1
|
Scalabrin M, Nadai M, Tassinari M, Lago S, Doria F, Frasson I, Freccero M, Richter SN. Selective Recognition of a Single HIV-1 G-Quadruplex by Ultrafast Small-Molecule Screening. Anal Chem 2021; 93:15243-15252. [PMID: 34762806 PMCID: PMC8613737 DOI: 10.1021/acs.analchem.0c04106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
G-quadruplexes (G4s) are implicated in pathological processes such as cancer and infective diseases. Their targeting with G4-ligands has shown therapeutic capacity. Most of the current G4-ligands are planar molecules, do not discriminate among G4s, and have poor druglike properties. The available methods to identify compounds selective for one single G4 are often time-consuming. Here, we describe the development, validation, and application of an affinity-selection mass spectrometry method that employs unlabeled G4 oligonucleotides as targets and allows testing of up to 320 unmodified small molecules in a single tube. As a proof of concept, this method was applied to screen a library of 40 000 druglike molecules against two G4s, transcriptional regulators of the HIV-1 LTR promoter. We identified nonplanar pyrazolopyrimidines that selectively recognize and stabilize the major HIV-1 LTR G4 possibly by fitting and binding through H-bonding in its unique binding pocket. The compounds inhibit LTR promoter activity and HIV-1 replication. We propose this method to prompt the fast development of new G4-based therapeutics.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Matteo Nadai
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Martina Tassinari
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Sara Lago
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Frasson
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Sara N. Richter
- Department
of Molecular Medicine, University of Padua, 35121 Padua, Italy
| |
Collapse
|
2
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
3
|
Chang T, He S, Amini R, Li Y. Functional Nucleic Acids Under Unusual Conditions. Chembiochem 2021; 22:2368-2383. [PMID: 33930229 DOI: 10.1002/cbic.202100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/24/2021] [Indexed: 02/06/2023]
Abstract
Functional nucleic acids (FNAs), including naturally occurring ribozymes and riboswitches as well as artificially created DNAzymes and aptamers, have been popular molecular toolboxes for diverse applications. Given the high chemical stability of nucleic acids and their ability to fold into diverse sequence-dependent structures, FNAs are suggested to be highly functional under unusual reaction conditions. This review will examine the progress of research on FNAs under conditions of low pH, high temperature, freezing conditions, and the inclusion of organic solvents and denaturants that are known to disrupt nucleic acid structures. The FNA species to be discussed include ribozymes, riboswitches, G-quadruplex-based peroxidase mimicking DNAzymes, RNA-cleaving DNAzymes, and aptamers. Research within this space has not only revealed the hidden talents of FNAs but has also laid important groundwork for pursuing these intriguing functional macromolecules for unique applications.
Collapse
Affiliation(s)
- Tianjun Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, P. R. China
| | - Sisi He
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
- School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen, 518055, Guangdong, P. R. China
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Canada
| |
Collapse
|
4
|
Imperatore C, Varriale A, Rivieccio E, Pennacchio A, Staiano M, D’Auria S, Casertano M, Altucci C, Valadan M, Singh M, Menna M, Varra M. Spectroscopic Properties of Two 5'-(4-Dimethylamino)Azobenzene Conjugated G-Quadruplex Forming Oligonucleotides. Int J Mol Sci 2020; 21:E7103. [PMID: 32993097 PMCID: PMC7582650 DOI: 10.3390/ijms21197103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
The synthesis of two 5'-end (4-dimethylamino)azobenzene conjugated G-quadruplex forming aptamers, the thrombin binding aptamer (TBA) and the HIV-1 integrase aptamer (T30695), was performed. Their structural behavior was investigated by means of UV, CD, fluorescence spectroscopy, and gel electrophoresis techniques in K+-containing buffers and water-ethanol blends. Particularly, we observed that the presence of the 5'-(4-dimethylamino)azobenzene moiety leads TBA to form multimers instead of the typical monomolecular chair-like G-quadruplex and almost hampers T30695 G-quadruplex monomers to dimerize. Fluorescence studies evidenced that both the conjugated G-quadruplexes possess unique fluorescence features when excited at wavelengths corresponding to the UV absorption of the conjugated moiety. Furthermore, a preliminary investigation of the trans-cis conversion of the dye incorporated at the 5'-end of TBA and T30695 showed that, unlike the free dye, in K+-containing water-ethanol-triethylamine blend the trans-to-cis conversion was almost undetectable by means of a standard UV spectrophotometer.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Antonio Varriale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Elisa Rivieccio
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Angela Pennacchio
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Maria Staiano
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Sabato D’Auria
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100 Avellino, Italy; (A.V.); (A.P.); (M.S.); (S.D.)
| | - Marcello Casertano
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia, 21—Building 6, 80126 Naples, Italy; (C.A.); (M.V.); (M.S.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| | - Michela Varra
- Department of Pharmacy, School of Medicine, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (C.I.); (E.R.); (M.C.); (M.M.)
| |
Collapse
|
5
|
Bednářová K, Kejnovská I, Vorlíčková M, Renčiuk D. Guanine Substitutions Prevent Conformational Switch from Antiparallel to Parallel G-Quadruplex. Chemistry 2019; 25:13422-13428. [PMID: 31453656 DOI: 10.1002/chem.201903015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Guanine quadruplexes, recently reported to form in vivo, represent a broad spectrum of non-canonical conformations of nucleic acids. The actual conformation might differ between water solutions and crowding or dehydrating solutions that better reflect the conditions in the cell. Here we show, using spectroscopic techniques, that most guanine substitutions prevent the conformational switch from antiparallel or hybrid forms to parallel ones when induced by dehydrating agents. The inhibitory effect does not depend on the position of the substitution, but, interestingly, on the type of substitution and, to some extent, on its destabilising potential. A parallel form might be induced in some cases by ligands such as N-methyl mesoporphyrin IX and even this ligand-induced switch is inhibited by guanine substitution. The ability or inability to have a conformation switch, based on actual conditions, might significantly influence potential conformation-dependent quadruplex interactions.
