1
|
Lorek JK, Isaksson M, Nilsson B. Chromatography in Downstream Processing of Recombinant Adeno-Associated Viruses: A Review of Current and Future Practises. Biotechnol Bioeng 2025; 122:1067-1086. [PMID: 39905691 PMCID: PMC11975191 DOI: 10.1002/bit.28932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
Recombinant adeno-associated virus (rAAV) has emerged as an attractive gene delivery vector platform to treat both rare and pervasive diseases. With more and more rAAV-based therapies entering late-stage clinical trials and commercialization, there is an increasing pressure on the rAAV manufacturing process to accelerate drug development, account for larger trials, and commercially provide high doses. Still, many of the pre-clinical and clinical manufacturing processes are tied to outdated technologies, which results in substantial production expenses. Those processes face challenges including low productivity and difficult scalability, which limits its ability to provide for required dosages which in turn influences the accessibility of the drug. And as upstream efforts are expected to increase productivities, the downstream part needs to adapt with more scalable and efficient technologies. In this review, both traditional and novel rAAV downstream technologies are presented and discussed. Traditional rAAV downstream processes are based on density gradient ultracentrifugation and have been shown to effectively purify rAAVs with high yields and purities. However, those processes lack scalability and efficiency, which is why novel rAAV downstream processes based on column-chromatography have emerged as an attractive alternative and show potential for integration in continuous processes, following the principle of next-generation manufacturing.
Collapse
Affiliation(s)
| | - Madelène Isaksson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| | - Bernt Nilsson
- Department of Process and Life Science EngineeringLund UniversityLundSweden
| |
Collapse
|
2
|
Wu Y, Barbieri E, Smith WK, Minzoni A, Kilgore RE, Chu W, Daniele MA, Menegatti S. Integrating Affinity Chromatography in the Platform Process for Adenovirus Purification. Biotechnol Bioeng 2025. [PMID: 40263775 DOI: 10.1002/bit.29006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Adenoviral vectors (AdVs) are gaining prominence in cancer therapy and vaccine development, posing the need for a modern AdV manufacturing platform. Current AdV purification by ion-exchange chromatography indeed struggles to achieve the product's yield and purity of processes that employ affinity technologies. Addressing these challenges, this study presents the first affinity-based process that delivers high product yield and clearance of host cell proteins and DNA (HCPs and hcDNA) in two chromatography steps. The affinity capture utilizes resins functionalized with peptide ligands that target AdV hexon proteins (AEFFIWNA and TNDGPDYSSPLTGSG), and provide high capacity (> 5·1010 vp/mL of resin) and yield under mild elution conditions (~50% at pH 8.0). Peptide-functionalized adsorbents prepared using different matrices (polymethylmethacrylate vs. agarose) were initially tested to compare the purification performance. AEFFIWNA-SulfoLink resin was selected for its yield of cell-transducing AdVs (~50%) and removal of HCPs and hcDNA (144-fold and 56-fold). Similarly, TNDGPDYSSPLTGSG-Toyopearl resin afforded ~50% yield and > 50-fold reduction of impurities. Additional gains in product purity were achieved by optimizing the washing step, which removed free hexon proteins and additional HCPs. All peptide-functionalized resins maintained their purification performance for 10 cycles upon regeneration at pH ~2.0. The purification process was assembled to include clarification, affinity capture in bind-and-elute mode using AEFFIWNA-SulfoLink resin, and polishing in flow-through mode using mixed-mode resins. The optimized process provided a yield ~50% of cell-infecting units (IFU) and a product titer ~107 IFU/mL, along with residual HCP and hcDNA levels (8.76 ng/mL and 44 ng per dose, respectively) that meet clinical requirements.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
| | - William K Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- LigaTrap Technologies LLC, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Miklavčič R, Simčič T, Rotar S, Komel P, Žigon R, Pavlovič D, Bergoč I, Ipavec D, Simčič Zuljan A, Žnidaršič A, Kukanja D, Vidič J, Štrancar A, Černigoj U. Development and Validation of AAV Capsids Separation on Specimen Columns for Reproducibility Evaluation of Large-Scale Chromatographic Monoliths. J Sep Sci 2025; 48:e70114. [PMID: 40098348 PMCID: PMC11914862 DOI: 10.1002/jssc.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
