1
|
Siles L, Pomares E. Rescue of the disease-associated phenotype in CRISPR-corrected hiPSCs as a therapeutic approach for inherited retinal dystrophies. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102482. [PMID: 40083649 PMCID: PMC11903799 DOI: 10.1016/j.omtn.2025.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Inherited retinal dystrophies (IRDs), such as retinitis pigmentosa and Stargardt disease, are a group of rare diseases caused by mutations in more than 300 genes that currently have no treatment in most cases. They commonly trigger blindness and other ocular affectations due to retinal cell degeneration. Gene editing has emerged as a promising and powerful strategy for the development of IRD therapies, allowing the permanent correction of pathogenic variants. Using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and transcription activator-like effector nucleases (TALEN) gene-editing tools, we precisely corrected seven hiPS cell lines derived from IRD patients carrying mutations in ABCA4, BEST1, PDE6A, PDE6C, RHO, or USH2A. Homozygous mutations and point insertions/deletions resulted in the highest homology-directed repair efficiencies, with at least half of the clones repaired properly without off-target effects. Strikingly, correction of a heterozygous pathogenic variant was achieved using the wild-type allele of the patient as the template for DNA repair. These results suggest the unexpected potential application of CRISPR as a donor template-free strategy for single-nucleotide modifications. Additionally, the corrected clones exhibited a reversion of the disease-associated phenotype in retinal cellular models. These data strengthen the study and application of gene editing-based approaches for IRD treatment.
Collapse
Affiliation(s)
- Laura Siles
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| | - Esther Pomares
- Departament de Genètica, Institut de Microcirurgia Ocular, IMO Grupo Miranza, 08035 Barcelona, Spain
| |
Collapse
|
2
|
Lee KE, Xu Y, Geng B, Kim J, Kellon N, He M, Zhang Z, Li D, Gouchoe DA, Zhu H. Prime editing-mediated correction of the leptin receptor in muscle cells of db/db mice. Biotechnol J 2024; 19:e2300676. [PMID: 38730523 PMCID: PMC11090457 DOI: 10.1002/biot.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 05/13/2024]
Abstract
Genetic diseases can be caused by monogenic diseases, which result from a single gene mutation in the DNA sequence. Many innovative approaches have been developed to cure monogenic genetic diseases, namely by genome editing. A specific type of genomic editing, prime editing, has the potential advantage to edit the human genome without requiring double-strand breaks or donor DNA templates for editing. Additionally, prime editing does not require a precisely positioned protospacer adjacent motif (PAM) sequence, which offers flexible target and more precise genomic editing. Here we detail a novel construction of a prime editing extended guide RNA (pegRNA) to target mutated leptin receptors in B6.BKS(D)-Leprdb/J mice (db/db mice). The pegRNA was then injected into the flexor digitorum brevis (FDB) muscle of db/db mice to demonstrate in vivo efficacy, which resulted in pegRNA mediated base transversion at endogenous base transversion. Genomic DNA sequencing confirmed that prime editing could correct the mutation of leptin receptor gene in db/db mice. Furthermore, prime editing treated skeletal muscle exhibited enhanced leptin receptor signals. Thus, the current study showed in vivo efficacy of prime editing to correct mutant protein and rescue the physiology associated with functional protein.
Collapse
Affiliation(s)
- Kyung Eun Lee
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yanping Xu
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Bingchuan Geng
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jongsoo Kim
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Natalie Kellon
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Michele He
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhentao Zhang
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Deqiang Li
- The Center for Cardiovascular Research at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Doug A. Gouchoe
- COPPER Laboratory, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus OH 43210, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, the Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Dueñas E, Nakamoto JA, Cabrera-Sosa L, Huaihua P, Cruz M, Arévalo J, Milón P, Adaui V. Novel CRISPR-based detection of Leishmania species. Front Microbiol 2022; 13:958693. [PMID: 36187950 PMCID: PMC9520526 DOI: 10.3389/fmicb.2022.958693] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/06/2022] [Indexed: 12/26/2022] Open
Abstract
Tegumentary leishmaniasis, a disease caused by protozoan parasites of the genus Leishmania, is a major public health problem in many regions of Latin America. Its diagnosis is difficult given other conditions resembling leishmaniasis lesions and co-occurring in the same endemic areas. A combination of parasitological and molecular methods leads to accurate diagnosis, with the latter being traditionally performed in centralized reference and research laboratories as they require specialized infrastructure and operators. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) systems have recently driven innovative tools for nucleic acid detection that combine high specificity, sensitivity and speed and are readily adaptable for point-of-care testing. Here, we harnessed the CRISPR-Cas12a system for molecular detection of Leishmania spp., emphasizing medically relevant parasite species circulating in Peru and other endemic areas in Latin America, with Leishmania (Viannia) braziliensis being the main etiologic agent of cutaneous and mucosal leishmaniasis. We developed two assays targeting multi-copy targets commonly used in the molecular diagnosis of leishmaniasis: the 18S ribosomal RNA gene (18S rDNA), highly conserved across Leishmania species, and a region of kinetoplast DNA (kDNA) minicircles conserved in the L. (Viannia) subgenus. Our CRISPR-based assays were capable of detecting down to 5 × 10-2 (kDNA) or 5 × 100 (18S rDNA) parasite genome equivalents/reaction with PCR preamplification. The 18S PCR/CRISPR assay achieved pan-Leishmania detection, whereas the kDNA PCR/CRISPR assay was specific for L. (Viannia) detection. No cross-reaction was observed with Trypanosoma cruzi strain Y or human DNA. We evaluated the performance of the assays using 49 clinical samples compared to a kDNA real-time PCR assay as the reference test. The kDNA PCR/CRISPR assay performed equally well as the reference test, with positive and negative percent agreement of 100%. The 18S PCR/CRISPR assay had high positive and negative percent agreement of 82.1% and 100%, respectively. The findings support the potential applicability of the newly developed CRISPR-based molecular tools for first-line diagnosis of Leishmania infections at the genus and L. (Viannia) subgenus levels.
