1
|
Schreier S, Paulino J, Carretero GPB, Barbosa LRS, Cilli EM, Alvarez C, Ros U. Extension of sticholysins N-terminal α-helix signals membrane lipids to acquire curvature for toroidal pore formation. Biochem Biophys Res Commun 2025; 742:151071. [PMID: 39657352 DOI: 10.1016/j.bbrc.2024.151071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear. Here we combine circular dichroism, electron paramagnetic resonance, and small-angle X-ray scattering to investigate how synthetic peptides encompassing the N-terminal segments of St I and II (StI1-31, StII1-30, StI12-31, and StII11-30) interact with lipid bilayers and micelles as mimics of the topography of the initial membrane binding and of the subsequently formed positively curved pore. We investigate both the conformational changes and peptides' effects on membrane organization resulting from these interactions. According to the toroidal pore model, our results support that the actinoporins amphipathic α-helices rest at the membrane interface, forming pore walls with lipid head groups, while the 1-10 segment of St II penetrates the bilayer, acting as an anchor. We relate this ability to the higher hydrophobicity of this segment in St II, compared to St I. This unique feature of St II would contribute to enhanced pore formation, explaining St II's increased activity when compared to other actinoporins. Our results reinforce the notion that pore formation by actinoporins is a highly cooperative process where specific protein segments and the lipid bilayer mutually modulate their conformation and organization.
Collapse
Affiliation(s)
- Shirley Schreier
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Joana Paulino
- Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Eduardo M Cilli
- Institute of Chemistry, State University of São Paulo, Araraquara, Brazil
| | - Carlos Alvarez
- Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba
| | - Uris Ros
- Center of Protein Studies, Faculty of Biology, Havana University, Havana, Cuba
| |
Collapse
|
2
|
Schreier S. Half a century deciphering membrane structure, dynamics and function: a short description of the life and research of Shirley Schreier. Biophys Rev 2021; 13:849-852. [DOI: 10.1007/s12551-021-00904-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
|
3
|
Zurlo E, Gorroño Bikandi I, Meeuwenoord NJ, Filippov DV, Huber M. Tracking amyloid oligomerization with monomer resolution using a 13-amino acid peptide with a backbone-fixed spin label. Phys Chem Chem Phys 2019; 21:25187-25195. [PMID: 31696167 DOI: 10.1039/c9cp01060b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amyloid oligomers are suspected as toxic agents in neurodegenerative disease, and are transient and often heterogeneous, making them difficult to detect. Here we show an approach to track the development of amyloid oligomers in situ by room temperature, continuous wave (cw) 9 and 95 GHz EPR. Three amyloid peptides with the 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid (TOAC) spin label were synthesized by solid phase peptide synthesis: T0EZ (TKVKVLGDVIEVGG) with TOAC (T) at the N-terminus, T5EZ with TOAC in the middle (KVKVTGDVIEVG) and T12EZ with TOAC at the C-terminus (KVKVLGDVIEVTG). These sequences are derived from the K11V (KVKVLGDVIEV) amyloid peptide, which self-aggregates to oligomers with a β-sheet configuration (A. Laganowsky, et al., Science, 2012, 335, 1228-1231). To monitor oligomerization, the rotational correlation time (τr) is measured by cw-EPR. For the backbone-fixed TOAC label that is devoid of local mobility τr should reflect the rotation and thereby the size of the peptide, resp. oligomer. For T5EZ a good match between the measured τr and the size of the peptide is obtained, showing the validity of the approach. One of the three peptides (T0EZ) aggregates (circular dichroism), whereas the other two do not. Since also the respective MTSL (S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) labelled peptides fail to aggregate, molecular crowding due to the label, rather than the helix-inducing properties of TOAC, seems to be responsible. Following in situ oligomer formation of T0EZ by the change in rotational correlation time, two oligomers are observed, a 5-6 mer and a 15-18 mer. The EPR approach, particularly 95 GHz EPR, enables following oligomerization of one monomer at a time, suggesting that the cw-EPR approach presented is a novel tool to follow amyloid oligomerization with high resolution.
