1
|
Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-actin. Part II: mixed isoforms. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01463-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
2
|
Njabon EN, Patouossa I, Carlson KL, Lowe SL, Forlemu NY, Thomasson KA. Brownian dynamics simulations of the interactions between lactate dehydrogenase (LDH) and G- or F-Actin. Part I: Muscle and heart homo-isoforms. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
3
|
Li Y, Yu C, Li J, Zhang L, Gao F, Zhou G. Effects of dietary energy sources on early postmortem muscle metabolism of finishing pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1764-1772. [PMID: 28728385 PMCID: PMC5666181 DOI: 10.5713/ajas.17.0090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 04/26/2017] [Accepted: 05/22/2017] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study investigated the effects of different dietary energy sources on early postmortem muscle metabolism of finishing pigs. METHODS Seventy-two barrow (Duroc×Landrace×Yorkshire, DLY) pigs (65.0±2.0 kg) were allotted to three iso-energetic and iso-nitrogenous diets: A (44.1% starch, 5.9% crude fat, and 12.6% neutral detergent fibre [NDF]), B (37.6% starch, 9.5% crude fat, and 15.4% NDF) or C (30.9% starch, 14.3% crude fat, and 17.8% NDF). After the duration of 28-day feeding experiment, 24 pigs (eight per treatment) were slaughtered and the M. longissimus lumborum (LL) samples at 45 min postmortem were collected. RESULTS Compared with diet A, diet C resulted in greater adenosine triphosphate and decreased phosphocreatine (PCr) concentrations, greater activity of creatine kinase and reduced percentage bound activities of hexokinase (HK), and pyruvate kinase (PK) in LL muscles (p<0.05). Moreover, diet C decreased the phosphor-AKT level and increased the hydroxy-hypoxia-inducible factor-1α (HIF-1α) level, as well as decreased the bound protein expressions of HK II, PKM2, and lactate dehydrogenase A (p<0.05). CONCLUSION Diet C with the lowest level of starch and the highest levels of fat and NDF could enhance the PCr utilization and attenuate glycolysis early postmortem in LL muscle of finishing pigs.
Collapse
Affiliation(s)
- Yanjiao Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
- College of Animal Science and Technology, Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Changning Yu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Garagounis C, Kostaki KI, Hawkins TJ, Cummins I, Fricker MD, Hussey PJ, Hetherington AM, Sweetlove LJ. Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:885-898. [PMID: 28338736 DOI: 10.1093/jxb/erx015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Kalliopi-Ioanna Kostaki
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Tim J Hawkins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Ian Cummins
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Patrick J Hussey
- School of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
5
|
Wang X, Lin H, Cao L, Zheng H, Cui M, Du S, Sui J. Isolation, characterization, and identification of proteins interfering with enzyme-linked immunosorbent assay of antibiotics in fish matrix. Food Sci Biotechnol 2016; 25:1265-1273. [PMID: 30263404 PMCID: PMC6049289 DOI: 10.1007/s10068-016-0200-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/04/2016] [Accepted: 07/17/2016] [Indexed: 11/28/2022] Open
Abstract
The interaction between some proteins and immune globulin has been confirmed as an important source of matrix interference with the immunoassay of fishery products, but detailed biochemical properties of these proteins have not been indicated. Two interference-inducing proteins (42 and 36 kD) in flounder were isolated, characterized, and identified. Their influences on the immunoassay of norfloxacin were confirmed by western blotting and enzyme-linked immunosorbent assay. The pI value and pH stability of the two proteins were also investigated. Using LC-MS/MS, the two proteins were identified as fructose-bisphosphate aldolase, and such results were partly verified by the aldolase activity of the 42 and 36 kD isolates. Considering the prevalence of these proteins (as multi-functional aldolase of muscles) in foods, these results would help to further understand the matrix effects in various immunoassays as well as the development of effective techniques to improve the efficiency of immunoassays.
Collapse
Affiliation(s)
- Xiudan Wang
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hong Lin
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| | - Limin Cao
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| | - Hongwei Zheng
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| | - Mengqi Cui
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| | - Shuyuan Du
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| | - Jianxin Sui
- Food Safety Laboratory, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
6
|
Diaz SA, Martin SR, Grainger M, Howell SA, Green JL, Holder AA. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization. Mol Biochem Parasitol 2014; 197:9-14. [PMID: 25261592 PMCID: PMC4251702 DOI: 10.1016/j.molbiopara.2014.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/17/2014] [Indexed: 11/08/2022]
Abstract
The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase.
Collapse
Affiliation(s)
- Suraya A Diaz
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Stephen R Martin
- Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Munira Grainger
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Steven A Howell
- Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Judith L Green
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Anthony A Holder
- Divisions of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| |
Collapse
|
7
|
The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? BIOLOGY 2014; 3:623-44. [PMID: 25247275 PMCID: PMC4192631 DOI: 10.3390/biology3030623] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/05/2014] [Accepted: 09/08/2014] [Indexed: 12/22/2022]
Abstract
Metabolism sustains life through enzyme-catalyzed chemical reactions within the cells of all organisms. The coupling of catalytic function to the structural organization of enzymes contributes to the kinetic optimization important to tissue-specific and whole-body function. This coupling is of paramount importance in the role that muscle plays in the success of Animalia. The structure and function of glycolytic enzyme complexes in anaerobic metabolism have long been regarded as a major regulatory element necessary for muscle activity and whole-body homeostasis. While the details of this complex remain to be elucidated through in vivo studies, this review will touch on recent studies that suggest the existence of such a complex and its structure. A potential model for glycolytic complexes and related subcomplexes is introduced.