Collapse
Affiliation(s)
- Eva Dueñas
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Jose A. Nakamoto
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Luis Cabrera-Sosa
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Percy Huaihua
- Laboratorio de Patho-antígenos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - María Cruz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Hospital Nacional Adolfo Guevara Velasco, Cusco, Peru
| | - Jorge Arévalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorio de Patho-antígenos, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pohl Milón
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
| | - Vanessa Adaui
- Laboratory of Biomolecules, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
Fasching CL, Servellita V, McKay B, Nagesh V, Broughton JP, Sotomayor-Gonzalez A, Wang B, Brazer N, Reyes K, Streithorst J, Deraney RN, Stanfield E, Hendriks CG, Fung B, Miller S, Ching J, Chen JS, Chiu CY. COVID-19 Variant Detection with a High-Fidelity CRISPR-Cas12 Enzyme. J Clin Microbiol 2022; 60:e0026122. [PMID: 35766492 PMCID: PMC9297821 DOI: 10.1128/jcm.00261-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/26/2022] Open
Abstract
Laboratory tests for the accurate and rapid identification of SARS-CoV-2 variants can potentially guide the treatment of COVID-19 patients and inform infection control and public health surveillance efforts. Here, we present the development and validation of a rapid COVID-19 variant DETECTR assay incorporating loop-mediated isothermal amplification (LAMP) followed by CRISPR-Cas12 based identification of single nucleotide polymorphism (SNP) mutations in the SARS-CoV-2 spike (S) gene. This assay targets the L452R, E484K/Q/A, and N501Y mutations, at least one of which is found in nearly all major variants. In a comparison of three different Cas12 enzymes, only the newly identified enzyme CasDx1 was able to accurately identify all targeted SNP mutations. An analysis pipeline for CRISPR-based SNP identification from 261 clinical samples yielded a SNP concordance of 97.3% and agreement of 98.9% (258 of 261) for SARS-CoV-2 lineage classification, using SARS-CoV-2 whole-genome sequencing and/or real-time RT-PCR as test comparators. We also showed that detection of the single E484A mutation was necessary and sufficient to accurately identify Omicron from other major circulating variants in patient samples. These findings demonstrate the utility of CRISPR-based DETECTR as a faster and simpler diagnostic method compared with sequencing for SARS-CoV-2 variant identification in clinical and public health laboratories.
Collapse
Affiliation(s)
| | - Venice Servellita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Bridget McKay
- Mammoth Biosciences, Inc., Brisbane, California, USA
| | | | | | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Baolin Wang
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Kevin Reyes
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | | | | | | | - Becky Fung
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Steve Miller
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
| | - Jesus Ching
- Mammoth Biosciences, Inc., Brisbane, California, USA
| | | | - Charles Y. Chiu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA
- Department of Medicine, Division of Infectious Diseases, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Kapusi E, Cong L, Stoger E. Editorial: CRISPR and alternative approaches. Biotechnol J 2022; 17:e2200290. [PMID: 35726663 DOI: 10.1002/biot.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Eszter Kapusi
- Department of Applied Genetics and Cell Biology (DAGZ), Institute of Plant Biotechnology and Cell Biology (IPBT), University of Natural Resources and Life Sciences, Vienna, Austria
| | - Le Cong
- Department of Pathology, Department of Genetics, Wu Tsai Neuroscience Institute, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Eva Stoger
- Department of Pathology, Department of Genetics, Wu Tsai Neuroscience Institute, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|