Collapse
Affiliation(s)
- E Zurlo
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | - I Gorroño Bikandi
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| | - N J Meeuwenoord
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, 2300 RA Leiden, The Netherlands
| | - D V Filippov
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, 2300 RA Leiden, The Netherlands
| | - M Huber
- Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
4
|
Bozelli JC, Salay LC, Arcisio-Miranda M, Procopio J, Riciluca KCT, Silva Junior PI, Nakaie CR, Schreier S. A comparison of activity, toxicity, and conformation of tritrpticin and two TOAC-labeled analogues. Effects on the mechanism of action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183110. [PMID: 31672543 DOI: 10.1016/j.bbamem.2019.183110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 02/01/2023]
Abstract
A strategy that has been gaining increased application for the study of the conformation, dynamics, orientation, and physicochemical properties of peptides is labeling with the paramagnetic amino acid TOAC. This approach was used to gain a deeper understanding on the mechanism of action of the antimicrobial peptide tritrpticin (TRP3). TRP3 was labeled with TOAC at the N-terminus (prior to V1, TOAC0-TRP3) or internally (replacing P5, TOAC5-TRP3). Functional studies showed that labeling led to peptides with higher activity against Gram-positive bacteria and lower hemolytic activity with respect to TRP3. Peptide-induced model membranes permeabilization and ion channel-like activity studies corroborated the functional assays qualitatively, showing higher activity of the peptides against negatively charged membranes, which had the purpose of mimicking bacterial membranes. TOAC presented a greater freedom of motion at the N-terminus than at the internal position, as evinced by EPR spectra. EPR and fluorescence spectra reported on the peptides conformational properties, showing acquisition of a more packed conformation in the presence of the secondary structure-inducing solvent, TFE. CD studies showed that TOAC0-TRP3 acquires a conformation similar to that of TRP3, both in aqueous solution and in TFE, while TOAC5-TRP3 presents a different conformation in all environments. While the mechanism of action of TRP3 was impacted to some extent by TOAC labeling at the N-terminus, it did change upon replacement of P5 by TOAC. The results demonstrated that TOAC-labeling could be used to modulate TRP3 activity and mechanism of action and, more importantly, the critical role of P5 for TRP3 pore formation.
Collapse
Affiliation(s)
- José C Bozelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada.
| | - Luiz C Salay
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil; Department of Exact and Technological Sciences, State University of Santa Cruz-UESC, Ilhéus, BA 45662-900, Brazil
| | - Manoel Arcisio-Miranda
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Joaquim Procopio
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 1524, São Paulo, SP 05508-000, Brazil
| | - Katie C T Riciluca
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Pedro I Silva Junior
- Laboratory for Applied Toxinology, Butantan Institute, São Paulo, SP 05503-900, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
5
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Paramagnetic bradykinin analogues as substrates for angiotensin I-converting enzyme: Pharmacological and conformation studies. Bioorg Chem 2016; 69:159-166. [PMID: 27837711 DOI: 10.1016/j.bioorg.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/27/2022]
Abstract
This study uses EPR, CD, and fluorescence spectroscopy to examine the structure of bradykinin (BK) analogues attaching the paramagnetic amino acid-type Toac (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 3, 7, and 9. The data were correlated with the potencies in muscle contractile experiments and the substrate properties towards the angiotensin I-converting enzyme (ACE). A study of the biological activities in guinea pig ileum and rat uterus indicated that only Toac0-BK partially maintained its native biological potency among the tested peptides. This and its counterpart, Toac3-BK, maintained the ability to act as ACE substrates. These results indicate that peptides bearing Toac probe far from the ACE cleavage sites were more susceptible to hydrolysis by ACE. The results also emphasize the existence of a finer control for BK-receptor interaction than for BK binding at the catalytic site of this metallodipetidase. The kinetic kcat/Km values decreased from 202.7 to 38.9μM-1min-1 for BK and Toac3-BK, respectively. EPR, CD, and fluorescence experiments reveal a direct relationship between the structure and activity of these paramagnetic peptides. In contrast to the turn-folded structures of the Toac-internally labeled peptides, more extended conformations were displayed by N- or C-terminally Toac-labeled analogues. Lastly, this work supports the feasibility of monitoring the progress of the ACE-hydrolytic process of Toac-attached peptides by examining time-dependent EPR spectral variations.
Collapse
Affiliation(s)
- Luis Gustavo Deus Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo, School of Medical Sciences, 01221-020 Sao Paulo, SP, Brazil
| | | | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, 05513-970 Sao Paulo, SP, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, 04044-020 Sao Paulo, SP, Brazil.
