1
|
Vaglietti S, Villeri V, Dell’Oca M, Marchetti C, Cesano F, Rizzo F, Miller D, LaPierre L, Pelassa I, Monje FJ, Colnaghi L, Ghirardi M, Fiumara F. PolyQ length-based molecular encoding of vocalization frequency in FOXP2. iScience 2023; 26:108036. [PMID: 37860754 PMCID: PMC10582585 DOI: 10.1016/j.isci.2023.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/18/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
The transcription factor FOXP2, a regulator of vocalization- and speech/language-related phenotypes, contains two long polyQ repeats (Q1 and Q2) displaying marked, still enigmatic length variation across mammals. We found that the Q1/Q2 length ratio quantitatively encodes vocalization frequency ranges, from the infrasonic to the ultrasonic, displaying striking convergent evolution patterns. Thus, species emitting ultrasonic vocalizations converge with bats in having a low ratio, whereas species vocalizing in the low-frequency/infrasonic range converge with elephants and whales, which have higher ratios. Similar, taxon-specific patterns were observed for the FOXP2-related protein FOXP1. At the molecular level, we observed that the FOXP2 polyQ tracts form coiled coils, assembling into condensates and fibrils, and drive liquid-liquid phase separation (LLPS). By integrating evolutionary and molecular analyses, we found that polyQ length variation related to vocalization frequency impacts FOXP2 structure, LLPS, and transcriptional activity, thus defining a novel form of polyQ length-based molecular encoding of vocalization frequency.
Collapse
Affiliation(s)
- Serena Vaglietti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Veronica Villeri
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Marco Dell’Oca
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Chiara Marchetti
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Federico Cesano
- Department of Chemistry, University of Turin, 10125 Turin, Italy
| | - Francesca Rizzo
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR 518057, China
| | - Dave Miller
- Cascades Pika Watch, Oregon Zoo, Portland, OR 97221, USA
| | - Louis LaPierre
- Deptartment of Natural Science, Lower Columbia College, Longview, WA 98632, USA
| | - Ilaria Pelassa
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Francisco J. Monje
- Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Luca Colnaghi
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Mirella Ghirardi
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| | - Ferdinando Fiumara
- Rita Levi Montalcini Department of Neuroscience, University of Turin, 10125 Turin, Italy
| |
Collapse
|
2
|
Son K, Takeoka S, Ito Y, Ueda M. End-Sealing of Peptide Nanotubes by Cationic Amphiphilic Polypeptides and Their Salt-Responsive Accordion-like Opening and Closing Behavior. Biomacromolecules 2022; 23:2785-2792. [PMID: 35700101 DOI: 10.1021/acs.biomac.2c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
One strategy to prepare phase-separated co-assembly is to use the existing assembly as a platform to architect structures. For this purpose, the edge of a sheet or tube-shaped molecular assembly, which is less hydrophilic than the bulk region can become a starting point to build assembly units to realize more complex structures. In this study, we succeeded in preparing rod-shaped nanocapsules with previously unachieved sealing efficiency (>99%) by fine-tuning the properties of cationic amphiphilic polypeptides to seal the ends of neutral charge nanotubes. In addition, we demonstrated the nanocapsule's reversible responsiveness to salt. In high salt concentrations, a decrease in electrostatic repulsion between cationic polypeptides caused tearing and shrinking of the nanocapsule's sealing dome, which resulted in an opened nanotube. On the other hand, when salt was removed, the electrostatic repulsion among the cationic peptides localizing on the edge of opened nanocapsules was recovered, and the sealing membrane swelled up like an accordion to create a distance between the peptides, resulting in the restoration of the seal.
Collapse
Affiliation(s)
- Kon Son
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Shinji Takeoka
- School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
3
|
Abosheasha MA, Itagaki T, Ito Y, Ueda M. Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides. Int J Mol Sci 2021; 22:ijms222112075. [PMID: 34769498 PMCID: PMC8584449 DOI: 10.3390/ijms222112075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/01/2023] Open
Abstract
The introduction of α-helical structure with a specific helix-helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave-convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters-SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.
