1
|
Shen Y, Guo J, Xia Y, Wei L, Lin X, Liu Y, Chen Y, Bao Y, Yang H, Chen X. Production of 2-O-α-d-glucopyranosyl-l-ascorbic acid using sucrose phosphorylase by semi-rational design. Int J Biol Macromol 2025; 284:138213. [PMID: 39617240 DOI: 10.1016/j.ijbiomac.2024.138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) is often substituted for l-ascorbic acid (L-AA) in health- and skincare products due to its enhanced stability and comparable antioxidant. Enzymatic catalysis for AA-2G is gaining widespread interest and sucrose phosphorylases (SPase) have shown promise in achieving higher yields. To enhance AA-2G synthesis, we screened and identified the SPase from Bifidobacterium longum (BlSPase) as the starting enzyme, with an optimal pH of 5.4 and temperature of 45 °C for AA-2G synthesis. Subsequently, we conducted semi-rational design on BlSPase based on modeling and molecular docking. L-AA was docked with the BlSPase model to analyze key residues in the 'loop-door' domain and substrate-binding pocket. Through alanine scanning and saturation mutagenesis, a mutant library was created. After single-point and composite mutation, L341V/V346P was identified as the optimal variant. Ultimately, within 72 h, we achieved yield of 358.6 g/L AA-2G with a molar conversion of L-AA reaching 75.7 %.
Collapse
Affiliation(s)
- Yujuan Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jiajing Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Lai Wei
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyi Lin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuqi Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuanhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yuhao Bao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China; School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Merdzo Z, Narmontaite E, Gonzalez-Alfonso JL, Poveda A, Jimenez-Barbero J, Plou FJ, Fernández-Lobato M. Insights into the transglucosylation activity of α-glucosidase from Schwanniomyces occidentalis. Appl Microbiol Biotechnol 2024; 108:443. [PMID: 39153091 PMCID: PMC11330417 DOI: 10.1007/s00253-024-13262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.
Collapse
Affiliation(s)
- Zoran Merdzo
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | - Egle Narmontaite
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain
| | | | - Ana Poveda
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
| | - Jesus Jimenez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160, Derio, Spain
- Ikerbasque. Basque Foundation for Science, 48009, Bilbao, Spain
| | - Francisco J Plou
- Instituto de Catálisis y Petroleoquímica (CSIC), C/ Marie Curie, 2., 28049, Madrid, Spain
| | - María Fernández-Lobato
- Centro de Biología Molecular Severo Ochoa, Departamento de Biología Molecular (UAM-CSIC), Universidad Autónoma de Madrid, C/ Nicolás Cabrera, 1. Campus Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Zheng SY, Zhou WJ, Lin XN, Li FF, Xie CF, Liu DL, Yao DS. Increased yield of 2-O-α-d-glucopyranosyl-l-ascorbic acid synthesis by α-glucosidase using rational design that regulating the ground state of enzyme and substrate complex. Biotechnol J 2023; 18:e2300122. [PMID: 37288751 DOI: 10.1002/biot.202300122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/04/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND α-Glucosidase (AG) is a bifunctional enzyme, it has a capacity to synthesize 2-O-α-d-glucopyranosyl-l-ascorbic acid (AA-2G) from l-ascorbic acid (L-AA) and low-cost maltose under mild conditions, but it can also hydrolyze AA-2G, which leads to low synthesis efficiency of AA-2G. MAIN METHODS AND MAJOR RESULTS This study introduces a rational molecular design strategy to regulate enzymatic reactions based on inhibiting the formation of ground state of enzyme-substrate complex. Y215 was analyzed as the key amino acid site affecting the affinity of AG to AA-2G and L-AA. For the purpose of reducing the hydrolysis efficiency of AA-2G, the mutant Y215W was obtained by analyzing the molecular docking binding energy and hydrogen bond formation between AG and the substrates. Compared with the wild-type, isothermal titration calorimetry (ITC) results showed that the equilibrium dissociation constant (KD ) of the mutant for AA-2G was doubled; the Michaelis constant (Km ) for AA-2G was reduced by 1.15 times; and the yield of synthetic AA-2G was increased by 39%. CONCLUSIONS AND IMPLICATIONS Our work also provides a new reference strategy for the molecular modification of multifunctional enzymes and other enzymes in cascade reactions system.