| |
Collapse
|
6
|
Teixeira LGD, Malavolta L, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Conformational Properties of Seven Toac-Labeled Angiotensin I Analogues Correlate with Their Muscle Contraction Activity and Their Ability to Act as ACE Substrates. PLoS One 2015; 10:e0136608. [PMID: 26317625 PMCID: PMC4552746 DOI: 10.1371/journal.pone.0136608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Conformational properties of the angiotensin II precursor, angiotensin I (AngI) and analogues containing the paramagnetic amino acid TOAC (2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid) at positions 0, 1, 3, 5, 8, 9, and 10, were examined by EPR, CD, and fluorescence. The conformational data were correlated to their activity in muscle contraction experiments and to their properties as substrates of the angiotensin I-converting enzyme (ACE). Biological activity studies indicated that TOAC0-AngI and TOAC1-AngI maintained partial potency in guinea pig ileum and rat uterus. Kinetic parameters revealed that only derivatives labeled closer to the N-terminus (positions 0, 1, 3, and 5) were hydrolyzed by ACE, indicating that peptides bearing the TOAC moiety far from the ACE cleavage site (Phe8-His9 peptide bond) were susceptible to hydrolysis, albeit less effectively than the parent compound. CD spectra indicated that AngI exhibited a flexible structure resulting from equilibrium between different conformers. While the conformation of N-terminally-labeled derivatives was similar to that of the native peptide, a greater propensity to acquire folded structures was observed for internally-labeled, as well as C-terminally labeled, analogues. These structures were stabilized in secondary structure-inducing agent, TFE. Different analogues gave rise to different β-turns. EPR spectra in aqueous solution also distinguished between N-terminally, internally-, and C-terminally labeled peptides, yielding narrower lines, indicative of greater mobility for the former. Interestingly, the spectra of peptides labeled at, or close, to the C-terminus, showed that the motion in this part of the peptides was intermediate between that of N-terminally and internally-labeled peptides, in agreement with the suggestion of turn formation provided by the CD spectra. Quenching of the Tyr4 fluorescence by the differently positioned TOAC residues corroborated the data obtained by the other spectroscopic techniques. Lastly, we demonstrated the feasibility of monitoring the progress of ACE-catalyzed hydrolysis of TOAC-labeled peptides by following time-dependent changes in their EPR spectra.
Collapse
Affiliation(s)
- Luis Gustavo D Teixeira
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Sao Paulo, Brazil
| | - Patrícia A Bersanetti
- Department of Health and Informatics, Universidade Federal de São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Shirley Schreier
- Department of Biochemistry, Institute of Chemistry, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Clovis R Nakaie
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Manzini MC, Perez KR, Riske KA, Bozelli JC, Santos TL, da Silva MA, Saraiva GK, Politi MJ, Valente AP, Almeida FC, Chaimovich H, Rodrigues MA, Bemquerer MP, Schreier S, Cuccovia IM. Peptide:lipid ratio and membrane surface charge determine the mechanism of action of the antimicrobial peptide BP100. Conformational and functional studies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1985-99. [DOI: 10.1016/j.bbamem.2014.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/21/2014] [Accepted: 04/05/2014] [Indexed: 02/06/2023]
|
8
|
Bortolus M, De Zotti M, Formaggio F, Maniero AL. Alamethicin in bicelles: Orientation, aggregation, and bilayer modification as a function of peptide concentration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2620-7. [DOI: 10.1016/j.bbamem.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
9
|
Vicente EF, Basso LGM, Cespedes GF, Lorenzón EN, Castro MS, Mendes-Giannini MJS, Costa-Filho AJ, Cilli EM. Dynamics and conformational studies of TOAC spin labeled analogues of Ctx(Ile(21))-Ha peptide from Hypsiboas albopunctatus. PLoS One 2013; 8:e60818. [PMID: 23585852 PMCID: PMC3621989 DOI: 10.1371/journal.pone.0060818] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/03/2013] [Indexed: 11/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) isolated from several organisms have been receiving much attention due to some specific features that allow them to interact with, bind to, and disrupt cell membranes. The aim of this paper was to study the interactions between a membrane mimetic and the cationic AMP Ctx(Ile(21))-Ha as well as analogues containing the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) incorporated at residue positions n = 0, 2, and 13. Circular dichroism studies showed that the peptides, except for [TOAC(13)]Ctx(Ile(21))-Ha, are unstructured in aqueous solution but acquire different amounts of α-helical secondary structure in the presence of trifluorethanol and lysophosphocholine micelles. Fluorescence experiments indicated that all peptides were able to interact with LPC micelles. In addition, Ctx(Ile(21))-Ha and [TOAC(13)]Ctx(Ile(21))-Ha peptides presented similar water accessibility for the Trp residue located near the N-terminal sequence. Electron spin resonance experiments showed two spectral components for [TOAC(0)]Ctx(Ile(21))-Ha, which are most likely due to two membrane-bound peptide conformations. In contrast, TOAC(2) and TOAC(13) derivatives presented a single spectral component corresponding to a strong immobilization of the probe. Thus, our findings allowed the description of the peptide topology in the membrane mimetic, where the N-terminal region is in dynamic equilibrium between an ordered, membrane-bound conformation and a disordered, mobile conformation; position 2 is most likely situated in the lipid polar head group region, and residue 13 is fully inserted into the hydrophobic core of the membrane.