One of the key challenges in adeno-associated virus (AAV) viral vector manufacturing is the effective and consistent separation of full (F) AAV capsids from undesired non-functional (empty = E, partially filled, etc.) capsids. Typically, at least one chromatography step is used for this purpose in AAV manufacturing. Due to the complexity of viral capsids separation, even a small change in the chromatographic process is reflected in unreproducible results. One solution for robust polishing of full AAV capsids is the highly reproducible (HR) design of chromatographic columns used in this step. Implementation of such columns requires the development of control tests, which efficiently predict column performance for AAV separation. In this paper, the methodology for reproducible separation of empty and full recombinant AAV2/8 (E/F rAAV2/8) capsids was defined using quaternary amine (QA) chromatographic monoliths in a linear potassium chloride (KCl) gradient. The scalability of the procedure was experimentally confirmed on 1, 80, and 800 mL CIMmultus QA columns, where empty capsids eluted at a KCl concentration range of 89.4-91.4 mM. A sampling of the monolith material from the 800 mL CIMmultus QA column and testing it for E/F rAAV2/8 capsid separation in the form of a 200 µL column resulted in a highly comparable elution pattern as obtained with the parent 800 mL column. The principle of sampling material by cutting the parent monolith, packing it in 200 µL columns (specimens) and testing them for E/F rAAV2/8 capsid separation was further developed to demonstrate intra-column homogeneity; batch-to-batch homogeneity; and scalability of CIM QA monoliths. Finally, specimens testing using a validated E/F rAAV2/8 separation method was used to monitor 28 CIMmultus QA production batches (bed volumes between 1 and 8000 mL). E rAAV2/8 capsids eluted at KCl concentration between 89.3 and 95.3 mM for 28 batches, paving the way for commercialization of highly reproducible preparative QA chromatographic monoliths (CIMmultus QA HR).
Collapse
Affiliation(s)
- Rok Miklavčič
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tina Simčič
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | - Sara Rotar
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | - Polona Komel
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | - Rok Žigon
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | | | - Ines Bergoč
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | - Domen Ipavec
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | | | | | | | - Jana Vidič
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| | | | - Urh Černigoj
- Sartorius BIA Separations d.o.o.AjdovščinaSlovenia
| |
Collapse
|
4
|
Wu Y, Barbieri E, Kilgore RE, Moore BD, Chu W, Mollica GN, Daniele MA, Menegatti S. Peptide ligands for the affinity purification of adenovirus from HEK293 and vero cell lysates. J Chromatogr A 2024; 1736:465396. [PMID: 39342729 DOI: 10.1016/j.chroma.2024.465396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Adenovirus (AdVs) is the viral vector of choice in vaccines and oncolytic applications owing to its high transduction activity and inherent immunogenicity. For decades, AdV isolation has relied on ultracentrifugation and ion-exchange chromatography, which are not suitable to large-scale production and struggle to deliver sufficient purity. Immunoaffinity chromatography resins of recent introduction feature high binding capacity and selectivity, but mandate harsh elution conditions (pH 3.0), afford low yield (< 20%), and provide limited reusability. Seeking a more efficient and affordable alternative, this study introduces the first peptide affinity ligands for AdV purification. The peptides were identified via combinatorial selection and in silico design to target hexons, the most abundant proteins in the adenoviral capsid. Selected peptide ligands AEFFIWNA and TNDGPDYSSPLTGSG were conjugated on chromatographic resins and utilized to purify AdV serotype 5 from HEK293 and Vero cell lysates. The peptide-functionalized resins feature high binding capacity (> 1010 active virions per mL at the residence time of 2 min), provide high yield (> 50%) and up to 100-fold reduction of host cell proteins and DNA. Notably, the peptide ligands enable gentle elution conditions (pH 8) that prevent the "shedding" of penton and fiber proteins, thus affording intact adenovirus particles with high cell-transduction activity. The study of the peptide ligands by surface plasmon resonance and molecular docking and dynamics simulations confirmed the selective targeting of hexon proteins and elucidated the molecular-level mechanisms underlying binding and release. Collectively, these results demonstrate the strong promise of peptide ligands presented herein for the affinity purification of AdVs from cell lysates.
