1
|
Yang YX, Lin ZY, Chen YC, Yao SJ, Lin DQ. Modeling multi-component separation in hydrophobic interaction chromatography with improved parameter-by-parameter estimation method. J Chromatogr A 2024; 1730:465121. [PMID: 38959659 DOI: 10.1016/j.chroma.2024.465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Mechanistic models are powerful tools for chromatographic process development and optimization. However, hydrophobic interaction chromatography (HIC) mechanistic models lack an effective and logical parameter estimation method, especially for multi-component system. In this study, a parameter-by-parameter method for multi-component system (called as mPbP-HIC) was derived based on the retention mechanism to estimate the six parameters of the Mollerup isotherm for HIC. The linear parameters (ks,i and keq,i) and nonlinear parameters (ni and qmax,i) of the isotherm can be estimated by the linear regression (LR) and the linear approximation (LA) steps, respectively. The remaining two parameters (kp,i and kkin,i) are obtained by the inverse method (IM). The proposed method was verified with a two-component model system. The results showed that the model could accurately predict the protein elution at a loading of 10 g/L. However, the elution curve fitting was unsatisfactory for high loadings (12 g/L and 14 g/L), which is mainly attributed to the demanding experimental conditions of the LA step and the potential large estimation error of the parameter qmax. Therefore, the inverse method was introduced to further calibrate the parameter qmax, thereby reducing the estimation error and improving the curve fitting. Moreover, the simplified linear approximation (SLA) was proposed by reasonable assumption, which provides the initial guess of qmax without solving any complex matrix and avoids the problem of matrix unsolvable. In the improved mPbP-HIC method, qmax would be initialized by the SLA and finally determined by the inverse method, and this strategy was named as SLA+IM. The experimental validation showed that the improved mPbP-HIC method has a better curve fitting, and the use of SLA+IM reduces the error accumulation effect. In process optimization, the parameters estimated by the improved mPbP-HIC method provided the model with excellent predictive ability and reasonable extrapolation. In conclusion, the SLA+IM strategy makes the improved mPbP-HIC method more rational and can be easily applied to the practical separation of protein mixture, which would accelerate the process development for HIC in downstream of biopharmaceuticals.
Collapse
Affiliation(s)
- Yu-Xiang Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhi-Yuan Lin
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
| | - Yu-Cheng Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Chen YC, Yao SJ, Lin DQ. Parameter-by-parameter method for steric mass action model of ion exchange chromatography: Simplified estimation for steric shielding factor. J Chromatogr A 2023; 1687:463655. [PMID: 36442298 DOI: 10.1016/j.chroma.2022.463655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Mechanistic models play a crucial role in the process development and optimization of ion-exchange chromatography (IEC). Recent researches in steric mass action (SMA) model have heightened the need for better estimation of nonlinear parameter, steric shielding factor σ. In this work, a straightforward approach combination of simplified linear approximation (SLA) and inverse method (IM) was proposed to initialize and further determine σ, respectively. An existed, unique, and positive σ can be derived from SLA. Compared with linear approximation (LA) developed in our previous study, σ of the multi-component system can be calculated easily without solving the complex system of linear equations, leading to a time complexity reduction from O(n3) to O(n). The proposed method was verified first in numerical experiments about the separation of three charge variants. The calculated σ was more reasonable than that of LA, and the error of elution profiles with the parameters estimated by SLA+IM was only one-sixth of that by LA in numerical experiments. Moreover, the error accumulation effect could also be reduced. The proposed method was further confirmed in real-world experiments about the separation of monomer-dimer mixtures of monoclonal antibody. The results gave a lower error and better physical understanding compared to LA. In conclusion, SLA+IM developed in the present work provides a novel and straightforward way to determine σ. This simplification would help to save the effort of calibration experiments and accelerate the process development for the multi-component IEC separation.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shan-Jing Yao
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dong-Qiang Lin