Collapse
Affiliation(s)
- Eduardo F. Vicente
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Luis Guilherme M. Basso
- Grupo de Biofísica Molecular Sérgio Mascarenhas, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Graziely F. Cespedes
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Esteban N. Lorenzón
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Mariana S. Castro
- Brazilian Center for Protein Research, Department of Cell Biology, University of Brasília, Brasília/DF, Brazil
| | - Maria José S. Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| | - Antonio José Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto/SP, Brazil
| | - Eduardo M. Cilli
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESP-Univ Estadual Paulista, Araraquara/SP, Brazil
| |
Collapse
|
10
|
Vieira RDFF, Nardi DT, Nascimento N, Rosa JC, Nakaie CR. Peptide Structure Modifications: Effect of Radical Species Generated by Controlled Gamma Ray Irradiation Approach. Biol Pharm Bull 2013; 36:664-75. [DOI: 10.1248/bpb.b12-01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Daniela Teves Nardi
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo
| | - Nanci Nascimento
- Nuclear and Energy Research Institute (IPEN), University of Sao Paulo (USP)
| | - José César Rosa
- Protein Chemistry Center and Department of Molecular and Cell Biology, Ribeirao Preto Medical School, University of Sao Paulo (USP)
| | | |
Collapse
|
11
|
Short peptide constructs mimic agonist sites of AT(1)R and BK receptors. Amino Acids 2012; 44:835-46. [PMID: 23096780 DOI: 10.1007/s00726-012-1405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 09/17/2012] [Indexed: 10/27/2022]
Abstract
Extracellular peptide ligand binding sites, which bind the N-termini of angiotensin II (AngII) and bradykinin (BK) peptides, are located on the N-terminal and extracellular loop 3 regions of the AT(1)R and BKRB(1) or BKRB(2) G-protein-coupled receptors (GPCRs). Here we synthesized peptides P15 and P13 corresponding to these receptor fragments and showed that only constructs in which these peptides were linked by S-S bond, and cyclized by closing the gap between them, could bind agonists. The formation of construct-agonist complexes was revealed by electron paramagnetic resonance spectra and fluorescence measurements of spin labeled biologically active analogs of AngII and BK (Toac(1)-AngII and Toac(0)-BK), where Toac is the amino acid-type paramagnetic and fluorescence quencher 2, 2, 6, 6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid. The inactive derivatives Toac(3)-AngII and Toac(3)-BK were used as controls. The interactions characterized by a significant immobilization of Toac and quenching of fluorescence in complexes between agonists and cyclic constructs were specific for each system of peptide-receptor construct assayed since no crossed reactions or reaction with inactive peptides could be detected. Similarities among AT, BKR, and chemokine receptors were identified, thus resulting in a configuration for AT(1)R and BKRB cyclic constructs based on the structure of the CXCR(4), an α-chemokine GPCR-type receptor.
Collapse
|
12
|
The spin label amino acid TOAC and its uses in studies of peptides: chemical, physicochemical, spectroscopic, and conformational aspects. Biophys Rev 2012; 4:45-66. [PMID: 22347893 PMCID: PMC3271205 DOI: 10.1007/s12551-011-0064-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/20/2011] [Indexed: 01/21/2023] Open
Abstract
We review work on the paramagnetic amino acid 2,2,6,6-tetramethyl-N-oxyl-4-amino-4-carboxylic acid, TOAC, and its applications in studies of peptides and peptide synthesis. TOAC was the first spin label probe incorporated in peptides by means of a peptide bond. In view of the rigid character of this cyclic molecule and its attachment to the peptide backbone via a peptide bond, TOAC incorporation has been very useful to analyze backbone dynamics and peptide secondary structure. Many of these studies were performed making use of EPR spectroscopy, but other physical techniques, such as X-ray crystallography, CD, fluorescence, NMR, and FT-IR, have been employed. The use of double-labeled synthetic peptides has allowed the investigation of their secondary structure. A large number of studies have focused on the interaction of peptides, both synthetic and biologically active, with membranes. In the latter case, work has been reported on ligands and fragments of GPCR, host defense peptides, phospholamban, and β-amyloid. EPR studies of macroscopically aligned samples have provided information on the orientation of peptides in membranes. More recent studies have focused on peptide–protein and peptide–nucleic acid interactions. Moreover, TOAC has been shown to be a valuable probe for paramagnetic relaxation enhancement NMR studies of the interaction of labeled peptides with proteins. The growth of the number of TOAC-related publications suggests that this unnatural amino acid will find increasing applications in the future.