Collapse
Affiliation(s)
- Klára Bednářová
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Iva Kejnovská
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Michaela Vorlíčková
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Daniel Renčiuk
- Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
6
|
Kejnovská I, Renčiuk D, Palacký J, Vorlíčková M. CD Study of the G-Quadruplex Conformation. Methods Mol Biol 2019; 2035:25-44. [PMID: 31444742 DOI: 10.1007/978-1-4939-9666-7_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Circular Dichroic (CD) spectroscopy is one of the most frequently used methods for guanine quadruplex studies and in general for studies of conformational properties of nucleic acids. The reason is its high sensitivity to even slight changes in mutual orientation of absorbing bases of DNA. CD can reveal formation of particular structural DNA arrangements and can be used to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters, and also to detect formation of higher order structures. CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies due to its sensitivity, easy manipulation of studied samples, and relative inexpensiveness. In this part, we present the protocol for the use of CD spectroscopy in the study of guanine quadruplexes, together with practical advice and cautions about various, particularly interpretation, difficulties.
Collapse
Affiliation(s)
- Iva Kejnovská
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Daniel Renčiuk
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Jan Palacký
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic
| | - Michaela Vorlíčková
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| |
Collapse
|
7
|
Abstract
Mass spectrometry (MS) is an analytical tool complimentary for being sensitive, accurate, and versatile in its application, such as the identification of multistranded nucleic acid assemblies, including G-quadruplex. More specifically, electrospray ionization mass spectrometry (ESI-MS) has been successfully applied to probe various G-quadruplex formations and G-quadruplex-ligand interactions. The benefit of the ESI process is that the noncovalent interactions, which typically stabilize the multistranded motifs of G-quadruplex in solution, are preserved in the gas phase. Here we use ESI-MS to describe the structural characterization of G-quadruplex structures found in three G-rich sequences, as well as the ligand binding. Detailed structural information of G-quadruplexes and their ligand-bound complexes (such as the cation/ligand binding stoichiometry, and the number of strands and G-quartets) can be obtained from a single spectrum using this ESI-MS-based method.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
Fu H, Yang P, Hai J, Li H. Utilization of circular dichroism and electrospray ionization mass spectrometry to understand the formation and conversion of G-quadruplex DNA at the human c-myb proto-oncogene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:70-76. [PMID: 29860170 DOI: 10.1016/j.saa.2018.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
G-quadruplex DNAs are involved in a number of key biological processes, including gene expression, transcription, and apoptosis. The c-myb oncogene contains a number of GGA repeats in its promoter which forms G-quadruplex, thus it could be used as a target in cancer therapeutics. Several in-vitro studies have used Circular Dichroism (CD) spectroscopy or electrospray ionization mass spectrometry (ESI-MS) to demonstrate formation and stability of G-quadruplex DNA structure in the promoter region of human c-myb oncogene. The factors affecting the c-myb G-quadruplex structures were investigated, such as cations (i.e. K+, NH4+ and Na+) and co-solutes (methanol and polyethylene glycol). The results indicated that the presence of cations and co-solutes could change the G-quadruplex structural population and promote its thermodynamic stabilization as indicated by CD melting curves. It indicated that the co-solutes preferentially stabilize the c-myb G-quadruplex structure containing both homo- and hetero-stacking. In addition, protopine was demonstrated as a binder of c-myb G-quadruplex as screened from a library of natural alkaloids using ESI-MS method. CD spectra showed that it could selectively stabilize the c-myb G-quadruplex structure compared to other six G-quadruplexes from tumor-related G-rich sequences and the duplex DNAs (both long and short-chain ones). The binding of protopine could induce the change in the G-quadruplex structural populations. Therefore, protopine with its high binding specificity could be considered as a precursor for the design of drugs to target and regulate c-myb oncogene transcription.
Collapse
Affiliation(s)
- Hengqing Fu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Pengfei Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Hai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
9
|
Scalabrin M, Palumbo M, Richter SN. Highly Improved Electrospray Ionization-Mass Spectrometry Detection of G-Quadruplex-Folded Oligonucleotides and Their Complexes with Small Molecules. Anal Chem 2017; 89:8632-8637. [PMID: 28787153 PMCID: PMC5588092 DOI: 10.1021/acs.analchem.7b01282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
G-quadruplexes
are nucleic acids structures stabilized by physiological
concentration of potassium ions. Because low stability G-quadruplexes
are hardly detectable by mass spectrometry, we optimized solvent conditions:
isopropanol in a triethylamine/hexafluoroisopropanol mixture highly
increased G-quadruplex sensitivity with no modification of the physiological
G-quadruplex conformation. G-quadruplexes/G-quadruplex-ligand complexes
were also correctly detected at concentration as low as 40 nM. Detection
of the physiological conformation of G4s and their complexes opens
up the possibility to perform high-throughput screening of G-quadruplex
ligands for the development of drug molecules effective against critical
human diseases.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Marzolo 5, 35131 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
10
|
Goblirsch BR, Kalb EM, Marsh TC. Interfacial Au nanoparticle decoration of a disulfide modified G-wire. Biochim Biophys Acta Gen Subj 2016; 1861:1471-1476. [PMID: 27989638 DOI: 10.1016/j.bbagen.2016.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/17/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The guanine-rich oligonucleotide (GRO), dGGGGTTGGGG (G4T2G4), has the capacity to form a linear supramolecular polymer known as a G-wire. Individual nucleotides of the component GROs can be functionally modified to serve as site-specific attachment points in the G-wire while not interfering with its self-assembling properties. An amine linker modification to an internal thymine base of the GRO, denoted G4TT*G4, serves as a chemically versatile attachment site. METHODS In this work, addition of an alkyl disulfide to G4TT*G4 produces the GRO G4TTdG4 enabling binding to gold nanoparticles via place exchange chemistry. G-wires assembled by combining G4T2G4 and G4TTdG4 were stably maintained in an aqueous environment. Disulfide modified G-wires (DS_G-wire) were then covered with dodecanethiol capped gold nanoparticles in an organic solvent via an interfacial place exchange reaction. Tapping Mode AFM and TEM were used to image G-wires decorated with gold nanoparticles. The specificity of the interfacial place exchange reaction was measured using a fluorometric dye displacement from the gold nanoparticles. RESULTS The results show that a two component DS_G-wire with an amphipathic tether readily self-assemble as shown by PAGE and TM-AFM. The amphipathic disulfide moiety of DS_G-wires facilitates place exchange chemistry with alkylthiol protected Au nanoparticles across an aqueous-organic interface. CONCLUSION Interfacial place exchange is an effective strategy for decorating DS_G-wires with Au nanoparticles. GENERAL SIGNIFICANCE The use of modified G-wire self-assembly combined with a high degree of nanoparticle binding specificity presents another strategy for the use of G-wires as a rigid one-dimensional molecular scaffold with potential applications in nanoscale device construction. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Brandon R Goblirsch
- Department of Chemistry, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA.
| | - Evan M Kalb
- Department of Chemistry, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA.
