1
|
Zhao W, Zhang B, Geng Z, Chang Y, Wei J, An S. The uncommon function and mechanism of the common enzyme glyceraldehyde-3-phosphate dehydrogenase in the metamorphosis of Helicoverpa armigera. Front Bioeng Biotechnol 2022; 10:1042867. [PMID: 36329701 PMCID: PMC9623274 DOI: 10.3389/fbioe.2022.1042867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 05/26/2025] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, is commonly used as an internal reference gene in humans, mice, and insects. However, the function of GAPDH in insect development, especially in metamorphosis, has not been reported. In the present study, Helicoverpa armigera and Spodoptera frugiperda ovarian cell lines (Sf9 cells) were used as materials to study the function and molecular mechanism of GAPDH in larval metamorphosis. The results showed that HaGAPDH was more closely related to GAPDH of S. frugiperda and Spodoptera litura. The transcript peaks of HaGAPDH in sixth instar larvae were 6L-3 (epidermal and midgut) and 6L-1 (fat body) days, and 20E and methoprene significantly upregulated the transcripts of HaGAPDH of larvae in qRT-PCR. HaGAPDH-GFP-His was specifically localized in mitochondria in Sf9 cells. Knockdown of HaGAPDH by RNA interference (RNAi) in sixth instar larvae resulted in weight loss, increased mortality, and decreases in the pupation rate and emergence rates. HaGAPDH is directly bound to soluble trehalase (HaTreh1) physically and under 20E treatment in yeast two-hybrid, coimmunoprecipitation, and colocalization experiments. In addition, knockdown of HaGAPDH increased the Treh1 activity, which in turn decreased the trehalose content but increased the glucose content in larvae. Therefore, these data demonstrated that GAPDH controlled the glucose content within the normal range to ensure glucose metabolism and metamorphosis by directly binding with HaTreh1.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
2
|
Natural product 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose is a reversible inhibitor of glyceraldehyde 3-phosphate dehydrogenase. Acta Pharmacol Sin 2022; 43:470-482. [PMID: 33850276 PMCID: PMC8792024 DOI: 10.1038/s41401-021-00653-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/13/2021] [Indexed: 02/03/2023]
Abstract
Aerobic glycolysis, also known as the Warburg effect, is a hallmark of cancer cell glucose metabolism and plays a crucial role in the activation of various types of immune cells. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of D-glyceraldehyde 3-phosphate to D-glycerate 1,3-bisphosphate in the 6th critical step in glycolysis. GAPDH exerts metabolic flux control during aerobic glycolysis and therefore is an attractive therapeutic target for cancer and autoimmune diseases. Recently, GAPDH inhibitors were reported to function through common suicide inactivation by covalent binding to the cysteine catalytic residue of GAPDH. Herein, by developing a high-throughput enzymatic screening assay, we discovered that the natural product 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) is an inhibitor of GAPDH with Ki = 0.5 μM. PGG blocks GAPDH activity by a reversible and NAD+ and Pi competitive mechanism, suggesting that it represents a novel class of GAPDH inhibitors. In-depth hydrogen deuterium exchange mass spectrometry (HDX-MS) analysis revealed that PGG binds to a region that disrupts NAD+ and inorganic phosphate binding, resulting in a distal conformational change at the GAPDH tetramer interface. In addition, structural modeling analysis indicated that PGG probably reversibly binds to the center pocket of GAPDH. Moreover, PGG inhibits LPS-stimulated macrophage activation by specific downregulation of GAPDH-dependent glucose consumption and lactate production. In summary, PGG represents a novel class of GAPDH inhibitors that probably reversibly binds to the center pocket of GAPDH. Our study sheds new light on factors for designing a more potent and specific inhibitor of GAPDH for future therapeutic applications.
Collapse
|
3
|
Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-actin. Part II: mixed isoforms. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Njabon EN, Patouossa I, Carlson KL, Lowe SL, Forlemu NY, Thomasson KA. Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-Actin. Part I: Muscle and heart homo-isoforms. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
6
|
Abstract
There is increasing evidence to support a gene economy model that is fully based on the principles of evolution in which a limited number of proteins does not necessarily reflect a finite number of biochemical processes. The concept of 'gene sharing' proposes that a single protein can have alternate functions that are typically attributed to other proteins. GAPDH appears to play this role quite well in that it exhibits more than one function. GAPDH represents the prototype for this new paradigm of protein multi-functionality. The chapter discusses the diverse functions of GAPDH among three broad categories: cell structure, gene expression and signal transduction. Protein function is curiously re-specified given the cell's unique needs. GAPDH provides the cell with the means of linking metabolic activity to various cellular processes. While interpretations may often lead to GAPDH's role in meeting focal energy demands, this chapter discusses several other very distinct GAPDH functions (i.e. membrane fusogenic properties) that are quite different from its ability to catalyze oxidative phosphorylation of the triose, glyceraldehyde 3-phosphate. It is suggested that a single protein participates in multiple processes in the structural organization of the cell, controls the transmission of genetic information (i.e. GAPDH's involvement may not be finite) and mediates intracellular signaling.