Collapse
|
8
|
Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Proteins 2011; 79:2813-27. [PMID: 21905108 DOI: 10.1002/prot.23107] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/20/2011] [Accepted: 05/27/2011] [Indexed: 11/09/2022]
Abstract
The association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI). The BD simulations are steered by electrostatics calculated by Poisson-Boltzmann theory. The BD results confirm experimental observations that the degree of association diminishes as ionic strength increases but also suggest that these interactions are significant, at physiological ionic strengths. Furthermore, BD agrees with experiments that muscle LDH, aldolase, and GAPDH interact significantly with F-actin whereas TPI does not. BD indicates similarities in binding regions for aldolase and LDH among the different species investigated. Furthermore, the residues responsible for salt bridge formation in stable complexes persist as ionic strength increases. This suggests the importance of the residues determined for these binary complexes and specificity of the interactions. That these interactions are conserved across species, and there appears to be a general trend among the enzymes, support the importance of these enzyme-F-actin interactions in creating initial complexes critical for compartmentation.
Collapse
Affiliation(s)
- Neville Y Forlemu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|
9
|
Finkemeier I, Laxa M, Miguet L, Howden AJM, Sweetlove LJ. Proteins of diverse function and subcellular location are lysine acetylated in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1779-90. [PMID: 21311031 PMCID: PMC3091095 DOI: 10.1104/pp.110.171595] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/04/2011] [Indexed: 05/20/2023]
Abstract
Acetylation of the ε-amino group of lysine (Lys) is a reversible posttranslational modification recently discovered to be widespread, occurring on proteins outside the nucleus, in most subcellular locations in mammalian cells. Almost nothing is known about this modification in plants beyond the well-studied acetylation of histone proteins in the nucleus. Here, we report that Lys acetylation in plants also occurs on organellar and cytosolic proteins. We identified 91 Lys-acetylated sites on 74 proteins of diverse functional classes. Furthermore, our study suggests that Lys acetylation may be an important posttranslational modification in the chloroplast, since four Calvin cycle enzymes were acetylated. The plastid-encoded large subunit of Rubisco stands out because of the large number of acetylated sites occurring at important Lys residues that are involved in Rubisco tertiary structure formation and catalytic function. Using the human recombinant deacetylase sirtuin 3, it was demonstrated that Lys deacetylation significantly affects Rubisco activity as well as the activities of other central metabolic enzymes, such as the Calvin cycle enzyme phosphoglycerate kinase, the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase, and the tricarboxylic acid cycle enzyme malate dehydrogenase. Our results demonstrate that Lys acetylation also occurs on proteins outside the nucleus in Arabidopsis (Arabidopsis thaliana) and that Lys acetylation could be important in the regulation of key metabolic enzymes.
Collapse
|
10
|
Kundrotas PJ, Vakser IA. Accuracy of protein-protein binding sites in high-throughput template-based modeling. PLoS Comput Biol 2010; 6:e1000727. [PMID: 20369011 PMCID: PMC2848539 DOI: 10.1371/journal.pcbi.1000727] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 03/01/2010] [Indexed: 11/18/2022] Open
Abstract
The accuracy of protein structures, particularly their binding sites, is essential for the success of modeling protein complexes. Computationally inexpensive methodology is required for genome-wide modeling of such structures. For systematic evaluation of potential accuracy in high-throughput modeling of binding sites, a statistical analysis of target-template sequence alignments was performed for a representative set of protein complexes. For most of the complexes, alignments containing all residues of the interface were found. The full interface alignments were obtained even in the case of poor alignments where a relatively small part of the target sequence (as low as 40%) aligned to the template sequence, with a low overall alignment identity (<30%). Although such poor overall alignments might be considered inadequate for modeling of whole proteins, the alignment of the interfaces was strong enough for docking. In the set of homology models built on these alignments, one third of those ranked 1 by a simple sequence identity criteria had RMSD<5 Å, the accuracy suitable for low-resolution template free docking. Such models corresponded to multi-domain target proteins, whereas for single-domain proteins the best models had 5 Å<RMSD<10 Å, the accuracy suitable for less sensitive structure-alignment methods. Overall, ∼50% of complexes with the interfaces modeled by high-throughput techniques had accuracy suitable for meaningful docking experiments. This percentage will grow with the increasing availability of co-crystallized protein-protein complexes. Protein-protein interactions play a central role in life processes at the molecular level. The structural information on these interactions is essential for our understanding of these processes and our ability to design drugs to cure diseases. Limitations of experimental techniques to determine the structure of protein-protein complexes leave the vast majority of these complexes to be determined by computational modeling. The modeling is also important for revealing the mechanisms of the complex formation. The 3D modeling of protein complexes (protein docking) relies on the structure of the individual proteins for the prediction of their assembly. Thus the structural accuracy of the individual proteins, which often are models themselves, is critical for the docking. For the docking purposes, the accuracy of the binding sites is obviously essential, whereas the accuracy of the non-binding regions is less critical. In our study, we systematically analyze the accuracy of the binding sites in protein models produced by high-throughput techniques suitable for large-scale (e.g., genome-wide) studies. The results indicate that this accuracy is adequate for the low- to medium-resolution docking of a significant part of known protein-protein complexes.