| | - Thomas C Marsh
- Department of Chemistry, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
11
|
Canale TD, Sen D. Hemin-utilizing G-quadruplex DNAzymes are strongly active in organic co-solvents. Biochim Biophys Acta Gen Subj 2016; 1861:1455-1462. [PMID: 27856300 DOI: 10.1016/j.bbagen.2016.11.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/11/2023]
Abstract
The widespread use of organic solvents in industrial processes has focused in recent years on the utility of "green" solvents - those with less harmful environmental, health, and safety properties - such as methanol and formamide. However, protein enzymes, regarded as green catalysts, are often incompatible with organic solvents. Herein, we have explored the oxidative properties of a Fe(III)-heme, or hemin, utilizing catalytic DNA (heme·DNAzyme) in different green solvent-water mixtures. We find that the peroxidase and peroxygenase activities of the heme·DNAzyme are strongly enhanced in 20-30% v/v methanol or formamide, relative to water alone. Protic solvent content of >30% v/v gradually diminishes heme·DNAzyme catalytic activity; however, the heme·DNAzyme is still active in as high as 80% v/v methanol. In contrast to protic solvents, aqueous dimethylformamide solutions largely inhibit heme·DNAzyme activity. In view of the strong catalytic activity of heme·DNAzyme in aqueous methanol, we were able to determine that a 60% v/v methanol-water mixture gives the most optimal yield of the dibenzothiophene sulfoxide (DBTO) oxidation product of petroleum-derived dibenzothiophene (DBT). The high product yield reflects both DNAzyme catalysis and a high substrate availability. Overall, these results emphasize the excellent promise of G-quadruplex forming DNA catalysts in application to "greener" industrial chemistry. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Collapse
Affiliation(s)
- Thomas D Canale
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.
| |
Collapse
|
12
|
Li H, Hai J, Zhou J, Yuan G. The formation and characteristics of the i-motif structure within the promoter of the c-myb proto-oncogene. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:625-632. [PMID: 27487467 DOI: 10.1016/j.jphotobiol.2016.07.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
C-myb proto-oncogene is a potential therapeutic target for some human solid tumors and leukemias. A long cytosine-rich sequence, which locates the downstream of the transcription initiation site, is demonstrated to fold into an intramolecular i-motif DNA using electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy. Effects of factors, including the pH value, the number of C:C(+) dimers, the concentration of buffer, the molecular crowding condition, and the coexistence of the complementary DNA, on the formation and the structural stability of the i-motif DNA are systematically studied. We have demonstrated that the i-motif folding in the c-myb promoter could be accelerated upon synergistic physiological stimuli including intracellular molecular crowding and low pH values, as well as the large number of the i-motif C:C(+) dimers. Meanwhile, various inputs, such as acids/bases and metal ions, have exhibited their abilities in controlling the conformational switch of the c-myb GC-rich DNA. Acidic pH values and the presence of K(+) ions can induce the dissociation of the double helix. Our present strategy can greatly extend the potential usages of i-motif DNA molecules with specific sequences as conformational switch-controlled devices. Moreover, this work demonstrates the superiority of CD spectroscopy associated with ESI-MS as a rapid, more cost-effective and sensitive structural change responsive method in the research of DNA conformational switching.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver V6T 1Z1, Canada.
| | - Jinhui Hai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Kejnovská I, Vorlíčková M, Brázdová M, Sagi J. Stability of human telomere quadruplexes at high DNA concentrations. Biopolymers 2016; 101:428-38. [PMID: 24037480 DOI: 10.1002/bip.22400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023]
Abstract
For mimicking macromolecular crowding of DNA quadruplexes, various crowding agents have been used, typically PEG, with quadruplexes of micromolar strand concentrations. Thermal and thermodynamic stabilities of these quadruplexes increased with the concentration of the agents, the rise depended on the crowder used. A different phenomenon was observed, and is presented in this article, when the crowder was the quadruplex itself. With DNA strand concentrations ranging from 3 µM to 9 mM, the thermostability did not change up to ∼2 mM, above which it increased, indicating that the unfolding quadruplex units were not monomolecular above ∼2 mM. The results are explained by self-association of the G-quadruplexes above this concentration. The ΔG(°) 37 values, evaluated only below 2 mM, did not become more negative, as with the non-DNA crowders, instead, slightly increased. Folding topology changed from antiparallel to hybrid above 2 mM, and then to parallel quadruplexes at high, 6-9 mM strand concentrations. In this range, the concentration of the DNA phosphate anions approached the concentration of the K(+) counterions used. Volume exclusion is assumed to promote the topological changes of quadruplexes toward the parallel, and the decreased screening of anions could affect their stability.
Collapse
Affiliation(s)
- Iva Kejnovská
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135,, CZ-612 65, Brno, Czech Republic
| | | | | | | |
Collapse
|
14
|
The structural stability and catalytic activity of DNA and RNA oligonucleotides in the presence of organic solvents. Biophys Rev 2016; 8:11-23. [PMID: 28510143 DOI: 10.1007/s12551-015-0188-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/02/2023] Open
Abstract
Organic solvents and apolar media are used in the studies of nucleic acids to modify the conformation and function of nucleic acids, to improve solubility of hydrophobic ligands, to construct molecular scaffolds for organic synthesis, and to study molecular crowding effects. Understanding how organic solvents affect nucleic acid interactions and identifying the factors that dominate solvent effects are important for the creation of oligonucleotide-based technologies. This review describes the structural and catalytic properties of DNA and RNA oligonucleotides in organic solutions and in aqueous solutions with organic cosolvents. There are several possible mechanisms underlying the effects of organic solvents on nucleic acid interactions. The reported results emphasize the significance of the osmotic pressure effect and the dielectric constant effect in addition to specific interactions with nucleic acid strands. This review will serve as a guide for the selection of solvent systems based on the purpose of the nucleic acid-based experiments.
