1
|
Wardell SJ, Yung DB, Nielsen JE, Lamichhane R, Sørensen K, Molchanova N, Herlan C, Lin JS, Bräse S, Wise LM, Barron AE, Pletzer D. A biofilm-targeting lipo-peptoid to treat Pseudomonas aeruginosa and Staphylococcus aureus co-infections. Biofilm 2025; 9:100272. [PMID: 40248507 PMCID: PMC12005307 DOI: 10.1016/j.bioflm.2025.100272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025] Open
Abstract
Antibiotic-resistant bacterial infections are a significant clinical challenge, especially when involving multiple species. Antimicrobial peptides and their synthetic analogues, peptoids, which target bacterial cell membranes as well as intracellular components, offer potential solutions. We evaluated the biological activities of novel peptoids TM11-TM20, which include an additional charged NLys residue, against multidrug-resistant Pseudomonas aeruginosa and Staphylococcus aureus, both in vitro and in vivo. Building on insights from previously reported compounds TM1-TM10, the lipo-peptoid TM18, which forms self-assembled ellipsoidal micelles, demonstrated potent antimicrobial, anti-biofilm, and anti-abscess activity. Transcriptome sequencing (RNA-seq) revealed that TM18 disrupted gene expression pathways linked to antibiotic resistance and tolerance, and biofilm formation in both pathogens. Under dual-species conditions, TM18 induced overlapping but attenuated transcriptional changes, suggesting a priming effect that enhances bacterial tolerance. In a murine skin infection model, TM18 significantly reduced dermonecrosis and bacterial burden in mono-species infections. When combined with the antibiotic meropenem, they synergistically nearly cleared co-infections. Our findings highlight that TM18 has potential as a novel therapeutic for combating antibiotic-resistant pathogens and associated biofilm-driven tolerance.
Collapse
Affiliation(s)
- Samuel J.T. Wardell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Deborah B.Y. Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Josefine E. Nielsen
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Rajesh Lamichhane
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| | - Kristian Sørensen
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Claudine Herlan
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Jennifer S. Lin
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Stefan Bräse
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Germany
| | - Lyn M. Wise
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Annelise E. Barron
- Department of Bioengineering, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | - Daniel Pletzer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, 1042, New Zealand
| |
Collapse
|
2
|
Zhao W, Lin JS, Nielsen JE, Sørensen K, Wadurkar AS, Ji J, Barron AE, Nangia S, Libera MR. Supramolecular Peptoid Structure Strengthens Complexation with Polyacrylic Acid Microgels. Biomacromolecules 2024; 25:1274-1281. [PMID: 38240722 PMCID: PMC11046531 DOI: 10.1021/acs.biomac.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
We have studied the complexation between cationic antimicrobials and polyanionic microgels to create self-defensive surfaces that responsively resist bacterial colonization. An essential property is the stable sequestration of the loaded (complexed) antimicrobial within the microgel under a physiological ionic strength. Here, we assess the complexation strength between poly(acrylic acid) [PAA] microgels and a series of cationic peptoids that display supramolecular structures ranging from an oligomeric monomer to a tetramer. We follow changes in loaded microgel diameter with increasing [Na+] as a measure of the counterion doping level. Consistent with prior findings on colistin/PAA complexation, we find that a monomeric peptoid is fully released at ionic strengths well below physiological conditions, despite its +5 charge. In contrast, progressively higher degrees of peptoid supramolecular structure display progressively greater resistance to salting out, which we attribute to the greater entropic stability associated with the complexation of multimeric peptoid bundles.