Collapse
Affiliation(s)
- Petras J. Kundrotas
- Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, United States of America
| | - Ilya A. Vakser
- Center for Bioinformatics and Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, United States of America
- * E-mail: .
| |
Collapse
|
11
|
Hakobyan D, Nazaryan K. Molecular dynamics study of interaction and substrate channeling between neuron-specific enolase and B-type phosphoglycerate mutase. Proteins 2010; 78:1691-704. [DOI: 10.1002/prot.22686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Etheridge N, Lewohl JM, Mayfield RD, Harris RA, Dodd PR. Synaptic proteome changes in the superior frontal gyrus and occipital cortex of the alcoholic brain. Proteomics Clin Appl 2009; 3:730-742. [PMID: 19924264 DOI: 10.1002/prca.200800202] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cognitive deficits and behavioral changes that result from chronic alcohol abuse are a consequence of neuropathological changes which alter signal transmission through the neural network. To focus on the changes that occur at the point of connection between the neural network cells, synaptosomal preparations from post-mortem human brain of six chronic alcoholics and six non-alcoholic controls were compared using 2D-DIGE. Functionally affected and spared regions (superior frontal gyrus, SFG, and occipital cortex, OC, respectively) were analyzed from both groups to further investigate the specific pathological response that alcoholism has on the brain. Forty-nine proteins were differentially regulated between the SFG of alcoholics and the SFG of controls and 94 proteins were regulated in the OC with an overlap of 23 proteins. Additionally, the SFG was compared to the OC within each group (alcoholics or controls) to identify region specific differences. A selection were identified by MALDI-TOF mass spectrometry revealing proteins involved in vesicle transport, metabolism, folding and trafficking, and signal transduction, all of which have the potential to influence synaptic activity. A number of proteins identified in this study have been previously related to alcoholism; however, the focus on synaptic proteins has also uncovered novel alcoholism-affected proteins. Further exploration of these proteins will illuminate the mechanisms altering synaptic plasticity, and thus neuronal signaling and response, in the alcoholic brain.
Collapse
Affiliation(s)
- Naomi Etheridge
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | | | | | | |
Collapse
|
13
|
Checińska A, Giaccone G, Rodriguez JA, Kruyt FAE, Jimenez CR. Comparative proteomics analysis of caspase-9-protein complexes in untreated and cytochrome c/dATP stimulated lysates of NSCLC cells. J Proteomics 2008; 72:575-85. [PMID: 19118655 DOI: 10.1016/j.jprot.2008.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 10/29/2008] [Accepted: 11/23/2008] [Indexed: 01/01/2023]
Abstract
Apoptosis is a process of cellular suicide executed by caspases. Impaired activation of caspase-9 may contribute to chemoresistance in cancer. Activation of caspase-9 occurs after binding to Apaf-1 and formation of the apoptosome in the presence of cytochrome c/(d)ATP. We used a proteomics approach to identify proteins in caspase-9-protein complexes in extracts derived from NSCLC cells with(out) cytochrome c/dATP. Using co-immunoprecipitation, one-dimensional gel electrophoresis and tandem mass spectrometry, 38 proteins were identified of which 24 differential interactors. The differential interactors can be functionally assigned to cytoskeletal (re)organization and cell motility, catalytic activity, and transcriptional processes and apoptosis. The interaction of caspase-9 with Apaf-1 was confirmed and acetylserotonin-O-methyltransferase-like protein was identified as a candidate substrate of caspase-9. Novel interactors were found including galectin-3, swiprosin-1 and the membrane-cytoskeleton linkers Ezrin/Radixin/Moesin. Co-immunoprecipitation and Western blot experiments confirmed the interaction of caspase-9 with several identified binding partners. A large number of cytoskeletal proteins associated with unprocessed caspase-9 may indicate a scaffold function of this structure and/or may act as caspase substrates during apoptosis. Together, our results indicate that proteomic analysis of the caspase-9-associated protein complexes is a powerful exploratory approach to identify novel caspase substrates and/or regulators of caspase-9-dependent apoptosis.
Collapse
Affiliation(s)
- Agnieszka Checińska
- Department of Medical Oncology, VUMC-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Zhou HX, Qin S, Tjong H. Modeling Protein–Protein and Protein–Nucleic Acid Interactions: Structure, Thermodynamics, and Kinetics. ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY 2008. [DOI: 10.1016/s1574-1400(08)00004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|