Collapse
|
15
|
Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie 2015; 118:15-25. [DOI: 10.1016/j.biochi.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/13/2015] [Indexed: 12/28/2022]
|
16
|
Verdian Doghaei A, Housaindokht M, Bozorgmehr M. Molecular crowding effects on conformation and stability of G-quadruplex DNA structure: Insights from molecular dynamics simulation. J Theor Biol 2015; 364:103-12. [DOI: 10.1016/j.jtbi.2014.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/14/2014] [Accepted: 09/10/2014] [Indexed: 11/25/2022]
|
17
|
Yatsunyk LA, Mendoza O, Mergny JL. "Nano-oddities": unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Acc Chem Res 2014; 47:1836-44. [PMID: 24871086 DOI: 10.1021/ar500063x] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONSPECTUS: DNA is an attractive polymer building material for nanodevices and nanostructures due to its ability for self-recognition and self-assembly. Assembly relies on the formation of base-specific interactions that allow strands to adopt structures in a controllable fashion. Most DNA-based higher order structures such as DNA cages, 2D and 3D DNA crystals, or origamis are based on DNA double helices stabilized by Watson-Crick complementarity. A number of nonclassical pairing patterns are possible between or among DNA strands; these interactions result in formation of unusual structures that include, but are not limited to, G-quadruplexes, i-motifs, triplexes, and parallel-stranded duplexes. These structures create greater diversity of DNA-based building blocks for nanomaterials and have certain advantages over conventional duplex DNA, such as enhanced thermal stability and sensitivity to chemical stimuli. In this Account, we briefly introduce these alternative DNA structures and describe in detail their utilization in a variety of nanomaterials and nanomachines. The field of DNA "nano-oddities" emerged in the late 1990s when for the first time a DNA nanomachine was designed based on equilibrium between B-DNA and noncanonical, left-handed Z-DNA. Soon after, "proof-of-principle" DNA nanomachines based on several DNA "oddities" were reported. These machines were set in motion by the addition of complementary strands (a principle used by many B-DNA-based nanodevices), by the addition of selected cations, small molecules, or proteins, or by a change in pH or temperature. Today, we have fair understanding of the mechanism of action of these devices, excellent control over their performance, and knowledge of basic principles of their design. pH sensors and pH-controlled devices occupy a central niche in the field. They are usually based on i-motifs or triplex DNA, are amazingly simple, robust, and reversible, and create no waste apart from salt and water. G-quadruplex based nanostructures have unusually high stability, resist DNase and temperature, and display high selectivity toward certain cations. The true power of using these "nano-oddities" comes from combining them with existing nanomaterials (e.g., DNA origami, gold nanoparticles, graphene oxide, or mesoporous silica) and integrating them into existing mechanical and optoelectronic devices. Creating well-structured junctions for these interfaces, finding appropriate applications for the vast numbers of reported "nano-oddities", and proving their biological innocence comprise major challenges in the field. Our Account is not meant to be an all-inclusive review of the field but should give a reader a firm grasp of the current state of DNA nanotechnology based on noncanonical DNA structures.
Collapse
Affiliation(s)
- Liliya A. Yatsunyk
- Department
of Chemistry and Biochemistry, Swarthmore College, 500 College
Avenue, Swarthmore, Pennsylvania 19081 United States
| | - Oscar Mendoza
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| | - Jean-Louis Mergny
- ARNA
Laboratory, University of Bordeaux, F-33000 Bordeaux, France
- INSERM U869, Institut Européen de Chimie et de Biologie, F-33600 Pessac, France
| |
Collapse
|
18
|
Bagheryan Z, Raoof JB, Ojani R, Hamidi-Asl E. Introduction of Ketamine as a G-Quadruplex-Binding Ligand Using Platinum Nanoparticle Modified Carbon Paste Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300418] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Marchand A, Ferreira R, Tateishi-Karimata H, Miyoshi D, Sugimoto N, Gabelica V. Sequence and solvent effects on telomeric DNA bimolecular G-quadruplex folding kinetics. J Phys Chem B 2013; 117:12391-401. [PMID: 23978125 DOI: 10.1021/jp406857s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomeric DNA sequences are particularly polymorphic: the adopted structure is exquisitely sensitive to the sequence and to the chemical environment, for example, solvation. Dehydrating conditions are known to stabilize G-quadruplex structures, but information on how solvation influences the individual rates of folding and unfolding of G-quadruplexes remains scarce. Here, we used electrospray mass spectrometry for the first time to monitor bimolecular G-quadruplex formation from 12-mer telomeric strands, in the presence of common organic cosolvents (methanol, ethanol, isopropanol, and acetonitrile). Based on the ammonium ion distribution, the total dimer signal was decomposed into contributions from the parallel and antiparallel structures to obtain individual reaction rates, and the antiparallel G-quadruplex structure was found to form faster than the parallel one. A dimeric reaction intermediate, in rapid equilibrium with the single strands, was also identified. Organic cosolvents increase the stability of the final structures mainly by increasing the folding rates. Our quantitative analysis of reaction rate dependence on cosolvent percentage shows that organic cosolvent molecules can be captured or released upon G-quadruplex formation, highlighting that they are not inert with DNA. In contrast to the folding rates, the G-quadruplex unfolding rates are almost insensitive to solvation effects, but are instead governed by the sequence and by the final structure: parallel dimers dissociate slower than antiparallel dimers only when thymine bases are present at the 5'-end. These results contribute unraveling the folding pathways of telomeric G-quadruplexes. The solvent effects revealed here enlighten that G-quadruplex structure in dehydrated, and molecularly crowded environments are modulated by the nature of cosolvent (e.g., methanol favors antiparallel structures) due to direct interactions, and by the time scale of the reaction, with >200-fold acceleration of bimolecular G-quadruplex formation in the presence of 60% cosolvent.
Collapse
Affiliation(s)
- Adrien Marchand
- Physical Chemistry and Mass Spectrometry Laboratory, Department of Chemistry, University of Liège , B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
20
|
Yatsunyk LA, Piétrement O, Albrecht D, Tran PLT, Renčiuk D, Sugiyama H, Arbona JM, Aimé JP, Mergny JL. Guided assembly of tetramolecular G-quadruplexes. ACS NANO 2013; 7:5701-10. [PMID: 23763613 DOI: 10.1021/nn402321g] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nucleic acids are finding applications in nanotechnology as nanomaterials, mechanical devices, templates, and biosensors. G-quadruplex DNA, formed by π-π stacking of guanine (G) quartets, is an attractive alternative to regular B-DNA because of the kinetic and thermodynamic stability of quadruplexes. However, they suffer from a fatal flaw: the rules of recognition, i.e., the formation of a G-quartet in which four identical bases are paired, prevent the controlled assembly between different strands, leading to complex mixtures. In this report, we present the solution to this recognition problem. The proposed design combines two DNA elements: parallel-stranded duplexes and a quadruplex core. Parallel-stranded duplexes direct controlled assembly of the quadruplex core, and their strands present convenient points of attachments for potential modifiers. The exceptional stability of the quadruplex core provides integrity to the entire structure, which could be used as a building block for nucleic acid-based nanomaterials. As a proof of principle for the design's versatility, we assembled quadruplex-based 1D structures and visualized them using atomic force and transmission electron microscopy. Our findings pave the way to broader utilization of G-quadruplex DNA in structural DNA nanomaterials.