Collapse
|
13
|
Oliveira VX, Fázio MA, Silva AF, Campana PT, Pesquero JB, Santos EL, Costa-Neto CM, Miranda A. Biological and conformational evaluation of angiotensin II lactam bridge containing analogues. ACTA ACUST UNITED AC 2011; 172:1-7. [PMID: 21787808 DOI: 10.1016/j.regpep.2011.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 03/28/2011] [Accepted: 05/30/2011] [Indexed: 11/25/2022]
Abstract
Angiotensin II (AII) is the active octapeptide product of the renin enzymatic cascade, which is responsible for sustaining blood pressure. In an attempt to establish the AII-receptor-bound conformation of this octapeptide, we designed conformationally constrained analogues by scanning the entire AII sequence with an i-(i+2) and i-(i+3) lactam bridge consisting of an Asp-(Xaa)(n)-Lys scaffold. Most analogues presented low agonistic activity when compared to AII in the different bioassays tested. The exceptions are cyclo(0-1a) [Asp(0), endo-(Lys(1a))]-AII (1) and [Asp(0), endo-(Lys(1a))]-AII (2), both of which showed activity similar to AII. Based on peptide 1 and the analogue cyclo(3-5)[Sar(1), Asp(3), Lys(5)]-AII characterized by Matsoukas et al., we analyzed the agonistic and antagonistic activities, respectively, through a new monocyclic peptide series synthesized by using the following combinations of residues as bridgehead elements for the lactam bond formation: D- or L-Asp combined with D- or L-Lys or L-Glu combined with L-Orn. Six analogues showed an approximately 20% increase in biological activity when compared with peptide (1) and were equipotent to AII. In contrast, six analogues presented antagonistic activity. These results suggest that the position of the lactam bridge is more important than the bridge length or chirality for recognition of and binding to the angiotensin II AT1-receptor.
Collapse
Affiliation(s)
- Vani X Oliveira
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210-170, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nardi DT, Rosa JC, Jubilut GN, Miranda A, Nascimento N, Nakaie CR. Gamma Ray Irradiation of the Vasoactive Peptide Bradykinin Reveals a Residue- and Position-Dependent Structural Modification. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Vieira RFF, Casallanovo F, Marín N, Paiva ACM, Schreier S, Nakaie CR. Conformational properties of angiotensin II and its active and inactive TOAC-labeled analogs in the presence of micelles. Electron paramagnetic resonance, fluorescence, and circular dichroism studies. Biopolymers 2009; 92:525-37. [DOI: 10.1002/bip.21295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Nardi DT, Casare MS, Teixeira LGD, Nascimento N, Nakaie CR. Effect of gamma radiation on the structural and biological properties of Angiotensin II. Int J Radiat Biol 2009; 84:937-44. [DOI: 10.1080/09553000802460164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Zhang Z, Xi X, Scholes CP, Karim CB. Rotational dynamics of HIV-1 nucleocapsid protein NCp7 as probed by a spin label attached by peptide synthesis. Biopolymers 2008; 89:1125-35. [PMID: 18690667 PMCID: PMC3587331 DOI: 10.1002/bip.21064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label was attached at the N-terminal position to interrogate the dynamics of the HIV-1 nucleocapsid Zn-finger protein, NCp7. NCp7 is a 6.4-kDa 55-mer critical to the recognition, packaging, and efficient reverse transcription of viral RNA that has stem-loop structures, such as the RNA stem-loop 3 used in this work. The NCp7, made by solid-phase peptide synthesis with TOAC incorporated into the alpha-carbon backbone at the N-terminal "0" position, showed analytical purity and biological activity. Electron Paramagnetic Resonance (EPR) spectra of the N-terminal TOAC indicated rapid temperature-sensitive motion of the probe (< or =0.33 ns correlation time) on the flexible N-terminal segment. This N-terminal TOAC-NCp7 reported a RNA-NCp7 interaction at a 1:1 ratio of NCp7 to RNA, which caused the tumbling time to be slowed from about 0.3 ns to about 0.5 ns. NCp7 is a largely disordered protein that adapts to its RNA targets. However, as shown by circular dichroism, > or =90% trifluoroethanol [(TFE), an alpha-helix enhancer] caused the TOAC-NCp7 without zinc in its fingers to change to a fully helical conformation, while the TOAC spin label was concurrently reporting a tumbling time of well over a nanosecond, as the N-terminal TOAC became inflexibly enfolded. Even with TFE present, the existence of intact Zn-finger regions in NCp7 prevented complete formation of helical structure, as shown by circular dichroism, and decreased the N-terminal TOAC tumbling time, as shown by EPR. This study demonstrated TOAC at the N-terminal of NCp7 to be a reporter for the considerable conformational lability of NCp7. (
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Xiangmei Xi
- Department of Chemistry, University at Albany - SUNY, Albany, NY 12222
| | | | - Christine B. Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
18
|
Shafer AM, Nakaie CR, Deupi X, Bennett VJ, Voss JC. Characterization of a conformationally sensitive TOAC spin-labeled substance P. Peptides 2008; 29:1919-29. [PMID: 18775458 DOI: 10.1016/j.peptides.2008.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022]
Abstract