Collapse
Affiliation(s)
- Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Gina N Mollica
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA; Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, NC 27695, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA; Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606.
| |
Collapse
|
5
|
Kilgore RE, Moore BD, Sripada SA, Chu W, Shastry S, Barbieri E, Hu S, Tian W, Petersen H, Mohammadifar M, Simpson A, Brown A, Lavoie J, Elhanafi D, Goletz S, Cheng K, Daniele MA, Menegatti S. Peptide ligands for the universal purification of exosomes by affinity chromatography. Biotechnol Bioeng 2024; 121:3484-3501. [PMID: 39099106 DOI: 10.1002/bit.28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Exosomes are gaining prominence as vectors for drug delivery, vaccination, and regenerative medicine. Owing to their surface biochemistry, which reflects the parent cell membrane, these nanoscale biologics feature low immunogenicity, tunable tissue tropism, and the ability to carry a variety of payloads across biological barriers. The heterogeneity of exosomes' size and composition, however, makes their purification challenging. Traditional techniques, like ultracentrifugation and filtration, afford low product yield and purity, and jeopardizes particle integrity. Affinity chromatography represents an excellent avenue for exosome purification. Yet, current affinity media rely on antibody ligands whose selectivity grants high product purity, but mandates the customization of adsorbents for exosomes with different surface biochemistry while their binding strength imposes elution conditions that may harm product's activity. Addressing these issues, this study introduces the first peptide affinity ligands for the universal purification of exosomes from recombinant feedstocks. The peptides were designed to (1) possess promiscuous biorecognition of exosome markers, without binding process-related contaminants and (2) elute the product under conditions that safeguard product stability. Selected ligands SNGFKKHI and TAHFKKKH demonstrated the ability to capture of exosomes secreted by 14 cell sources and purified exosomes derived from HEK293, PC3, MM1, U87, and COLO1 cells with yields of up to 80% and up-to 50-fold reduction of host cell proteins (HCPs) upon eluting with pH gradient from 7.4 to 10.5, recommended for exosome stability. SNGFKKHI-Toyopearl resin was finally employed in a two-step purification process to isolate exosomes from HEK293 cell fluids, affording a yield of 68% and reducing the titer of HCPs to 68 ng/mL. The biomolecular and morphological features of the isolated exosomes were confirmed by analytical chromatography, Western blot analysis, transmission electron microscopy, nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Sobhana A Sripada
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Weihua Tian
- Department of Biotechnology and Biomedicine, Denmark Technical University, Kongens, Denmark
| | - Heidi Petersen
- National Food Institute, Denmark Technical University, Kongens, Denmark
| | | | - Aryssa Simpson
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Ashley Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Joseph Lavoie
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Driss Elhanafi
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Denmark Technical University, Kongens, Denmark
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
- Biomanufacturing Training and Education Center (BTEC), Raleigh, North Carolina, USA
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Destro F, Wu W, Srinivasan P, Joseph J, Bal V, Neufeld C, Wolfrum JM, Manalis SR, Sinskey AJ, Springs SL, Barone PW, Braatz RD. The state of technological advancement to address challenges in the manufacture of rAAV gene therapies. Biotechnol Adv 2024; 76:108433. [PMID: 39168354 DOI: 10.1016/j.biotechadv.2024.108433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Current processes for the production of recombinant adeno-associated virus (rAAV) are inadequate to meet the surging demand for rAAV-based gene therapies. This article reviews recent advances that hold the potential to address current limitations in rAAV manufacturing. A multidisciplinary perspective on technological progress in rAAV production is presented, underscoring the necessity to move beyond incremental refinements and adopt a holistic strategy to address existing challenges. Since several recent reviews have thoroughly covered advancements in upstream technology, this article provides only a concise overview of these developments before moving to pivotal areas of rAAV manufacturing not well covered in other reviews, including analytical technologies for rapid and high-throughput measurement of rAAV quality attributes, mathematical modeling for platform and process optimization, and downstream approaches to maximize efficiency and rAAV yield. Novel technologies that have the potential to address the current gaps in rAAV manufacturing are highlighted. Implementation challenges and future research directions are critically discussed.