Collapse
|
21
|
Hu Y, Han D, Zhang Q, Wu T, Li F, Niu L. Perylene ligand wrapping G-quadruplex DNA for label-free fluorescence potassium recognition. Biosens Bioelectron 2012; 38:396-401. [DOI: 10.1016/j.bios.2012.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/16/2012] [Accepted: 06/21/2012] [Indexed: 02/02/2023]
|
22
|
Yu H, Gu X, Nakano SI, Miyoshi D, Sugimoto N. Beads-on-a-string structure of long telomeric DNAs under molecular crowding conditions. J Am Chem Soc 2012; 134:20060-9. [PMID: 22934853 DOI: 10.1021/ja305384c] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and stability of long telomeric DNAs, (T(2)AG(3))(n) (n = 4-20), were studied under dilute and molecular crowding conditions in the presence of Na(+) and K(+). Structural analysis showed that the long telomeric DNAs formed intramolecular G-quadruplexes under all conditions. In the presence of Na(+), the telomeric DNAs formed an antiparallel G-quadruplex under both dilute and molecular crowding conditions. However, in the presence of K(+), molecular crowding induced a conformational change from mixed to parallel. These results are consistent with numerous structural studies for G-quadruplex units under molecular crowding conditions. Thermodynamic analysis showed that G-quadruplexes under the molecular crowding conditions were obviously more stable than under dilute condition. Interestingly, this stabilization effect of molecular crowding was reduced for the longer telomeric DNAs, indicating that the G-quadruplex structure of long telomeric DNAs is not as stable under molecular crowding conditions, as implied from the large stabilization of isolated G-quadruplex units as previously reported. Moreover, a hydration study revealed that upon structure folding, the interior of a G-quadruplex unit was dehydrated, whereas the linker between two units was more hydrated. It is thus possible to propose that the linkers between G-quadruplex units are ordered structures but not random coils, which could have an important influence on the stability of the entire structure of long telomeric DNAs. These results are significant to elucidate the biological characteristics of telomeres, and can aid in the rational design of ligands and drugs targeting the telomere and related proteins.
Collapse
Affiliation(s)
- Haiqing Yu
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatijima-Minatomachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
23
|
Ferreira R, Marchand A, Gabelica V. Mass spectrometry and ion mobility spectrometry of G-quadruplexes. A study of solvent effects on dimer formation and structural transitions in the telomeric DNA sequence d(TAGGGTTAGGGT). Methods 2012; 57:56-63. [PMID: 22465284 DOI: 10.1016/j.ymeth.2012.03.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/14/2012] [Accepted: 03/17/2012] [Indexed: 11/25/2022] Open
Abstract
We survey here state of the art mass spectrometry methodologies for investigating G-quadruplexes, and will illustrate them with a new study on a simple model system: the dimeric G-quadruplex of the 12-mer telomeric DNA sequence d(TAGGGTTAGGGT), which can adopt either a parallel or an antiparallel structure. We will discuss the solution conditions compatible with electrospray ionisation, the quantification of complexes using ESI-MS, the interpretation of ammonium ion preservation in the complexes in the gas phase, and the use of ion mobility spectrometry to resolve ambiguities regarding the strand stoichiometry, or separate and characterise different structural isomers. We also describe that adding electrospray-compatible organic co-solvents (methanol, ethanol, isopropanol or acetonitrile) to aqueous ammonium acetate increases the stability and rate of formation of dimeric G-quadruplexes, and causes structural transitions to parallel structures. Structural changes were probed by circular dichroism and ion mobility spectrometry, and the excellent correlation between the two techniques validates the use of ion mobility to investigate G-quadruplex folding. We also demonstrate that parallel G-quadruplex structures are easier to preserve in the gas phase than antiparallel structures.
Collapse
Affiliation(s)
- Rubén Ferreira
- Department of Chemistry and Molecular Pharmacology, Institute for Research in Biomedicine (IRB Barcelona), IQAC-CSIC, CIBER-BNN, Baldiri i Reixac 10, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
24
|
Circular dichroism and guanine quadruplexes. Methods 2012; 57:64-75. [PMID: 22450044 DOI: 10.1016/j.ymeth.2012.03.011] [Citation(s) in RCA: 330] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/22/2022] Open
Abstract
Circular dichroism (CD) is remarkably sensitive to the conformational states of nucleic acids; therefore, CD spectroscopy has been used to study most features of DNA and RNA structures. Quadruplexes are among the significant noncanonical nucleic acids architectures that have received special attentions recently. This article presents examples on the contribution of CD spectroscopy to our knowledge of quadruplex structures and their polymorphism. The examples were selected to demonstrate the potential of this simple method in the quadruplex field. As CD spectroscopy detects only the global feature of a macromolecule, it should preferably be used in combination with other techniques. On the other hand, CD spectroscopy, often as a pioneering approach, can reveal the formation of particular structural arrangements, to search for the conditions stabilizing the structures, to follow the transitions between various structural states, to explore kinetics of their appearance, to determine thermodynamic parameters and also detect formation of higher order structures. This article aims to show that CD spectroscopy is an important complementary technique to NMR spectroscopy and X-ray diffraction in quadruplex studies.
Collapse
|
25
|
Renčiuk D, Kypr J, Vorlíčková M. CGG repeats associated with fragile X chromosome form left-handed Z-DNA structure. Biopolymers 2011; 95:174-81. [PMID: 20960567 DOI: 10.1002/bip.21555] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work is a continuation of our effort to determine the structure responsible for expansion of the (CGG)(n) motif that results in fragile X chromosome syndrome. In our previous report, we demonstrated that the structure adopted by an oligonucleotide with this repeat sequence is not a quadruplex as was suggested by others. Here we demonstrate that (CGG) runs adopt another anomalous arrangement-a left-handed Z-DNA structure. The Z-DNA formation was induced by high salt and millimolar concentrations of Ni(2+) ions and likelihood of its formation increased with increasing number of repeats. In an oligonucleotide in which the CGG runs were interrupted by AGG triplets, as is observed in genomes of healthy individuals, the hairpin conformation was stabilized and Z-DNA formation was hindered. We show here that methylation of the (CGG) runs markedly stabilized Z-DNA formation. We hypothesize that rather than in the expansion process the Z-DNA may be formed by long, expanded (CGG) stretches that become hypermethylated; this would inhibit transcription resulting in disease.