Collapse
Affiliation(s)
- Mohammed A. Abosheasha
- RIKEN Cluster for Pioneering Research (CPR), Wako 351-0198, Saitama, Japan; (M.A.A.); (T.I.); (Y.I.)
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397, Tokyo, Japan
| | - Toru Itagaki
- RIKEN Cluster for Pioneering Research (CPR), Wako 351-0198, Saitama, Japan; (M.A.A.); (T.I.); (Y.I.)
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), Wako 351-0198, Saitama, Japan; (M.A.A.); (T.I.); (Y.I.)
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji 192-0397, Tokyo, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Saitama, Japan
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), Wako 351-0198, Saitama, Japan; (M.A.A.); (T.I.); (Y.I.)
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Saitama, Japan
- Correspondence:
| |
Collapse
|
4
|
Wang Y, Wang X, Montclare JK. Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS APPLIED BIO MATERIALS 2021; 4:3587-3597. [PMID: 35014444 DOI: 10.1021/acsabm.1c00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate the effect of Zn2+, Cu2+, and Ni2+ coordination on the conformation, mechanical properties, contraction, and small-molecule drug encapsulation and release of a photocrosslinked protein-engineered hydrogel, CEC-D. The treatment of the CEC-D hydrogel with divalent metal (M2+) results in significant conformational changes where a loss in structure is observed with Zn2+, while both Cu2+ and Ni2+ induce a blueshift. The relationship of M2+ to mechanical properties illustrates a trend, while the CEC-D hydrogel in the presence of 2 mM Cu2+ reveals the highest increase in G' to 14.4 ± 0.7 kPa followed by 9.7 ± 0.9 kPa by addition of 2 mM Zn2+, and a decrease to 1.1 ± 0.2 kPa is demonstrated in the presence of 2 mM Ni2+. A similar observation in M2+ responsiveness emerges where CEC-D hydrogels contract into a condensed state of 2.6-fold for Cu2+, 2.4-fold for Zn2+, and 1.6-fold for Ni2+. Furthermore, CEC-D hydrogels coordinated with M2+ demonstrate control over the encapsulation and release of the small molecule curcumin. The trend of release is opposite of the mechanical and contraction properties with a 70.0 ± 5.3% release with Ni2+, 64.2 ± 1.2% release with Zn2+, and 42.3 ± 11.3 release with Cu2+. Taken together, these results indicate that the CEC-D hydrogel tuned by M2+ is a promising drug delivery platform with tunable physicochemical properties.
Collapse
Affiliation(s)
- Yao Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Xiaole Wang
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States.,Department of Chemistry, New York University, New York, New York 10003, United States.,Department of Biomaterials, New York University College of Dentistry, New York, New York 10010, United States.,Department of Radiology, New York University Langone Health, New York, New York 10016, United States
| |
Collapse
|
5
|
Polyserine repeats promote coiled coil-mediated fibril formation and length-dependent protein aggregation. J Struct Biol 2018; 204:572-584. [PMID: 30194983 DOI: 10.1016/j.jsb.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/06/2018] [Accepted: 09/01/2018] [Indexed: 12/13/2022]
Abstract
Short polyserine (polyS) repeats are frequently found in proteins and longer ones are produced in neurological disorders such as Huntington disease (HD) owing to translational frameshifting or non-ATG-dependent translation, together with polyglutamine (polyQ) and polyalanine (polyA) repeats, forming intracellular aggregates. However, the physiological and pathological structures of polyS repeats are not clearly understood. Early studies highlighted their structural versatility, similar to other homopolymers whose conformation is influenced by the surrounding protein context. As polyS stretches are frequently near polyQ and polyA repeats, which can be part of coiled coil (CC) structures, and the frameshift-derived polyS repeats in HD directly flank CC heptads important for aggregation, we investigate here the structural and aggregation properties of polyS in the context of CC structures. We have taken advantage of peptide models, previously used to study polyQ and polyA in CCs, in which we inserted polyS repeats of variable length and studied them in comparison with polyQ and polyA peptides. We found that polyS repeats promote CC-mediated polymerization and fibrillization as revealed by circular dichroism, chemical crosslinking, and atomic force microscopy. Furthermore, they promote CC-based, length-dependent intracellular aggregation, which is negligible with 7 and widespread with 49 serines. These findings show that polyS repeats can participate in the formation of CCs, as previously found for polyQ and polyA, conferring to peptides distinctive structural properties with aggregation kinetics that are intermediate between those of polyA and polyQ CCs, and contribute to an overall structural definition of the pathophysiogical roles of homopolymeric repeats in CC structures.