Collapse
Affiliation(s)
- Shao-Yan Zheng
- Institute of Biomedicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Wei-Jie Zhou
- Institute of Biomedicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Xiang-Na Lin
- Institute of Biomedicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Fei-Fei Li
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou City, Guangdong Province, China
| | - Chun-Fang Xie
- Institute of Biomedicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou City, Guangdong Province, China
| | - Da-Ling Liu
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou City, Guangdong Province, China
| | - Dong-Sheng Yao
- Institute of Biomedicine, Jinan University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
4
|
Gan T, Fang J, Wang Y, Liu K, Sang Y, Chen H, Lu Y, Zhu L, Chen X. Promoter engineering for efficient production of sucrose phosphorylase in Bacillus subtilis and its application in enzymatic synthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid. Enzyme Microb Technol 2023; 169:110267. [PMID: 37321017 DOI: 10.1016/j.enzmictec.2023.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023]
Abstract
2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), a stable glucoside derivative of L-ascorbic acid (L-AA), can be one-step synthesized by sucrose phosphorylase (SPase). In this study, we attempted to produce extracellular SPase in Bacillus subtilis WB800 for the food-grade production of AA-2G. The results showed that the secretion of SPases did not require signal peptide. Promoter and its compatibility to target SPase gene were proved to be the key factors for high-level secretion. The strong promoter P43 and synthetic SPase gene derived from Bifidobacterium longum (BloSPase) were selected due to generate a relatively high extracellular activity (0.94 U/mL) for L-AA glycosylation. A highly active dual-promoter system PsigH-100-P43 was further constructed, which produced the highest extracellular and intracellular activity were 5.53 U/mL and 6.85 U/mL in fed-batch fermentation, respectively. Up to 113.58 g/L of AA-2G could be achieved by the supernatant of fermentation broth and a higher yield of 146.42 g/L was obtained by whole-cells biotransformation. Therefore, the optimal dual-promoter system in B. subtilis is suitable for the food-grade scale-up production of AA-2G.
Collapse
Affiliation(s)
- Tian Gan
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyi Fang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxin Wang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kaiqiang Liu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yumin Sang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hanchi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou 310014, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
5
|
Facile and improved synthesis of the 2-O-β-d-glucopyranosyl-l-ascorbic acid. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Zhou Y, Lv X, Chen L, Zhang H, Zhu L, Lu Y, Chen X. Identification of Process-Related Impurities and Corresponding Control Strategy in Biocatalytic Production of 2- O-α-d-Glucopyranosyl-l-ascorbic Acid Using Sucrose Phosphorylase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5066-5076. [PMID: 35412325 DOI: 10.1021/acs.jafc.2c00881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
2-O-α-d-Glucopyranosyl-l-ascorbic acid (AA-2G) is an ideal substitute for l-ascorbic acid because of its remarkable stability and improved biological activity, which can be easily applied in cosmetic, food, and medicine fields. However, impurity identification and control are significant procedures during the manufacturing of AA-2G. This study assessed a manufacturing routine of AA-2G synthesized by sucrose phosphorylase (SPase). First, three unknown process-related impurities were observed, which were further identified as 3-O-α-d-glucopyranosyl- l-ascorbic acid (impurity I), 2-O-α-d-glucopyranosyl-l-dehydroascorbic acid (impurity II), and 13-O-α-d-glucopyranosyl-2-O-α-d-glucopyranosyl-l-ascorbic acid (impurity III), respectively. Second, a comprehensive formation pathway of impurities was elucidated, and specific strategies corresponding to controlling each impurity were also proposed. Specifically, the content of impurity I can be reduced by 50% by fine tuning reaction conditions. The impurity II-free purification process was also achieved by applying a low concentration of alkali. Finally, a semi-rational design was introduced, and a single mutant L343F was obtained by site-directed mutagenesis, which reduced impurities I and III by 63.9 and 100%, respectively, without affecting the transglycosylation activity. It is expected that the reported impurity identification and control strategies during the AA-2G production will facilitate its industrial production.
Collapse
Affiliation(s)
- Yaoyao Zhou
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xuhao Lv
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Luyi Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hui Zhang
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Linjiang Zhu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Yuele Lu
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaolong Chen
- Institute of Fermentation Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
7
|
Zhou Y, Gan T, Jiang R, Chen H, Ma Z, Lu Y, Zhu L, Chen X. Whole-cell catalytic synthesis of 2-O-α-glucopyranosyl-l-ascorbic acid by sucrose phosphorylase from Bifidobacterium breve via a batch-feeding strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|