1
|
Yang C, Ren Y, Zhang L, Li Y, Wang C, Hang H, Tian X, Mohsin A, Chu J, Zhuang Y. Alterations in Protein Phosphorylation and Arginine Biosynthesis Metabolism Confer β-Phenylethanol Tolerance in Saccharomyces cerevisiae. Biotechnol Bioeng 2025; 122:1174-1189. [PMID: 39888015 DOI: 10.1002/bit.28936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 02/01/2025]
Abstract
The aromatic compound β-phenylethanol (2-PE) is inherently toxic and can inhibit cell activity in Saccharomyces cerevisiae, making it highly challenging to enhance strain tolerance through rational design due to the lack of reliable connections between tolerance phenotype and genetic loci. This study employed adaptive laboratory evolution strategy to investigate the tolerance characteristics of S. cerevisiae S288C under inhibitory concentrations of 2-PE. The tolerant mutant SEC4.0 was characterized through comprehensive analysis of whole genome sequence, transcriptome, and phosphoproteome. The findings revealed that the high resistance of SEC4.0 was not primarily due to large-scale transcriptional upregulation of stress response genes, but rather through alterations in the phosphorylation levels of lipid-related pathways. PKC1 mutations that affect stress signal transduction and SPT3 mutations that affect arginine biosynthesis have been shown to significantly enhance 2-PE resistance. This study also investigated the effects of exogenous amino acid addition and synergistic effects with two key mutanted genes on 2-PE resistance. This study provides a foundation for enhancing yeast tolerance to this aromatic compound through rational design strategies.
Collapse
Affiliation(s)
- Chenghan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yilin Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yina Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chunxia Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Qingdao, Shandong, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Qingdao, Shandong, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Qingdao, Shandong, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Qingdao Innovation Institute of East China University of Science and Technology, East China University of Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
2
|
Li B, Chen X, Zhao D, Liu Z, Li J, Siddique MS, Wu J, Zhuang Y, Wang Z. Physiological Metabolic Analysis of VB 12 Accumulation in Ensifer adhaerens Casida A Enhanced by Oxygen Limitation. Biotechnol J 2024; 19:e202400305. [PMID: 39295543 DOI: 10.1002/biot.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Cobalamin (VB12) is in enormous demand across the fields of medicine, food, and feed additives. However, the oxygen supply plays a critical role in VB12 biosynthesis by Ensifer adhaerens Casida A and has been identified as a bottleneck for economical substrate consumption. This study elucidates the relationship between oxygen limitation and VB12 accumulation with transcriptomic and metabolomic analyses. Under oxygen limitation, E. adhaerens enhances oxygen transport and storage by increasing expression of flavin hemoglobin (Hmp), which was up-regulated 6-fold at 24 h of oxygen restriction compared to the oxygen restriction of 4 h (p < 0.01). Because of the cofactor of Hmp is heme, the demand for heme increases, leading to the upregulation of genes in the heme biosynthesis pathway. Similarly, genes involved in biosynthesis of its precursor, 5-ALA, were upregulated as well. 5-ALA is also a direct precursor of VB12, further leading to the upregulation of genes in the VB12 biosynthesis pathway. This process initiates biosynthesis and accumulation of VB12. As VB12 and heme biosynthesis progresses, genes associated with the biosynthesis and transportation pathways of compounds related to their biosynthesis were likewise upregulated, including genes involved in S-adenosyl methionine (SAM) biosynthesis, and the transport of Fe2+ and Co2+. Additionally, amino acids and organic acids associated with biosynthesis were also extensively consumed, such as methionine, which is used for synthesizing SAM, decreased by 310% after 24 h of oxygen limitation compared to 20% dissolved oxygen (p < 0.05). At the same time, genes related to growth-associated metabolic pathways, such as pentose phosphate pathway (PPP), were significantly downregulated. Therefore, the potential mechanism by which E. adhaerens accumulates VB12 under oxygen-limited conditions by enhancing Hmp expression, which facilitates the porphyrin metabolic pathway and promotes VB12 biosynthesis. This research provides valuable insights for increasing VB12 production through metabolic engineering and process optimization.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xinyi Chen
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dujuan Zhao
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junming Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Safwan Siddique
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiequn Wu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Li T, Li H, Zhong L, Qin Y, Guo G, Liu Z, Hao N, Ouyang P. Analysis of heterologous expression of phaCBA promotes the acetoin stress response mechanism in Bacillus subtilis using transcriptomics and metabolomics approaches. Microb Cell Fact 2024; 23:58. [PMID: 38383407 PMCID: PMC10880289 DOI: 10.1186/s12934-024-02334-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 02/23/2024] Open
Abstract
Acetoin, a versatile platform chemical and popular food additive, poses a challenge to the biosafety strain Bacillus subtilis when produced in high concentrations due to its intrinsic toxicity. Incorporating the PHB synthesis pathway into Bacillus subtilis 168 has been shown to significantly enhance the strain's acetoin tolerance. This study aims to elucidate the molecular mechanisms underlying the response of B. subtilis 168-phaCBA to acetoin stress, employing transcriptomic and metabolomic analyses. Acetoin stress induces fatty acid degradation and disrupts amino acid synthesis. In response, B. subtilis 168-phaCBA down-regulates genes associated with flagellum assembly and bacterial chemotaxis, while up-regulating genes related to the ABC transport system encoding amino acid transport proteins. Notably, genes coding for cysteine and D-methionine transport proteins (tcyB, tcyC and metQ) and the biotin transporter protein bioY, are up-regulated, enhancing cellular tolerance. Our findings highlight that the expression of phaCBA significantly increases the ratio of long-chain unsaturated fatty acids and modulates intracellular concentrations of amino acids, including L-tryptophan, L-tyrosine, L-leucine, L-threonine, L-methionine, L-glutamic acid, L-proline, D-phenylalanine, L-arginine, and membrane fatty acids, thereby imparting acetoin tolerance. Furthermore, the supplementation with specific exogenous amino acids (L-alanine, L-proline, L-cysteine, L-arginine, L-glutamic acid, and L-isoleucine) alleviates acetoin's detrimental effects on the bacterium. Simultaneously, the introduction of phaCBA into the acetoin-producing strain BS03 addressed the issue of insufficient intracellular cofactors in the fermentation strain, resulting in the successful production of 70.14 g/L of acetoin through fed-batch fermentation. This study enhances our understanding of Bacillus's cellular response to acetoin-induced stress and provides valuable insights for the development of acetoin-resistant Bacillus strains.
Collapse
Affiliation(s)
- Tao Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Haixiang Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Lei Zhong
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Yufei Qin
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Gege Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Zhaoxing Liu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Ning Hao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China.
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
4
|
Yang H, Zhang B, Wu Z, Pan J, Chen L, Xiu X, Cai X, Liu Z, Zheng Y. Synergistic application of atmospheric and room temperature plasma mutagenesis and adaptive laboratory evolution improves the tolerance of Escherichia coli to L-cysteine. Biotechnol J 2024; 19:e2300648. [PMID: 38403408 DOI: 10.1002/biot.202300648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.
Collapse
Affiliation(s)
- Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Zidan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Jiayuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Lifeng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xiaoling Xiu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Zhiqiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Yuguo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
5
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|