Collapse
|
6
|
Takei T, Tsumoto K, Yoshino M, Kojima S, Yazaki K, Ueda T, Takei T, Arisaka F, Miura KI. Role of positions e and g in the fibrous assembly formation of an amphipathic α-helix-forming polypeptide. Biopolymers 2016; 102:260-72. [PMID: 24615557 DOI: 10.1002/bip.22479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/02/2014] [Accepted: 02/13/2014] [Indexed: 12/30/2022]
Abstract
We previously characterized α3, a polypeptide that has a three times repeated sequence of seven amino acids (abcdefg: LETLAKA) and forms fibrous assemblies composed of amphipathic α-helices. Upon comparison of the amino acid sequences of α3 with other α-helix forming polypeptides, we proposed that the fibrous assemblies were formed due to the alanine (Ala) residues at positions e and g. Here, we characterized seven α3 analog polypeptides with serine (Ser), glycine (Gly), or charged residues substituted for Ala at positions e and g. The α-helix forming abilities of the substituted polypeptides were less than that of α3. The polypeptides with amino acid substitutions at position g and the polypeptide KEα3, in which Ala was substituted with charged amino acids, formed few fibrous assemblies. In contrast, polypeptides with Ala replaced by Ser at position e formed β-sheets under several conditions. These results show that Ala residues at position e and particularly at position g are involved in the formation of fibrous assemblies.
Collapse
Affiliation(s)
- Toshiaki Takei
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan; Institute for Biomolecular Science, Gakushuin University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Takei T, Tsumoto K, Okonogi A, Kimura A, Kojima S, Yazaki K, Takei T, Ueda T, Miura KI. pH responsiveness of fibrous assemblies of repeat-sequence amphipathic α-helix polypeptides. Protein Sci 2015; 24:883-94. [PMID: 25694229 DOI: 10.1002/pro.2665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
Abstract
We reported previously that our designed polypeptide α3 (21 residues), which has three repeats of a seven-amino-acid sequence (LETLAKA)3, forms not only an amphipathic α-helix structure but also long fibrous assemblies in aqueous solution. To address the relationship between the electrical states of the polypeptide and its α-helix and fibrous assembly formation, we characterized mutated polypeptides in which charged amino acid residues of α3 were replaced with Ser. We prepared the following polypeptides: 2Sα3 (LSTLAKA)3, in which all Glu residues were replaced with Ser residues; 6Sα3 (LETLASA)3, in which all Lys residues were replaced with Ser; and 2S6Sα3 (LSTLASA)3; in which all Glu and Lys residues were replaced with Ser. In 0.1M KCl, 2Sα3 formed an α-helix under basic conditions and 6Sα3 formed an α-helix under acid conditions. In 1M KCl, they both formed α-helices under a wide pH range. In addition, 2Sα3 and 6Sα3 formed fibrous assemblies under the same buffer conditions in which they formed α-helices. α-Helix and fibrous assembly formation by these polypeptides was reversible in a pH-dependent manner. In contrast, 2S6Sα3 formed an α-helix under basic conditions in 1M KCl. Taken together, these findings reveal that the charge states of the charged amino acid residues and the charge state of the Leu residue located at the terminus play an important role in α-helix formation.