Collapse
Affiliation(s)
- Daniel Renčiuk
- Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | | |
Collapse
|
26
|
Zhang H, Xiang JF, Hu HY, Li L, Jin X, Liu Y, Li PF, Tang Y, Chen CF. Stabilizing G-Quadruplex DNA by a Scissors-Shaped Binaphthyl Derivative through the Entangling Mode: Cooperation of Binaphthylene and the Ethoxy Chain. Biochemistry 2010; 49:10351-3. [DOI: 10.1021/bi1001773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hong Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Graduate University of the Chinese Academy of Sciences, Institute of Chemistry
| | - Jun-feng Xiang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
| | - Hai-yu Hu
- National Laboratory for Molecular Sciences, Center for Chemical Biology
- Graduate University of the Chinese Academy of Sciences, Institute of Chemistry
| | - Lin Li
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- Graduate University of the Chinese Academy of Sciences, Institute of Chemistry
| | - Xue Jin
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
| | - Yan Liu
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
| | - Peng-fei Li
- National Laboratory for Molecular Sciences, Center for Chemical Biology
- Graduate University of the Chinese Academy of Sciences, Institute of Chemistry
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species
| | - Chuan-feng Chen
- National Laboratory for Molecular Sciences, Center for Chemical Biology
| |
Collapse
|
27
|
Abu-Ghazalah RM, Irizar J, Helmy AS, Macgregor RB. A study of the interactions that stabilize DNA frayed wires. Biophys Chem 2010; 147:123-9. [PMID: 20122787 DOI: 10.1016/j.bpc.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Oligodeoxyribonucleotides (ODNs) with long, terminal runs of consecutive guanines, and either a dA or dT tract at the other end form higher-order structures called DNA frayed wires. These aggregates self-assemble into species consisting of 2, 3, 4, 5, ... associated strands. Some of the remarkable features of these structures are their extreme thermostability and resistance to chemical denaturants and nucleases. However, the nature of the molecular interactions that stabilize these structures remains unclear. Based on dimethyl sulfate (DMS) methylation results, our group previously proposed DNA frayed wires to be a unique set of nucleic-acid assemblies in which the N7 of guanine does not participate in the guanine-guanine interactions. To probe the hydrogen bonding involved in the stabilization of d(A(15)G(15)) frayed wires, we used Raman spectroscopy in which the DNA sample is held in photonic crystal fibers. This technique significantly enhances the signals thus allowing the use of very low laser power. Based on our results for d(A(15)G(15)) and those of incorporating the isoelectronic guanine analog pyrazolo[3,4,-d]pyrimidine or PPG, into a frayed wire-forming sequence, we provide evidence that these structures are based on the G-quadruplex model. Furthermore, from the Raman spectrum, we observed markers that are consistent with the presence of deoxyguanosine residues in the syn conformation, this suggests the presence of anti-parallel G-quadruplexes. To identify the species that contain syn guanine residues, we used circular dichroism and gel electrophoresis to study an ODN in which all of the guanine residues were brominated, d(A(15)(8-Br)G(15)). In the presence of potassium, d(A(15)(8-Br)G(15)) forms what appears to be an anti-parallel dimeric G-quadruplex. To our knowledge, this is the first report of a DNA sequence having all its guanine residues replaced by 8-bromo-guanine and maintaining its ability to form a G-quadruplex structure.
Collapse
Affiliation(s)
- Rashid M Abu-Ghazalah
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
28
|
Renciuk D, Kejnovská I, Skoláková P, Bednárová K, Motlová J, Vorlícková M. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 2009; 37:6625-34. [PMID: 19717545 PMCID: PMC2770667 DOI: 10.1093/nar/gkp701] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.
Collapse
|
29
|
Li H, Liu Y, Lin S, Yuan G. Spectroscopy probing of the formation, recognition, and conversion of a G-quadruplex in the promoter region of the bcl-2 oncogene. Chemistry 2009; 15:2445-52. [PMID: 19156807 DOI: 10.1002/chem.200801922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study has demonstrated the formation of the G-quadruplex structure from the G-rich sequence in the promoter region of the bcl-2 oncogene; the formation could be induced by addition of NH(4)(+) or K(+) ions. The binding affinity and stoichiometry of seven small molecules with the G-quadruplex were examined by using ESI-MS, as well as CD and UV spectroscopy. The binding-affinity order was determined to be P1 approximately = P5 > P2 > P3 approximately = P4 > P7 > P6. In particular, the small-molecule induction of the structural transition between the G-quadruplex and duplex DNA forms in this promoter region was investigated by ESI-MS. We directly observed specific binding of dehydrocorydaline (P7) and cationic porphyrin (P5) in one system consisting of the G-quadruplex and the duplex DNA, respectively. The results indicate that P7 selectively stabilizes the G-quadruplex and shifts the equilibrium toward G-quadruplex formation of the bcl-2 promoter, whereas P5 converts the G-quadruplex into the duplex DNA, which results in strong and selective binding to the duplex form. Therefore, P5 and P7 with their attractive binding specificities could be considered as precursors for pathway-specific drug design for regulation of bcl-2 oncogene transcription.
Collapse
Affiliation(s)
- Huihui Li
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
30
|
Langdon WB, Upton GJG, Harrison AP. Probes containing runs of guanines provide insights into the biophysics and bioinformatics of Affymetrix GeneChips. Brief Bioinform 2009; 10:259-77. [PMID: 19359259 DOI: 10.1093/bib/bbp018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The reliable interpretation of Affymetrix GeneChip data is a multi-faceted problem. The interplay between biophysics, bioinformatics and mining of GeneChip surveys is leading to new insights into how best to analyse the data. Many of the molecular processes occurring on the surfaces of GeneChips result from the high surface density of probes. Interactions between neighbouring adjacent probes affect their rate and strength of hybridization to targets. Competing targets may hybridize to the same probe, and targets may partially bind to more than one probe. The formation of these partial hybrids results in a number of probes not reaching thermodynamic equilibrium during hybridization. Moreover, some targets fold up, or cross-hybridize to other targets. Furthermore, probes may fold and can undergo chemical saturation. There are also sequence-dependent differences in the rates of target desorption during the washing stage. Improvements in the mappings between probe sequence and biological databases are leading to more accurate gene expression profiles. Moreover, algorithms that combine the intensities of multiple probes into single measures of expression are increasingly dependent upon models of the hybridization processes occurring on GeneChips. The large repositories of GeneChip data can be searched for systematic effects across many experiments. This data mining has led to the discovery of a family of thousands of probes, which show correlated expression across thousands of GeneChip experiments. These probes contain runs of guanines, suggesting that G-quadruplexes are able to form on GeneChips. We discuss the impact of these structures on the interpretation of data from GeneChip experiments.