To probe the binding of a peptide agonist to a G-protein coupled receptor in native membranes, the spin-labeled amino acid analogue 4-amino-4-carboxy-2,2,6,6-tetramethylpiperidino-1-oxyl (TOAC) was substituted at either position 4 or 9 within the substance P peptide (RPKPQQFFGLM-NH2), a potent agonist of the neurokinin-1 receptor. The affinity of the 4-TOAC analog is comparable to the native peptide while the affinity of the 9-TOAC derivative is approximately 250-fold lower. Both peptides activate receptor signaling, though the potency of the 9-TOAC peptide is substantially lower. The utility of these modified ligands for reporting conformational dynamics during the neurokinin-1 receptor activation was explored using EPR spectroscopy, which can determine the real-time dynamics of the TOAC nitroxides in solution. While the binding of both the 4-TOAC substance P and 9-TOAC substance P peptides to isolated cell membranes containing the neurokinin-1 receptor is detected, a bound signal for the 9-TOAC peptide is only obtained under conditions that maintain the receptor in its high-affinity binding state. In contrast, 4-TOAC substance P binding is observed by solution EPR under both low- and high-affinity receptor states, with evidence of a more strongly immobilized peptide in the presence of GDP. In addition, to better understand the conformational consequences of TOAC substitution into substance P as it relates to receptor binding and activation, atomistic models for both the 4- and 9-TOAC versions of the peptide were constructed, and the molecular dynamics calculated via simulated annealing to explore the influence of the TOAC substitutions on backbone structure.
Collapse
Affiliation(s)
- Aaron M Shafer
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
19
|
Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. JOURNAL OF BIOMOLECULAR NMR 2008; 41:157-67. [PMID: 18560762 PMCID: PMC2480485 DOI: 10.1007/s10858-008-9248-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 05/13/2008] [Indexed: 05/15/2023]
Abstract
Paramagnetic relaxation enhancement provides a tool for studying the dynamics as well as the structure of macromolecular complexes. The application of side-chain coupled spin-labels is limited by the mobility of the free radical. The cyclic, rigid amino acid spin-label TOAC (2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid), which can be incorporated straightforwardly by peptide synthesis, provides an attractive alternative. In this study, TOAC was incorporated into a peptide derived from focal adhesion kinase (FAK), and the interaction of the peptide with the Src homology 3 (SH3) domain of Src kinase was studied, using paramagnetic NMR. Placing TOAC within the binding motif of the peptide has a considerable effect on the peptide-protein binding, lowering the affinity substantially. When the TOAC is positioned just outside the binding motif, the binding constant remains nearly unaffected. Although the SH3 domain binds weakly and transiently to proline-rich peptides from FAK, the interaction is not very dynamic and the relative position of the spin-label to the protein is well-defined. It is concluded that TOAC can be used to generate reliable paramagnetic NMR restraints.
Collapse
Affiliation(s)
- Hanna E. Lindfors
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Peter E. de Koning
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Brigida Venezia
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
20
|
Functional assessment of angiotensin II and bradykinin analogues containing the paramagnetic amino acid TOAC. Int Immunopharmacol 2008; 8:293-9. [DOI: 10.1016/j.intimp.2007.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 11/18/2022]
|
21
|
|
22
|
Marsh D, Jost M, Peggion C, Toniolo C. Solvent dependence of the rotational diffusion of TOAC-spin-labeled alamethicin. Chem Biodivers 2007; 4:1269-74. [PMID: 17589865 DOI: 10.1002/cbdv.200790109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Three derivatives of the hydrophobic, channel-forming peptaibiotic alamethicin (F50/5) have been synthesized, the original Aib residue at position 1, 8, or 16 being replaced with the spin-labeled amino acid TOAC (=2,2,6,6-tetramethylpiperidin-1-oxyl-4-amino-4-carboxylic acid). Electron-paramagnetic-resonance (EPR) spectroscopy was used to characterize the rotational diffusion of these compounds in five isotropic solvents of differing viscosity and polarity, including MeOH, EtOH, PrOH, i-PrOH, and hexanol (HxOH). In MeOH, the labeled alamethicins were found to rotate anisotropically as a monomer (axial ratio a/b=3). In aliphatic alcohols of increasing viscosity (and hydrophobicity), the rotational correlation times progressively increased. Even in HxOH, the (fivefold) increase in correlation time was no greater than the increase in viscosity. We conclude that TOAC-labeled alamethicins remain monomeric in these solvents of relatively high polarity.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany
| | | | | | | |
Collapse
|
23
|
de Deus Teixeira LG, Bersanetti PA, Schreier S, Carmona AK, Nakaie CR. Analogues containing the paramagnetic amino acid TOAC as substrates for angiotensin I-converting enzyme. FEBS Lett 2007; 581:2411-5. [PMID: 17485083 DOI: 10.1016/j.febslet.2007.04.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/26/2007] [Accepted: 04/13/2007] [Indexed: 01/02/2023]
Abstract