Collapse
Affiliation(s)
- Toshiaki Takei
- Department of Medical Genome Sciences, Graduate School of Frontier, The university of Tokyo, Kashiwanoha, Kashiwa, Chiba, Japan; Institute for Biomolecular Science, Gakushuin University, Toshima-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Takei T, Hasegawa K, Imada K, Namba K, Tsumoto K, Kuriki Y, Yoshino M, Yazaki K, Kojima S, Takei T, Ueda T, Miura KI. Effects of chain length of an amphipathic polypeptide carrying the repeated amino acid sequence (LETLAKA)(n) on α-helix and fibrous assembly formation. Biochemistry 2013; 52:2810-20. [PMID: 23530905 DOI: 10.1021/bi400001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polypeptide α3 (21 residues), with three repeats of a seven-amino-acid sequence (LETLAKA)(3), forms an amphipathic α-helix and a long fibrous assembly. Here, we investigated the ability of α3-series polypeptides (with 14-42 residues) of various chain lengths to form α-helices and fibrous assemblies. Polypeptide α2 (14 residues), with two same-sequence repeats, did not form an α-helix, but polypeptide α2L (15 residues; α2 with one additional leucine residue on its carboxyl terminal) did form an α-helix and fibrous assembly. Fibrous assembly formation was associated with polypeptides at least as long as polypeptide α2L and with five leucine residues, indicating that the C-terminal leucine has a critical element for stabilization of α-helix and fibril formation. In contrast, polypeptides α5 (35 residues) and α6 (42 residues) aggregated easily, although they formed α-helices. A 15-35-residue chain was required for fibrous assembly formation. Electron microscopy and X-ray fiber diffraction showed that the thinnest fibrous assemblies of polypeptides were about 20 Å and had periodicities coincident with the length of the α-helix in a longitudinal direction. These results indicated that the α-helix structures were orientated along the fibrous axis and assembled into a bundle. Furthermore, the width and length of fibrous assemblies changed with changes in the pH value, resulting in variations in the charged states of the residues. Our results suggest that the formation of fibrous assemblies of amphipathic α-helices is due to the assembly of bundles via the hydrophobic faces of the helices and extension with hydrophobic noncovalent bonds containing a leucine.
Collapse
Affiliation(s)
- Toshiaki Takei
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Longo LM, Blaber M. Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 2012; 526:16-21. [DOI: 10.1016/j.abb.2012.06.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/23/2012] [Indexed: 12/01/2022]
|
10
|
Koga T, Koike M, Kamiwatari S, Higashi N. Morphological Variation of Peptide-synthetic Hybrid Block Copolymer Assemblies in Nonaqueous Media. CHEM LETT 2011. [DOI: 10.1246/cl.2011.1244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Xia L, Li Z. Poly(L-lysine)-mediated biomimetic silica synthesis: effects of mixing sequences and counterion concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1116-1122. [PMID: 21189008 DOI: 10.1021/la104030f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two poly(L-lysine·HBr) (PLL) homopolypeptides along with phosphate buffer were used as organic templates to direct biomimetic silica synthesis under ambient conditions. We found that mixing sequence of reaction species played a key role in terms of controlling resulting silica morphologies. Premixing PLL solution with phosphate buffer followed with addition of silicic acid produced regular hexagonal silica plates, while premixing silicic acid with either PLL or phosphate solution prior to adding phosphate buffer or PLL solution only produced irregular silica nanoparticles. In addition, we found that the concentration of phosphate ions was also an important factor to control silica structures. When the ratio of phosphate/lysine residue (δ) was smaller than one, PLL only produced irregular silica particles. When δ was larger than 2.5, PLL produced regular silica plates. We performed CD measurements to track the conformation transition of PLL during biomineralization process and found that the resulting silica structures were closely related to the secondary structure of PLL regardless of experimental conditions. Only when PLL underwent an in situ coil-helix transition could ordered silica structures be produced.
