31114552 PMCID: PMC6503107 DOI: 10.3389/fmicb.2019.00876] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/15/2022] Open
Abstract
Lactic Acid Bacteria (LAB) are extensively employed in the production of various fermented foods, due to their safe status, ability to affect texture and flavor and finally due to the beneficial effect they have on shelf-life. More recently, LAB have also gained interest as production hosts for various useful compounds, particularly compounds with sensitive applications, such as food ingredients and therapeutics. As for all industrial microorganisms, it is important to have a good understanding of the physiology and metabolism of LAB in order to fully exploit their potential, and for this purpose, many systems biology approaches are available. Systems metabolic engineering, an approach that combines optimization of metabolic enzymes/pathways at the systems level, synthetic biology as well as in silico model simulation, has been used to build microbial cell factories for production of biofuels, food ingredients and biochemicals. When developing LAB for use in foods, genetic engineering is in general not an accepted approach. An alternative is to screen mutant libraries for candidates with desirable traits using high-throughput screening technologies or to use adaptive laboratory evolution to select for mutants with special properties. In both cases, by using omics data and data-driven technologies to scrutinize these, it is possible to find the underlying cause for the desired attributes of such mutants. This review aims to describe how systems biology tools can be used for obtaining both engineered as well as non-engineered LAB with novel and desired properties.
Collapse
Affiliation(s)
- Jianming Liu
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Siu Hung Joshua Chan
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States
| | - Jun Chen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Solem
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
9
|
Abstract
Lactic acid bacteria (LAB) ferment plants, fish, meats and milk and turn them into tasty food products with increased shelf life; other LAB help digesting food and create a healthy environment in the intestine. The economic and societal importance of these relatively simple and small bacteria is immense. In this review we hope to show that their adaptations to nutrient-rich environments provides fascinating and often puzzling behaviours that give rise to many fundamental evolutionary biological questions in need of a systems biology approach. We will provide examples of such questions, compare the (metabolic) behaviour of LAB to that of other model organisms, and provide the latest insights, if available.
Collapse
Affiliation(s)
- Bas Teusink
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| | - Douwe Molenaar
- Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, O
- 2 Building, Section Systems Bioinformatics, Location Code 2E51, De Boelelaan 1085, NL-1081HV Amsterdam, The Netherlands.,Top Institute Food and Nutrition, 6700 AN Wageningen, The Netherlands
| |
Collapse
|