The angiotensin I-converting enzyme (ACE) converts the decapeptide angiotensin I (Ang I) into angiotensin II by releasing the C-terminal dipeptide. A novel approach combining enzymatic and electron paramagnetic resonance (EPR) studies was developed to determine the enzyme effect on Ang I containing the paramagnetic 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) at positions 1, 3, 8, and 9. Biological assays indicated that TOAC(1)-Ang I maintained partly the Ang I activity, and that only this derivative and the TOAC(3)-Ang I were cleaved by ACE. Quenching of Tyr(4) fluorescence by TOAC decreased with increasing distance between both residues, suggesting an overall partially extended structure. However, the local bend known to be imposed by the substituted diglycine TOAC is probably responsible for steric hindrance, not allowing the analogues containing TOAC at positions 8 and 9 to act as substrates. In some cases, although substrates and products differ by only two residues, the difference between their EPR spectral lineshapes allows monitoring the enzymatic reaction as a function of time.
Collapse
|
24
|
Marsh D, Jost M, Peggion C, Toniolo C. Lipid chain-length dependence for incorporation of alamethicin in membranes: electron paramagnetic resonance studies on TOAC-spin labeled analogs. Biophys J 2007; 92:4002-11. [PMID: 17351010 PMCID: PMC1868974 DOI: 10.1529/biophysj.107.104026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alamethicin is a 19-residue hydrophobic peptide, which is extended by a C-terminal phenylalaninol but lacks residues that might anchor the ends of the peptide at the lipid-water interface. Voltage-dependent ion channels formed by alamethicin depend strongly in their characteristics on chain length of the host lipid membranes. EPR spectroscopy is used to investigate the dependence on lipid chain length of the incorporation of spin-labeled alamethicin in phosphatidylcholine bilayer membranes. The spin-label amino acid TOAC is substituted at residue positions n = 1, 8, or 16 in the sequence of alamethicin F50/5 [TOAC(n), Glu(OMe)(7,18,19)]. Polarity-dependent isotropic hyperfine couplings of the three TOAC derivatives indicate that alamethicin assumes approximately the same location, relative to the membrane midplane, in fluid diC(N)PtdCho bilayers with chain lengths ranging from N = 10-18. Residue TOAC(8) is situated closest to the bilayer midplane, whereas TOAC(16) is located farther from the midplane in the hydrophobic core of the opposing lipid leaflet, and TOAC(1) remains in the lipid polar headgroup region. Orientational order parameters indicate that the tilt of alamethicin relative to the membrane normal is relatively small, even at high temperatures in the fluid phase, and increases rather slowly with decreasing chain length (from 13 degrees to 23 degrees for N = 18 and 10, respectively, at 75 degrees C). This is insufficient for alamethicin to achieve hydrophobic matching. Alamethicin differs in its mode of incorporation from other helical peptides for which transmembrane orientation has been determined as a function of lipid chain length.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, 37070 Göttingen, Germany.
| | | | | | | |
Collapse
|
25
|
Marsh D, Jost M, Peggion C, Toniolo C. TOAC spin labels in the backbone of alamethicin: EPR studies in lipid membranes. Biophys J 2007; 92:473-81. [PMID: 17056731 PMCID: PMC1751395 DOI: 10.1529/biophysj.106.092775] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 09/14/2006] [Indexed: 11/18/2022] Open
Abstract
Alamethicin is a 19-amino-acid residue hydrophobic peptide that produces voltage-dependent ion channels in membranes. Analogues of the Glu(OMe)(7,18,19) variant of alamethicin F50/5 that are rigidly spin-labeled in the peptide backbone have been synthesized by replacing residue 1, 8, or 16 with 2,2,6,6-tetramethyl-piperidine-1-oxyl-4-amino-4-carboxyl (TOAC), a helicogenic nitroxyl amino acid. Conventional electron paramagnetic resonance spectra are used to determine the insertion and orientation of the TOAC(n) alamethicins in fluid lipid bilayer membranes of dimyristoyl phosphatidylcholine. Isotropic (14)N-hyperfine couplings indicate that TOAC(8) and TOAC(16) are situated in the hydrophobic core of the membrane, whereas the TOAC(1) label resides closer to the membrane surface. Anisotropic hyperfine splittings show that alamethicin is highly ordered in the fluid membranes. Experiments with aligned membranes demonstrate that the principal diffusion axis lies close to the membrane normal, corresponding to a transmembrane orientation. Combination of data from the three spin-labeled positions yields both the dynamic order parameter of the peptide backbone and the intramolecular orientations of the TOAC groups. The latter are compared with x-ray diffraction results from alamethicin crystals. Saturation transfer electron paramagnetic resonance, which is sensitive to microsecond rotational motion, reveals that overall rotation of alamethicin is fast in fluid membranes, with effective correlation times <30 ns. Thus, alamethicin does not form large stable aggregates in fluid membranes, and ionic conductance must arise from transient or voltage-induced associations.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für Biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany.