Collapse
Affiliation(s)
- William B Langdon
- Department of Mathematical Sciences and Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | | | | |
Collapse
|
31
|
Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res 2009; 37:1713-25. [PMID: 19190094 PMCID: PMC2665218 DOI: 10.1093/nar/gkp026] [Citation(s) in RCA: 1341] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Here we review studies that provided important information about conformational properties of DNA using circular dichroic (CD) spectroscopy. The conformational properties include the B-family of structures, A-form, Z-form, guanine quadruplexes, cytosine quadruplexes, triplexes and other less characterized structures. CD spectroscopy is extremely sensitive and relatively inexpensive. This fast and simple method can be used at low- as well as high-DNA concentrations and with short- as well as long-DNA molecules. The samples can easily be titrated with various agents to cause conformational isomerizations of DNA. The course of detected CD spectral changes makes possible to distinguish between gradual changes within a single DNA conformation and cooperative isomerizations between discrete structural states. It enables measuring kinetics of the appearance of particular conformers and determination of their thermodynamic parameters. In careful hands, CD spectroscopy is a valuable tool for mapping conformational properties of particular DNA molecules. Due to its numerous advantages, CD spectroscopy significantly participated in all basic conformational findings on DNA.
Collapse
Affiliation(s)
- Jaroslav Kypr
- Institute of Biophysics, vvi Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | |
Collapse
|
32
|
Upton GJ, Langdon WB, Harrison AP. G-spots cause incorrect expression measurement in Affymetrix microarrays. BMC Genomics 2008; 9:613. [PMID: 19094220 PMCID: PMC2628396 DOI: 10.1186/1471-2164-9-613] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 12/18/2008] [Indexed: 02/05/2023] Open
Abstract
Background High Density Oligonucleotide arrays (HDONAs), such as the Affymetrix HG-U133A GeneChip, use sets of probes chosen to match specified genes, with the expectation that if a particular gene is highly expressed then all the probes in that gene's probe set will provide a consistent message signifying the gene's presence. However, probes that contain a G-spot (a sequence of four or more guanines) behave abnormally and it has been suggested that these probes are responding to some biochemical effect such as the formation of G-quadruplexes. Results We have tested this expectation by examining the correlation coefficients between pairs of probes using the data on thousands of arrays that are available in the NCBI Gene Expression Omnibus (GEO) repository. We confirm the finding that G-spot probes are poorly correlated with others in their probesets and reveal that, by contrast, they are highly correlated with one another. We demonstrate that the correlation is most marked when the G-spot is at the 5' end of the probe. Conclusion Since these G-spot probes generally show little correlation with the other members of their probesets they are not fit for purpose and their values should be excluded when calculating gene expression values. This has serious implications, since more than 40% of the probesets in the HG-U133A GeneChip contain at least one such probe. Future array designs should avoid these untrustworthy probes.
Collapse
Affiliation(s)
- Graham Jg Upton
- Departments of Mathematical and Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO43SQ, UK.
| | | | | |
Collapse
|
33
|
Quadruplex-forming properties of FRAXA (CGG) repeats interrupted by (AGG) triplets. Biochimie 2008; 91:416-22. [PMID: 19028545 DOI: 10.1016/j.biochi.2008.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/31/2008] [Indexed: 11/22/2022]
Abstract
The (CGG) repeats associated with X-chromosome fragility are generally believed to form quadruplexes. This notion has persisted although it had been shown that only very short (CGG)(n) sequences form quadruplexes and that this quadruplex formation occurs in conditions far from physiological. We have now studied, using CD and absorption spectroscopies, quadruplex formation of (CGG)(n) (n=4, 7, 8, or 16) and their analogs interrupted by (AGG) triplets under various solvent conditions. In healthy individuals, (AGG) triplets are interspersed throughout the (CGG) repeat regions and appear to hinder (CGG)(n) motif expansion. Here we show that (CGG) repeats do not form quadruplexes under physiological conditions in aqueous solution but, interestingly, quadruplexes are readily formed in water-ethanol solutions. The presence of (AGG) triplets markedly stabilized quadruplex formation. Quadruplexes may thus hinder rather than support (CGG)(n) motif expansion.
Collapse
|
34
|
Vondrusková J, Kypr J, Kejnovská I, Fialová M, Vorlícková M. Guanine quadruplex formation by RNA/DNA hybrid analogs of Oxytricha telomere G(4)T(4)G(4) fragment. Biopolymers 2008; 89:797-806. [PMID: 18491413 DOI: 10.1002/bip.21015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using circular dichroism spectroscopy, gel electrophoresis, and ultraviolet absorption spectroscopy, we have studied quadruplex folding of RNA/DNA analogs of the Oxytricha telomere fragment, G(4)T(4)G(4), which forms the well-known basket-type, antiparallel quadruplex. We have substituted riboguanines (g) for deoxyriboguanines (G) in the positions G1, G9, G4, and G12; these positions form the terminal tetrads of the G(4)T(4)G(4) quadruplex and adopt syn, syn, anti, and anti glycosidic geometries, respectively. We show that substitution of a single sugar was able to change the quadruplex topology. With the exception of G(4)T(4)G(3)g, which adopted an antiparallel structure, all the RNA/DNA hybrid analogs formed parallel, bimolecular quadruplexes in concentrated solution at low salt. In dilute solutions ( approximately 0.1 mM nucleoside), the RNA/DNA hybrids substituted at positions 4 or 12 adopted antiparallel quadruplexes, which were especially stable in Na(+) solutions. The hybrids substituted at positions 1 and 9 preferably formed parallel quadruplexes, which were more stable than the nonmodified G(4)T(4)G(4) quadruplex in K(+) solutions. Substitutions near the 3'end of the molecule affected folding more than substitutions near the 5'end. The ability to control quadruplex folding will allow further studies of biophysical and biological properties of the various folding topologies.