- Zhejiang Key Laboratory of Smart Biomaterials, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Parameter-by-parameter method for steric mass action model of ion exchange chromatography: Theoretical considerations and experimental verification. J Chromatogr A 2022; 1680:463418. [PMID: 36001908 DOI: 10.1016/j.chroma.2022.463418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Ion exchange chromatography (IEC) is one of the most widely-used techniques for protein separation and has been characterized by mechanistic models. However, the time-consuming and cumbersome model calibration hinders the application of mechanistic models for process development. A new methodology called "parameter-by-parameter method (PbP)" was proposed with mechanistic derivations of the steric mass action (SMA) model of IEC. The protocol includes four steps: (1) first linear regression (LR1) for characteristic charge; (2) second linear regression (LR2) for equilibrium coefficient; (3) linear approximation (LA) for shielding factor; (4) inverse method (IM) for kinetic coefficient. Four SMA parameters could be one-by-one determined in sequence, reducing the number of unknown parameters per species from four to one, and predicting almost consistent retention. Numerical single-component experiments were investigated firstly, and the PbP method showed excellent agreement between experiments and simulations. The effects of loadings on the PbP and Yamamoto methods were compared. It was found that the PbP method had higher accuracy and robustness than the Yamamoto method. Moreover, a five-experiment strategy was suggested to implement the PbP method, which is straightforward to reduce the cost of calibration experiments. Finally, a real-world multi-component separation was challenged and further confirmed the feasibility of the PbP method. In general, the proposed method can not only reliably estimate the SMA parameters with comprehensive physical understanding but also accurately predict retention over a wide range of loading conditions.
Collapse
|
4
|
Sanden A, Haas S, Hubbuch J. Modifying an ÄKTApurifier System for the Automated Acquisition of Samples for Kinetic Modeling of Batch Reactions. SLAS Technol 2019; 25:106-110. [PMID: 31829076 DOI: 10.1177/2472630319891976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recording the data necessary to assess the kinetics of a reaction can be labor-intensive. In this technology brief, we show a method to automate this task by utilizing parts of an ÄKTApurifier chromatography system to automatically take samples from a reaction vessel at predefined time intervals and place them in 96-well plates and also enable correlating the samples with in-line spectral data of the reaction solution. Automatic sampling can reduce experimental bottlenecks by enabling overnight reactions or a higher degree of parallelization. To demonstrate the feasibility of the method, we performed batch-PEGylation of lysozyme with varying conditions by changing the molar excess of the PEG reagent. We used analytical cation-exchange chromatography to analyze the samples taken during the batch reaction, determining the concentrations of the individual species present at each time step. Subsequently, we fitted a kinetic model on these data. Fitting the model to four different reaction conditions simultaneously yielded a regression coefficient of R2 = 0.871.
Collapse
Affiliation(s)
- Adrian Sanden
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sandra Haas
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
5
|
Ramos-de-la-Peña AM, Aguilar O. Progress and Challenges in PEGylated Proteins Downstream Processing: A Review of the Last 8 Years. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09840-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Wang XD, Wei NN, Wang SC, Yuan HL, Zhang FY, Xiu ZL. Kinetic Optimization and Scale-Up of Site-Specific Thiol-PEGylation of Loxenatide from Laboratory to Pilot Scale. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xu-Dong Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Ning-Ning Wei
- School of Life Science and Medicine, Dalian University of Technology, 2 Dagong Road, Panjin 124221, People’s Republic of China
| | - Shu-Chang Wang
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Heng-Li Yuan
- State Key Laboratory Cultivating Base for Long-acting Bio-medical Research of Jiangsu Province, Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222000, People’s Republic of China
| | - Feng-Ying Zhang
- State Key Laboratory Cultivating Base for Long-acting Bio-medical Research of Jiangsu Province, Jiangsu Hansoh Pharmaceutical Group Co., Ltd., Lianyungang 222000, People’s Republic of China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
7
|