Collapse
Affiliation(s)
- Francesco Destro
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Prasanna Srinivasan
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Joseph
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vivekananda Bal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caleb Neufeld
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline M Wolfrum
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anthony J Sinskey
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy L Springs
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Paul W Barone
- Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Biomedical Innovation, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Shastry S, Barbieri E, Minzoni A, Chu W, Johnson S, Stoops M, Pancorbo J, Gilleskie G, Ritola K, Crapanzano MS, Daniele MA, Menegatti S. Serotype-agnostic affinity purification of adeno-associated virus (AAV) via peptide-functionalized chromatographic resins. J Chromatogr A 2024; 1734:465320. [PMID: 39217737 DOI: 10.1016/j.chroma.2024.465320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Adeno-associated viruses (AAVs) have emerged as a prominent family of vectors for gene delivery, providing therapeutic options to diseases once deemed incurable. At the same time, they necessitate efficient and affordable purification methods that can be platformed to serve all AAV serotypes. Current chromatographic tools, while affording high product purity, fail to bind certain serotypes, provide limited yield and lifetime, and impose harsh elution conditions that can compromise the vector's activity and safety. Addressing these challenges, this work demonstrates the application of new peptide ligands as the first serotype-agnostic technology for AAV purification by affinity chromatography. Our study reveals a pH-dependent affinity interaction: AAV2, AAV3, AAV6, AAV9, and AAVrh.10 are effectively captured at neutral pH, while binding AAV1, AAV5, AAV7, and AAV8 is stronger in a slightly acidic environment. The elution of bound AAVs was achieved using magnesium chloride at neutral pH for all serotypes, consistently affording capsid yields above 50% and genome yields above 80%, together with a >100-fold reduction in host cell proteins and nucleic acids. In particular, peptide ligand A10 exhibited remarkable binding capacity (> 1014 vp per mL of resin) and purification performance for all AAV serotypes, demonstrating broad applicability for gene therapy manufacturing. Finally, this work introduces novel alkaline-stable variants of A10 and demonstrates their use as the first affinity ligands capable of performing multiple cycles of AAV2, AAV8, and AAV9 purification with intermediate caustic cleaning without loss of capacity or product quality. Collectively, these results demonstrate the promise of this technology to further the impact and affordability of gene therapy.
Collapse
Affiliation(s)
- Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA
| | - Stephanie Johnson
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Mark Stoops
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Jennifer Pancorbo
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Gary Gilleskie
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA
| | - Kimberly Ritola
- Neuroscience Center, Brain Initiative Neurotools Vector Core, University of North Carolina at Chapel Hill, 116 Manning Drive, Chapel Hill, NC 27599; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA
| | | | - Michael A Daniele
- North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, NC 27695, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27606, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Dr, Raleigh, NC 27606, USA; North Carolina Viral Vector Initiative in Research and Learning (NC-VVIRAL), North Carolina State University, 911 Oval Dr, Raleigh, NC 27695, USA; LigaTrap Technologies LLC, Raleigh, NC 27606, USA.
| |
Collapse
|
8
|
Zhang S, Wu L, Dang M. Antibody mimetics: The next generation antibody engineering, a retrospective and prospective analysis. Biotechnol J 2024; 19:e2300532. [PMID: 38059436 DOI: 10.1002/biot.202300532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Antibody mimetics represent the fourth generation of antibody engineering, following polyclonal antibodies, monoclonal antibodies, and genetically engineered antibody fragments. Despite cumulative studies highlighting the advantages of antibody mimetics, including enhanced recognition properties, superior affinity, stability, penetrability, and cost-effectiveness, a comprehensive review of this evolving field is notably absent. In this study, spanning 1986-2023 and analyzing 24,318 publications, we undertake a retrospective and prospective analysis to elucidate the evolution roadmap of antibody mimetics, providing insights into the current landscape, global contributions, and future trajectories. Concurrently, our aim is to establish standardized terminology and delineate the research scope within the realm of antibody mimetics. These endeavors not only chart the trajectory and scope of antibody mimetics research but also underscore its potential to revolutionize medicine, technology, and science.
Collapse
Affiliation(s)
- Siran Zhang
- Xi'an Middle School of Shaanxi Province, Weiyang, Xi'an, China
- Department of Genetics, Stanford University, Palo Alto, California, USA
- HSS, Stanford University, Stanford, Palo Alto, California, USA
| | - Longjiang Wu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Mei Dang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|