Collapse
Affiliation(s)
- Wenhan Zhao
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jennifer S Lin
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
- Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Kristian Sørensen
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Anand Sunil Wadurkar
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jingjing Ji
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine & School of Engineering, Stanford University, Stanford, California 94305, United States
| | - Shikha Nangia
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Matthew R Libera
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
3
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
4
|
Nielsen JE, Alford MA, Yung DBY, Molchanova N, Fortkort JA, Lin JS, Diamond G, Hancock REW, Jenssen H, Pletzer D, Lund R, Barron AE. Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on ESKAPE Bacterial Pathogens. ACS Infect Dis 2022; 8:533-545. [PMID: 35175731 DOI: 10.1021/acsinfecdis.1c00536] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antimicrobial peptides (AMPs) are promising pharmaceutical candidates for the prevention and treatment of infections caused by multidrug-resistant ESKAPE pathogens, which are responsible for the majority of hospital-acquired infections. Clinical translation of AMPs has been limited, in part by apparent toxicity on systemic dosing and by instability arising from susceptibility to proteolysis. Peptoids (sequence-specific oligo-N-substituted glycines) resist proteolytic digestion and thus are of value as AMP mimics. Only a few natural AMPs such as LL-37 and polymyxin self-assemble in solution; whether antimicrobial peptoids mimic these properties has been unknown. Here, we examine the antibacterial efficacy and dynamic self-assembly in aqueous media of eight peptoid mimics of cationic AMPs designed to self-assemble and two nonassembling controls. These amphipathic peptoids self-assembled in different ways, as determined by small-angle X-ray scattering; some adopt helical bundles, while others form core-shell ellipsoidal or worm-like micelles. Interestingly, many of these peptoid assemblies show promising antibacterial, antibiofilm activity in vitro in media, under host-mimicking conditions and antiabscess activity in vivo. While self-assembly correlated overall with antibacterial efficacy, this correlation was imperfect. Certain self-assembled morphologies seem better-suited for antibacterial activity. In particular, a peptoid exhibiting a high fraction of long, worm-like micelles showed reduced antibacterial, antibiofilm, and antiabscess activity against ESKAPE pathogens compared with peptoids that form ellipsoidal or bundled assemblies. This is the first report of self-assembling peptoid antibacterials with activity against in vivo biofilm-like infections relevant to clinical medicine.
Collapse
Affiliation(s)
- Josefine Eilsø Nielsen
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Morgan Ashley Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Deborah Bow Yue Yung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Natalia Molchanova
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John A. Fortkort
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Jennifer S. Lin
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gill Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville, School of Dentistry, Louisville, Kentucky 40202, United States
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Håvard Jenssen
- Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Reidar Lund
- Department of Chemistry, University of Oslo, Oslo 0315, Norway
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli A, Kadian N, Sanyal S, Roy A, Dodd‐o J, Acevedo‐Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. ADVANCED THERAPEUTICS 2021; 4:2100104. [PMID: 34514085 PMCID: PMC8420164 DOI: 10.1002/adtp.202100104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 (coronavirus disease) global pandemic, caused by the spread of the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus, currently has limited treatment options which include vaccines, anti-virals, and repurposed therapeutics. With their high specificity, tunability, and biocompatibility, small molecules like peptides are positioned to act as key players in combating SARS-CoV-2, and can be readily modified to match viral mutation rate. A recent expansion of the understanding of the viral structure and entry mechanisms has led to the proliferation of therapeutic viral entry inhibitors. In this comprehensive review, inhibitors of SARS and SARS-CoV-2 are investigated and discussed based on therapeutic design, inhibitory mechanistic approaches, and common targets. Peptide therapeutics are highlighted, which have demonstrated in vitro or in vivo efficacy, discuss advantages of peptide therapeutics, and common strategies in identifying targets for viral inhibition.
Collapse
Affiliation(s)
- Disha Panchal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Jeena Kataria
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kamiya Patel
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Kaytlyn Crowe
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Varun Pai
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abdul‐Rahman Azizogli
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Neil Kadian
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Sreya Sanyal
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Abhishek Roy
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | - Joseph Dodd‐o
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| | | | - Vivek A. Kumar
- Department of Biomedical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
- Department of Biomedical EngineeringDepartment of ChemicalBiological and Pharmaceutical EngineeringNew Jersey Institute of TechnologyNewarkNJ07102USA
| |
Collapse
|
6
|
Gunasekera S, Muhammad T, Strömstedt AA, Rosengren KJ, Göransson U. Backbone Cyclization and Dimerization of LL-37-Derived Peptides Enhance Antimicrobial Activity and Proteolytic Stability. Front Microbiol 2020; 11:168. [PMID: 32153522 PMCID: PMC7046553 DOI: 10.3389/fmicb.2020.00168] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Can antimicrobial activity and peptide stability of alpha-helical peptides be increased by making them into dimers and macrocycles? Here, we explore that concept by using KR-12 as the starting point for peptide engineering. KR-12 has previously been determined as the minimalized antimicrobial fragment of the human host defense peptide LL-37. Backbone-cyclized KR-12 dimers, tethered by linkers of two to four amino acid residues, were synthesized and their antimicrobial activity, proteolytic stability and structures characterized. A modified KR-12 sequence, with substitutions at previously identified key residues, were also included in the screening panel. The backbone cyclized KR-12 dimers showed improved antimicrobial activity and increased stability compared to monomeric KR-12. The most active cyclic dimer displayed 16-fold higher antibacterial activity compared to KR-12 against Pseudomonas aeruginosa and Staphylococcus aureus, and 8-fold increased fungicidal activity against Candida albicans. It also showed increased hemolytic and cytotoxic activity. Enhanced antimicrobial activity coincided with increased membrane permeabilization of liposomes with one distinct discrepancy: monomeric KR-12 was much less disruptive of liposomes with bacterial lipid composition compared to liposomes from fungal lipid extract. Circular dichroism showed that the four-residue linked most active cyclic dimer had 65% helical content when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new macrocyclic form. In conclusion, the current work on KR-12 suggests that dimerization together with backbone cyclization is an effective strategy for improving both potency and stability of linear antimicrobial peptides.