Collapse
Affiliation(s)
- Lin Xia
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | |
Collapse
|
12
|
Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 2011; 143:1121-35. [PMID: 21183075 DOI: 10.1016/j.cell.2010.11.042] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 08/23/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022]
Abstract
The functional switch of glutamine/asparagine (Q/N)-rich prions and the neurotoxicity of polyQ-expanded proteins involve complex aggregation-prone structural transitions, commonly presumed to be forming β sheets. By analyzing sequences of interaction partners of these proteins, we discovered a recurrent presence of coiled-coil domains both in the partners and in segments that flank or overlap Q/N-rich and polyQ domains. Since coiled coils can mediate protein interactions and multimerization, we studied their possible involvement in Q/N-rich and polyQ aggregations. Using circular dichroism and chemical crosslinking, we found that Q/N-rich and polyQ peptides form α-helical coiled coils in vitro and assemble into multimers. Using structure-guided mutagenesis, we found that coiled-coil domains modulate in vivo properties of two Q/N-rich prions and polyQ-expanded huntingtin. Mutations that disrupt coiled coils impair aggregation and activity, whereas mutations that enhance coiled-coil propensity promote aggregation. These findings support a coiled-coil model for the functional switch of Q/N-rich prions and for the pathogenesis of polyQ-expansion diseases.
Collapse
Affiliation(s)
- Ferdinando Fiumara
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
13
|
|
14
|
López-Alonso JP, Pardo-Cea MA, Gómez-Pinto I, Fernández I, Chakrabartty A, Pedroso E, González C, Laurents DV. Putative one-pot prebiotic polypeptides with ribonucleolytic activity. Chemistry 2010; 16:5314-23. [PMID: 20232309 DOI: 10.1002/chem.200903207] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
KIA7, a peptide with a highly restricted set of amino acids (Lys, Ile, Ala, Gly and Tyr), adopts a specifically folded structure. Some amino acids, including Lys, Ile, Ala, Gly and His, form under the same putative prebiotic conditions, whereas different conditions are needed for producing Tyr, Phe and Trp. Herein, we report the 3D structure and conformational stability of the peptide KIA7H, which is composed of only Lys, Ile, Ala, Gly and His. When the imidazole group is neutral, this 20-mer peptide adopts a four-helix bundle with a specifically packed hydrophobic core. Therefore, one-pot prebiotic proteins with well-defined structures might have arisen early in chemical evolution. The Trp variant, KIA7W, was also studied. It adopts a 3D structure similar to that of KIA7H and its previously studied Tyr and Phe variants, but is remarkably more stable. When tested for ribonucleolytic activity, KIA7H, KIA7W and even short, unstructured peptides rich in His and Lys, in combination with Mg(++), Mn(++) or Ni(++) (but not Cu(++), Zn(++) or EDTA) specifically cleave the single-stranded region in an RNA stem-loop. This suggests that prebiotic peptide-divalent cation complexes with ribonucleolytic activity might have co-inhabited the RNA world.
Collapse
Affiliation(s)
- Jorge P López-Alonso
- Instituto de Química Física Rocasolano C.S.I.C. Serrano 119, 28006, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Bromley EH, Channon KJ, King PJ, Mahmoud ZN, Banwell EF, Butler MF, Crump MP, Dafforn TR, Hicks MR, Hirst JD, Rodger A, Woolfson DN. Assembly pathway of a designed alpha-helical protein fiber. Biophys J 2010; 98:1668-76. [PMID: 20409488 PMCID: PMC2856164 DOI: 10.1016/j.bpj.2009.12.4309] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 12/22/2022] Open
Abstract
Interest in the design of peptide-based fibrous materials is growing because it opens possibilities to explore fundamental aspects of peptide self-assembly and to exploit the resulting structures--for example, as scaffolds for tissue engineering. Here we investigate the assembly pathway of self-assembling fibers, a rationally designed alpha-helical coiled-coil system comprising two peptides that assemble on mixing. The dimensions spanned by the peptides and final structures (nanometers to micrometers), and the timescale over which folding and assembly occur (seconds to hours), necessitate a multi-technique approach employing spectroscopy, analytical ultracentrifugation, electron and light microscopy, and protein design to produce a physical model. We show that fibers form via a nucleation and growth mechanism. The two peptides combine rapidly (in less than seconds) to form sticky ended, partly helical heterodimers. A lag phase follows, on the order of tens of minutes, and is concentration-dependent. The critical nucleus comprises six to eight partially folded dimers. Growth is then linear in dimers, and subsequent fiber growth occurs in hours through both elongation and thickening. At later times (several hours), fibers grow predominantly through elongation. This kinetic, biomolecular description of the folding-and-assembly process allows the self-assembling fiber system to be manipulated and controlled, which we demonstrate through seeding experiments to obtain different distributions of fiber lengths. This study and the resulting mechanism we propose provide a potential route to achieving temporal control of functional fibers with future applications in biotechnology and nanoscale science and technology.