Collapse
|
7
|
Hakobyan D, Nazaryan K. Molecular dynamics study of interaction and substrate channeling between neuron-specific enolase and B-type phosphoglycerate mutase. Proteins 2010; 78:1691-704. [DOI: 10.1002/prot.22686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Abstract
Molecular modeling techniques have truly come of age in recent decades, and here we cover several of the most commonly used techniques, namely molecular dynamics, Brownian dynamics, and molecular docking. In each case, we explain the physical basis and limitations of the various techniques and then illustrate their application to various problems related to the cytoskeleton. This set of studies covers a relatively wide range of examples and is comprehensive enough to clearly see how these techniques could be applied to other systems. Finally, we cover several related methodologies that expand on these basic techniques to allow for more detailed and specific simulation and analysis.
Collapse
Affiliation(s)
- Xiange Zheng
- Department of Biomedical Engineering and Center for Computational Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
9
|
Hakobyan D, Nazaryan K. Investigation of interaction between enolase and phosphoglycerate mutase using molecular dynamics simulation. J Biomol Struct Dyn 2006; 23:625-34. [PMID: 16615808 DOI: 10.1080/07391102.2006.10507087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Two glycolytic enzymes, phosphoglycerate mutase (PGM) and enolase from Saccharomyces cerevisiae have been chosen to detect complex formation between active centers (a/c), using molecular dynamics simulation. Enzymes have been separated by 10 A distance and placed in a water box of size 173 x 173 x 173 A. Three different orientations where a/c of PGM and enolase were positioned toward each other have been used for investigation. The two initial 3-phosphoglycerate substrates at near active centers of initial structure of PGM have been replaced with final 2-phosphoglycerate products. 150mM of NaCl have been added to the system to observe binding activity in the near physiological conditions. Analysis of interaction energies and conformation changes for 3ns simulation indicates that PGM and enolase do show binding affinity between their near active regions. Moreover the similarity between final conformations of the first two orientations with the initial conformation of the third orientation suggests that complex formation between a/c of enzymes is not confined only by discussed orientations. Clear interaction of enolase with C-terminal tail of PGM has been recorded. These results suggest that substrate direct transfer mechanism may exist between enzymes.
Collapse
Affiliation(s)
- D Hakobyan
- Institute of Molecular Biology, National Academy of Sciences of Armenia, Hasratyan 7, Yerevan 375014, Armenia
| | | |
Collapse
|
10
|
Haddadian EJ, Gross EL. A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J 2006; 90:566-77. [PMID: 16239335 PMCID: PMC1367061 DOI: 10.1529/biophysj.105.067058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us, using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin (PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain. We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Biophysics Program and Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
11
|
Forlemu NY, Waingeh VF, Ouporov IV, Lowe SL, Thomasson KA. Theoretical study of interactions between muscle aldolase and F-actin: Insight into different species. Biopolymers 2006; 85:60-71. [PMID: 17039493 DOI: 10.1002/bip.20611] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interactions of the glycolytic enzyme, fructose-1,6-bisphosphate aldolase (aldolase), with F-actin may be one mechanism for the colocalization of glycolytic enzymes. Examination of these interactions in different animal species tests this hypothesis by observing whether binding sites are conserved across species. Brownian dynamics (BD) simulations provide descriptions of such protein-protein interactions with the muscle isoforms of zebra fish and human aldolase. The results are compared with previous results obtained for rabbit muscle and yeast. The aldolase binding groove previously determined in rabbit muscle is conserved in both the human and fish muscle isoforms. The nonspecific radial free energies of interaction are similar with fish being slightly weaker than human and rabbit: human, -2.27 +/- 0.05 kcal/mol; rabbit, -2.0 +/- 0.04 kcal/mol; and fish, -1.5 +/- 0.03 kcal/mol. BD results show a large Boltzmann population of complexes formed around the A/D and B/C grooves of aldolase with the most feasible binding mode comprising two aldolase subunits to subdomain I region of the actin subunits. These results show that the location of the important residues and binding site for fish and human aldolase is very similar to that in rabbit and that in different animals the binding site is conserved. This suggests that the binding interaction between aldolase and F-actin is general in animal muscles and is rendered possible and energetically favorable through the conservation of this binding site.
Collapse
Affiliation(s)
- Neville Y Forlemu
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202-9024, USA
| | | | | | | | | |
Collapse
|
12
|
Waingeh VF, Gustafson CD, Kozliak EI, Lowe SL, Knull HR, Thomasson KA. Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys J 2005; 90:1371-84. [PMID: 16326908 PMCID: PMC1367288 DOI: 10.1529/biophysj.105.070052] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.
Collapse
Affiliation(s)
- Victor F Waingeh
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|