Collapse
Affiliation(s)
- Jitka Vondrusková
- Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Department of CD Spectroscopy of Nucleic Acids, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Vondrusková J, Kypr J, Kejnovská I, Fialová M, Vorlícková M. Role of loops in the guanine quadruplex formation by DNA/RNA hybrid analogs of G4T4G4. Int J Biol Macromol 2008; 43:463-7. [PMID: 18812187 DOI: 10.1016/j.ijbiomac.2008.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 08/22/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
CD spectroscopy, gel electrophoresis and absorption-based thermal stability were used to analyze quadruplex formation of RNA and RNA/DNA hybrid analogs of the deoxyoligonucleotide G4T4G4, which forms a well-characterized basket-type quadruplex. All RNA-containing dodecamers, g4u4g4, G4u4G4 and g4T4g4 (RNA lower-case, DNA capital letters), formed parallel, namely tetramolecular quadruplexes in Na+-containing solutions. The u4 loop forced DNA tetrads into the same conformation as adopted by g4u4g4. In contrast, the T4 loop destabilized the RNA tetrads. Potassium ions markedly stabilized parallel quadruplexes of RNA-containing analogs as well as their bimolecular folding. In the presence of K+, g4T4g4 formed exclusively bimolecular quadruplexes of both parallel and antiparallel types as indicated by CD. Thus, the T4 loop permits RNA strands to adopt an antiparallel arrangement. These findings may be useful for engineering particular quadruplex foldings in different quadruplex-forming sequences.
Collapse
Affiliation(s)
- Jitka Vondrusková
- Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
36
|
Shim JW, Gu LQ. Encapsulating a single G-quadruplex aptamer in a protein nanocavity. J Phys Chem B 2008; 112:8354-60. [PMID: 18563930 DOI: 10.1021/jp0775911] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-hemolysin (alphaHL) protein pore has many applications in biotechnology. This article describes a single-molecule manipulation system that utilizes the nanocavity enclosed by this pore to noncovalently encapsulate a guest molecule. The guest is the thrombin-binding aptamer (TBA) that folds into the G-quadruplex in the presence of cations. Trapping the G-quadruplex in the nanocavity resulted in characteristic changes to the pore conductance that revealed important molecular processes, including spontaneous unfolding of the quartet structure and translocation of unfolded DNA in the pore. Through detection with Tag-TBA, we localized the G-quadruplex near the entry of the beta-barrel inside the nanocavity, where the molecule vibrates and rotates to different orientations. This guest-nanocavity supramolecular system has potential for helping to understand single-molecule folding and unfolding kinetics.
Collapse
Affiliation(s)
- Ji Wook Shim
- Department of Biological Engineering and Dalton Cardiovascular Research Center University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
37
|
Vorlícková M, Bednárová K, Kejnovská I, Kypr J. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions. Biopolymers 2007; 86:1-10. [PMID: 17211886 DOI: 10.1002/bip.20672] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA guanine quadruplexes are all based on stacks of guanine tetrads, but they can be of many types differing by mutual strand orientation, topology, position and structure of loops, and the number of DNA molecules constituting their structure. Here we have studied a series of nine DNA fragments (G(3)Xn)(3)G(3), where X = A, C or T, and n = 1, 2 or 3, to find how the particular bases and their numbers enable folding of the molecule into quadruplex and what type of quadruplex is formed. We show that any single base between G(3) blocks gives rise to only four-molecular parallel-stranded quadruplexes in water solutions. In contrast to previous models, even two Ts in potential loops lead to tetramolecular parallel quadruplexes and only three consecutive Ts lead to an intramolecular quadruplex, which is antiparallel. Adenines make the DNA less prone to quadruplex formation. (G(3)A(2))(3)G(3) folds into an intramolecular antiparallel quadruplex. The same is true with (G(3)A(3))(3)G(3) but only in KCl. In NaCl or LiCl, (G(3)A(3))(3)G(3) prefers to generate homoduplexes. Cytosine still more interferes with the quadruplex, which only is generated by (G(3)C)(3)G(3), whereas (G(3)C(2))(3)G(3) and (G(3)C(3))(3)G(3) generate hairpins and/or homoduplexes. Ethanol is a more potent DNA guanine quadruplex inducer than are ions in water solutions. It promotes intramolecular folding and parallel orientation of quadruplex strands, which rather corresponds to quadruplex structures observed in crystals.
Collapse
Affiliation(s)
- Michaela Vorlícková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Abstract
Stabilization of nucleic acid structures results from a balance of multiple interactions, including electrostatics, base stacking, hydrophobic interactions, hydrogen bonding, van der Waals forces, etc. Nucleic acid quadruplexes are unusual structures in that their formation is driven by specific binding of metal ions. This unique mode of metal binding, which is tightly coupled to oligonucleotide folding, can engender correspondingly unique solution behavior. In particular, we show that addition of many cosolvents, such as primary aliphatic alcohols, increases the thermal stability of quadruplexes, as determined by melting temperature, Tm, in direct contrast to the response of duplexes to the same admixture of solvents. Thermal stability is observed to increase as the dielectric constant of the composite solvent decreases. This behavior suggests a dominant role for electrostatics in quadruplex formation and stability. Additional studies done with other cosolvents and solutes suggest that, in some cases, other forces may come into play, including the possibility of direct interaction with the quadruplex structure. Nonetheless, many cosolvents and small molecules, such as ethanol, dimethylformamide, and betaine, stabilize the quadruplex conformation in sharp distinction to their destabilization of DNA duplexes.
Collapse
Affiliation(s)
- Ivan V Smirnov
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA
| | | |
Collapse
|
39
|
Mikelova R, Trnkova L, Jelen F, Adam V, Kizek R. Resolution of Overlapped Reduction Signals in Short Hetero-oligonucleotides by Elimination Voltammetry. ELECTROANAL 2007. [DOI: 10.1002/elan.200603739] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Nagatoishi S, Tanaka Y, Tsumoto K. Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions. Biochem Biophys Res Commun 2006; 352:812-7. [PMID: 17150180 DOI: 10.1016/j.bbrc.2006.11.088] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 11/17/2006] [Indexed: 11/20/2022]
Abstract
It is noteworthy that the formation of the DNA G-quadruplex is induced by factors other than stabilizing cations because this event probably occurs in living cells. Previous studies have shown that thrombin-binding DNA aptamer (TBA) forms a chair-type intramolecular G-quadruplex structure that binds with thrombin protein in the absence of stabilizing cations. Here, we used circular dichroism (CD) spectroscopy to confirm G-quadruplex formation in the presence of thrombin without stabilizing cations. We obtained characteristic CD spectra that demonstrated that TBA forms the distinctive G-quadruplex structure. Additionally, we investigated G-quadruplex formation induced by change of solvent environment: the influence of low-temperature conditions and molecular crowding.
Collapse
Affiliation(s)
- Satoru Nagatoishi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | | | | |
Collapse
|