| | | | | | | |
Collapse
|
26
|
Moraes LGM, Fázio MA, Vieira RFF, Nakaie CR, Miranda MTM, Schreier S, Daffre S, Miranda A. Conformational and functional studies of gomesin analogues by CD, EPR and fluorescence spectroscopies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:52-8. [PMID: 17027634 DOI: 10.1016/j.bbamem.2006.08.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/15/2006] [Accepted: 08/24/2006] [Indexed: 11/25/2022]
Abstract
The aim of this work was to examine the bioactivity and the conformational behavior of some gomesin (Gm) analogues in different environments that mimic the biological membrane/water interface. Thus, manual peptide synthesis was performed by the solid-phase method, antimicrobial activity was evaluated by a liquid growth inhibition assay, and conformational studies were performed making use of several spectroscopic techniques: CD, fluorescence and EPR. [TOAC(1)]-Gm; [TOAC(1), Ser(2,6,11,15)]-Gm; [Trp(7)]-Gm; [Ser(2,6,11,15), Trp(7)]-Gm; [Trp(9)]-Gm; and [Ser(2,6,11,15), Trp(9)]-Gm were synthesized and tested. The results indicated that incorporation of TOAC or Trp caused no significant reduction of antimicrobial activity; the cyclic analogues presented a beta-hairpin conformation similar to that of Gm. All analogues interacted with negatively charged SDS both above and below the detergent's critical micellar concentration (cmc). In contrast, while Gm and [TOAC(1)]-Gm required higher LPC concentrations to bind to micelles of this zwitterionic detergent, the cyclic Trp derivatives and the linear derivatives did not seem to interact with this membrane-mimetic system. These data corroborate previous results that suggest that electrostatic interactions with the lipid bilayer of microorganisms play an important role in the mechanism of action of gomesin. Moreover, the results show that hydrophobic interactions also contribute to membrane binding of this antimicrobial peptide.
Collapse
Affiliation(s)
- Luis G M Moraes
- Department of Biophysics, Federal University of São Paulo, Rua 03 de Maio, 100, 04044-020, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Crisma M, Deschamps JR, George C, Flippen-Anderson JL, Kaptein B, Broxterman QB, Moretto A, Oancea S, Jost M, Formaggio F, Toniolo C. A topographically and conformationally constrained, spin-labeled, alpha-amino acid: crystallographic characterization in peptides. ACTA ACUST UNITED AC 2005; 65:564-79. [PMID: 15885116 DOI: 10.1111/j.1399-3011.2005.00258.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) is a topographically and conformationally restricted, nitroxide containing, C(alpha)-tetrasubstituted alpha-amino acid. Here, we describe the molecular and crystal structures, as determined by X-ray diffraction analyses, of a TOAC terminally protected derivative, the cyclic dipeptide c(TOAC)(2).1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solvate, and five TOAC-containing, terminally protected, linear peptides ranging in length from tetra- to hepta-peptides. Incipient and fully developed, regular or distorted 3(10)-helical structures are formed by the linear peptides. A detailed discussion on the average geometry and preferred conformation for the TOAC piperidine ring is also reported. The X-ray diffraction structure of an intramolecularly cyclized side product resulting from a C-activated TOAC residue has also been determined.
Collapse
Affiliation(s)
- M Crisma
- Department of Chemistry, Institute of Biomolecular Chemistry, CNR, University of Padova, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Marchetto R, Cilli EM, Jubilut GN, Schreier S, Nakaie CR. Determination of Site−Site Distance and Site Concentration within Polymer Beads: A Combined Swelling-Electron Paramagnetic Resonance Study. J Org Chem 2005; 70:4561-8. [PMID: 15932290 DOI: 10.1021/jo0483318] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 A and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.
Collapse
Affiliation(s)
- Reinaldo Marchetto
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP, Araraquara, São Paulo 14800-900, Brazil
| | | | | | | | | |
Collapse
|