Collapse
Affiliation(s)
- Elizabeth H.C. Bromley
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Department of Physics, Durham University, Durham, UK
| | - Kevin J. Channon
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | | | - Zahra N. Mahmoud
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Eleanor F. Banwell
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Tokyo Institute of Technology, Global Edge Institute, Kanagawa, Japan
| | - Michael F. Butler
- Unilever Corporate Research, Colworth Science Park, Bedford, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Timothy R. Dafforn
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Matthew R. Hicks
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Jonathan D. Hirst
- School of Chemistry, University of Nottingham, Nottingham, United Kingdom
| | - Alison Rodger
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom
- Department of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Woolfson DN. Building fibrous biomaterials from alpha-helical and collagen-like coiled-coil peptides. Biopolymers 2010; 94:118-27. [PMID: 20091877 DOI: 10.1002/bip.21345] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the decade and a half, interest has soared in the development of peptide-based biomaterials and their potential applications in biotechnology. This review outlines the advances during this time in the construction of biomaterials based on the alpha-helical coiled-coil and collagen-like peptides. These structures and the resulting designs are distinct from the more commonly used beta-structured peptides, which often lead to hydrogels comprising amyloid-like fibrils. The review covers basic design rules for these helical assemblies, and the various fibrous biomaterials that can be accomplished with them, which include rigid structures with straight, branched, or networked structures, decorated and functionalized systems, and most recently flexible fibers and entangled hydrogel networks. This plethora of alpha-helix-based biomaterials, together with more recent collagen-like assemblies, that are emerging from various laboratories complement those developed using beta-structured peptides, and open exciting new avenues for biomaterials research and potential new application areas.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom.
| |
Collapse
|
17
|
Robson Marsden H, Elbers N, Bomans P, Sommerdijk N, Kros A. A Reduced SNARE Model for Membrane Fusion. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804493] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Robson Marsden H, Elbers N, Bomans P, Sommerdijk N, Kros A. A Reduced SNARE Model for Membrane Fusion. Angew Chem Int Ed Engl 2009; 48:2330-3. [DOI: 10.1002/anie.200804493] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Papapostolou D, Bromley EHC, Bano C, Woolfson DN. Electrostatic control of thickness and stiffness in a designed protein fiber. J Am Chem Soc 2008; 130:5124-30. [PMID: 18361488 DOI: 10.1021/ja0778444] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Attempts to design peptide-based fibers from first principles test our understanding of protein folding and assembly, and potentially provide routes to new biomaterials. Several groups have presented such designs based on alpha-helical and beta-strand building blocks. A key issue is this area now is engineering and controlling fiber morphology and related properties. Previously, we have reported the design and characterization of a self-assembling peptide fiber (SAF) system based on alpha-helical coiled-coil building blocks. With preceding designs, the SAFs are thickened, highly ordered structures in which many coiled coils are tightly bundled. As a result, the fibers behave as rigid rods. Here we report successful attempts to design new fibers that are thinner and more flexible by further programming at the amino-acid sequence level. This was done by introducing extended, or "smeared", electrostatic networks of arginine and glutamate residues to the surfaces of the coiled-coil building blocks. Furthermore, using arginine--rather than lysine--in these networks plays a major role in the fiber assembly, presumably by facilitating multidentate intra and intercoiled-coil salt bridges.