Morgenstern J, Gil Alvaradejo G, Bluthardt N, Beloqui A, Delaittre G, Hubbuch J. Impact of Polymer Bioconjugation on Protein Stability and Activity Investigated with Discrete Conjugates: Alternatives to PEGylation. Biomacromolecules 2018; 19:4250-4262. [PMID: 30222929 DOI: 10.1021/acs.biomac.8b01020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent attachment of synthetic polymers to proteins, known as protein-polymer conjugation, is currently one of the main approaches for improving the physicochemical properties of these biomolecules. The most commonly employed polymer is polyethylene glycol (PEG), as evidenced by extensive research and clinical track records for its use in biopharmaceuticals. However, the occurrence of allergic reactions or hypersensitivity and the discovery of PEG antibodies, on the one hand, and the rise of controlled polymerization techniques and novel monomers, on the other hand, have been driving the search for alternative polymers for bioconjugation. The present study describes the synthesis, purification, and properties of conjugates of lysozyme with poly( N-acryloylmorpholine) (PNAM) and poly(oligoethylene glycol methyl ether methacrylate) (POEGMA). Particularly, conjugate species with distinct conjugation degrees are investigated for their residual activity, aggregation behavior, and solubility, by using a high-throughput screening approach. Our study showcases the importance of evaluating conjugates obtained by nonsite-specific modification through isolated species with discrete degrees of conjugation rather than on the batch level. Monovalent conjugates with relatively low molar mass polymers displayed equal or even higher activity than the native protein, while all conjugates showed an improved protein solubility. To achieve a comparable effect on solubility as with PEG, PNAM and POEGMA of higher molar masses were required.
Collapse
Affiliation(s)
- Josefine Morgenstern
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| | - Gabriela Gil Alvaradejo
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Nicolai Bluthardt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| | - Ana Beloqui
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| |
Collapse
|
8
|
Sauer DG, Mosor M, Frank AC, Weiß F, Christler A, Walch N, Jungbauer A, Dürauer A. A two-step process for capture and purification of human basic fibroblast growth factor from E. coli homogenate: Yield versus endotoxin clearance. Protein Expr Purif 2018; 153:70-82. [PMID: 30130579 DOI: 10.1016/j.pep.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 11/25/2022]
Abstract
A two-step purification process for human basic fibroblast growth factor (FGF-2) from clarified E. coli homogenate has been developed in which the impurity level after the second step is below the limit of quantification. Endotoxin content is cleared to 0.02 EU/μg FGF-2 and the overall yield is 67%. The performance of the cation exchanger Carboxymethyl-Sepharose Fast Flow (CM-SFF) was compared to the affinity resin Heparin-SFF regarding the impurity profile and product quality in the elution peak. The CM-SFF eluate was further purified using hydrophobic interaction resin Toyopearl-Hexyl-650C. The relative amounts of target product, host cell proteins (HCPs), dsDNA, endotoxin, monomer content, and high molecular weight impurities differed along the elution peak depending on the applied method. The bioactive monomer (>99%) was obtained with a yield of 48% for CM-SFF and 68% for Heparin-SFF. A half-load reduction in CM-SFF increased the yield up to 67% without deterioration of the impurity content. Assuming a dose of 400 μg FGF-2, endotoxin was reduced to 188 EU/dose, dsDNA <10 ng/dose, and HCP <2 ppm/dose using the cation exchanger. In the pooled eluate fractions, dsDNA was removed 4-fold (291 ng/mL) and endotoxin 14-fold (0.47 EU/μg FGF-2) more efficiently by CM-SFF than by affinity chromatography. In contrast, HCP clearance was 3-fold (13 ppm) more efficient with Heparin-SFF than CM-SFF. In contrast to process monitoring by UV280nm or SDS-PAGE, this characterization is the basis for a Process Analytical Technology attempt when correlated with online monitored signals, as it enables knowledge-based pooling according to defined quality criteria.
Collapse
Affiliation(s)
- Dominik Georg Sauer
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Magdalena Mosor
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Anna-Carina Frank
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Florian Weiß
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Anna Christler
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Nicole Walch
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Astrid Dürauer
- Austrian Centre of Industrial Biotechnology, Muthgasse 11, 1190, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|