Collapse
Affiliation(s)
- Sunithi Gunasekera
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Taj Muhammad
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Adam A Strömstedt
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - K Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Gangloff N, Ulbricht J, Lorson T, Schlaad H, Luxenhofer R. Peptoids and Polypeptoids at the Frontier of Supra- and Macromolecular Engineering. Chem Rev 2015; 116:1753-802. [DOI: 10.1021/acs.chemrev.5b00201] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Niklas Gangloff
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Juliane Ulbricht
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Thomas Lorson
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Robert Luxenhofer
- Functional Polymer
Materials, Chair for Chemical Technology of Materials Synthesis, University of Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
8
|
Library construction, selection and modification strategies to generate therapeutic peptide-based modulators of protein-protein interactions. Future Med Chem 2015; 6:2073-92. [PMID: 25531969 DOI: 10.4155/fmc.14.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the modern age of proteomics, vast numbers of protein-protein interactions (PPIs) are being identified as causative agents in pathogenesis, and are thus attractive therapeutic targets for intervention. Although traditionally regarded unfavorably as druggable agents relative to small molecules, peptides in recent years have gained considerable attention. Their previous dismissal had been largely due to the susceptibility of unmodified peptides to the barriers and pressures exerted by the circulation, immune system, proteases, membranes and other stresses. However, recent advances in high-throughput peptide isolation techniques, as well as a huge variety of direct modification options and approaches to allow targeted delivery, mean that peptides and their mimetics can now be designed to circumvent many of these traditional barriers. As a result, an increasing number of peptide-based drugs are reaching clinical trials and patients beyond.
Collapse
|
9
|
Levine PM, Craven TW, Bonneau R, Kirshenbaum K. Semisynthesis of Peptoid–Protein Hybrids by Chemical Ligation at Serine. Org Lett 2014; 16:512-5. [DOI: 10.1021/ol4033978] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Richard Bonneau
- Courant
Institute of Mathematical Sciences, Department of Computer Science, New York University, New York, New York 10012, United States
| | | |
Collapse
|
10
|
Polypeptoids by Living Ring-Opening Polymerization of N-Substituted N-Carboxyanhydrides from Solid Supports. Macromol Rapid Commun 2013; 34:997-1001. [DOI: 10.1002/marc.201300269] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/03/2013] [Indexed: 12/21/2022]
|
11
|
Luxenhofer R, Fetsch C, Grossmann A. Polypeptoids: A perfect match for molecular definition and macromolecular engineering? ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26687] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Robert Luxenhofer
- Functional Polymer Materials; Chair of Chemical Technology of Materials Synthesis; Department of Chemistry and Pharmacy, Julius-Maximilian, University of Würzburg; 97070 Würzburg Germany
| | - Corinna Fetsch
- Functional Polymer Materials; Chair of Chemical Technology of Materials Synthesis; Department of Chemistry and Pharmacy, Julius-Maximilian, University of Würzburg; 97070 Würzburg Germany
| | - Arlett Grossmann
- Professur für Makromolekulare Chemie; Department Chemie; Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
12
|
Sun J, Stone GM, Balsara NP, Zuckermann RN. Structure–Conductivity Relationship for Peptoid-Based PEO–Mimetic Polymer Electrolytes. Macromolecules 2012. [DOI: 10.1021/ma300775b] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Sun
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Gregory M. Stone
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| | - Nitash P. Balsara
- Department
of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
- Environmental
Energy Technologies
Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ronald N. Zuckermann
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
94720, United States
| |
Collapse
|