Collapse
Affiliation(s)
- David Papapostolou
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | | | | | | |
Collapse
|
20
|
Gunasekar SK, Haghpanah JS, Montclare JK. Assembly of bioinspired helical protein fibers. POLYM ADVAN TECHNOL 2008. [DOI: 10.1002/pat.1136] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
López de la Osa J, Bateman DA, Ho S, González C, Chakrabartty A, Laurents DV. Getting specificity from simplicity in putative proteins from the prebiotic earth. Proc Natl Acad Sci U S A 2007; 104:14941-6. [PMID: 17855563 PMCID: PMC1986592 DOI: 10.1073/pnas.0706876104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Indexed: 11/18/2022] Open
Abstract
Can unique protein structures arise from a limited set of amino acids present on the prebiotic earth? To address this question, we have determined the stability and structure of KIA7, a 20-residue polypeptide containing chiefly Lys, Ile, and Ala. NMR methods reveal that KIA7 tetramerizes and folds on the millisecond time scale to adopt a four-helix X-bundle structure with a tightly and specifically packed core. Denaturation studies and hydrogen exchange measurements of KIA7 and several variants demonstrate that ridges-into-grooves packing of Ala and Ile side chains and the packing of a C-terminal aromatic group into the hydrophobic core are sufficient to give rise to a rather stable, well folded protein structure, with no favorable electrostatic interactions or tertiary or quaternary hydrogen bonds. Both modern proteins and RNAs can adopt specific structures, but RNAs do so with a limited "alphabet" of residues and types of stabilizing interactions. The results reported here show that specific, well folded protein structures can also arise from a highly reduced set of stabilizing interactions and amino acids that are thought to have been present on the prebiotic earth.
Collapse
Affiliation(s)
- Jaime López de la Osa
- *Instituto de Química Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain; and
| | - David A. Bateman
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, ON, Canada M5G-2M9
| | - Sylvia Ho
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, ON, Canada M5G-2M9
| | - Carlos González
- *Instituto de Química Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain; and
| | - Avijit Chakrabartty
- Departments of Medical Biophysics and Biochemistry, University of Toronto, Toronto, ON, Canada M5G-2M9
| | - Douglas V. Laurents
- *Instituto de Química Física “Rocasolano,” Consejo Superior de Investigaciones Científicas, Serrano 119, 28006 Madrid, Spain; and
| |
Collapse
|
22
|
Farmer RS, Argust LM, Sharp JD, Kiick KL. Conformational Properties of Helical Protein Polymers with Varying Densities of Chemically Reactive Groups. Macromolecules 2006; 39:162-170. [PMID: 19180254 PMCID: PMC2632593 DOI: 10.1021/ma051534t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein engineering strategies have proven valuable for the production of a variety of well-defined macromolecular materials with controlled properties that have enabled their use in a range of materials and biological applications. In this work, such biosynthetic strategies have been employed in the production of monodisperse alanine-rich, helical protein polymers with the sequences [AAAQEAAAAQAAAQAEAAQAAQ](3) and [AAAQAAQAQAAAEAAAQAAQAQ](6). The composition of these protein polymers is similar to that of a previously reported family of alanine-rich protein polymers, but the density and placement of chemically reactive residues has been varied to facilitate the future use of these macromolecules in elucidating polymeric structure-function relationships in biological recognition events. Both protein polymers are readily expressed from E. coli and purified to homogeneity; characterization of their conformational behavior via circular dichroic spectroscopy (CD) indicates that they adopt highly helical conformations under a range of solution conditions. Differential scanning calorimetry, in concert with CD, demonstrates that the conformational transition from helix to coil in these macromolecules can be well-defined, with helicity, conformational transitions, T(m) values, and calorimetric enthalpies that vary with the molecular weight of the protein polymers. A combination of infrared spectroscopy and CD also reveals that the macromolecules can adopt beta-sheet structures at elevated temperatures and concentrations and that the existence and kinetics of this conformational transition appear to be related to the density of charged groups on the protein polymer.
Collapse
Affiliation(s)
- Robin S. Farmer
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716
| | - Lindsey M. Argust
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716
| | - Jared D. Sharp
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, 201 Dupont Hall, Newark, Delaware 19716
| |
Collapse
|