1
|
Nedeljković M, Postel S, Pierce BG, Sundberg EJ. Molecular Determinants of Filament Capping Proteins Required for the Formation of Functional Flagella in Gram-Negative Bacteria. Biomolecules 2021; 11:biom11101397. [PMID: 34680030 PMCID: PMC8533109 DOI: 10.3390/biom11101397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022] Open
Abstract
Bacterial flagella are cell surface protein appendages that are critical for motility and pathogenesis. Flagellar filaments are tubular structures constructed from thousands of copies of the protein flagellin, or FliC, arranged in helical fashion. Individual unfolded FliC subunits traverse the filament pore and are folded and sorted into place with the assistance of the flagellar capping protein complex, an oligomer of the FliD protein. The FliD filament cap is a stool-like structure, with its D2 and D3 domains forming a flat head region, and its D1 domain leg-like structures extending perpendicularly from the head towards the inner core of the filament. Here, using an approach combining bacterial genetics, motility assays, electron microscopy and molecular modeling, we define, in numerous Gram-negative bacteria, which regions of FliD are critical for interaction with FliC subunits and result in the formation of functional flagella. Our data indicate that the D1 domain of FliD is its sole functionally important domain, and that its flexible coiled coil region comprised of helices at its extreme N- and C-termini controls compatibility with the FliC filament. FliD sequences from different bacterial species in the head region are well tolerated. Additionally, head domains can be replaced by small peptides and larger head domains from different species and still produce functional flagella.
Collapse
Affiliation(s)
- Marko Nedeljković
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Sandra Postel
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA;
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric J. Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Correspondence:
| |
Collapse
|
2
|
Role of DegQ in differential stability of flagellin subunits in Vibrio vulnificus. NPJ Biofilms Microbiomes 2021; 7:32. [PMID: 33833236 PMCID: PMC8032703 DOI: 10.1038/s41522-021-00206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/12/2021] [Indexed: 12/29/2022] Open
Abstract
Biofilm formation of Vibrio vulnificus is initiated by adherence of flagellated cells to surfaces, and then flagellum-driven motility is not necessary during biofilm maturation. Once matured biofilms are constructed, cells become flagellated and swim to disperse from biofilms. As a consequence, timely regulations of the flagellar components’ expression are crucial to complete a biofilm life-cycle. In this study, we demonstrated that flagellins’ production is regulated in a biofilm stage-specific manner, via activities of a protease DegQ and a chaperone FlaJ. Among four flagellin subunits for V. vulnificus filament, FlaC had the highest affinities to hook-associated proteins, and is critical for maturating flagellum, showed the least susceptibility to DegQ due to the presence of methionine residues in its DegQ-sensitive domains, ND1 and CD0. Therefore, differential regulation by DegQ and FlaJ controls the cytoplasmic stability of flagellins, which further determines the motility-dependent, stage-specific development of biofilms.
Collapse
|
3
|
Gao Q, Yi S, Luo J, Xing Q, Lv J, Wang P, Wang C, Li Y. Construction of a Vibrio anguillarum flagellin B mutant and analysis of its immuno-stimulation effects on Macrobrachium rosenbergii. Int J Biol Macromol 2021; 174:457-465. [PMID: 33493561 DOI: 10.1016/j.ijbiomac.2021.01.146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/16/2023]
Abstract
Vibrio anguillarum is a globally distributed aquatic pathogen, and its flagellin B (FlaB) protein can evoke innate immune responses in hosts. In order to explore the role of FlaB in V. anguillarum infection, we constructed a FlaB-deficient mutant using overlapping PCR and two-step homologous recombination, and gene sequencing confirmed successful knockout of the FlaB gene. Scanning electron microscopy showed no significant differences in the morphological structure of the flagellum between wild-type and FlaB-deficient strains. The mutant was subsequently injected into the freshwater prawn (Macrobrachium rosenbergii) to explore its pathogenicity in the host, and expression of myeloid differentiation factor 88, prophenoloxidase, catalase, superoxide dismutase and glutathione peroxidase was investigated by real-time PCR. The results showed that deletion of FlaB had little effect on V. anguillarum-induced expression of these immune-related genes (p > 0.05). In general, the FlaB mutant displayed similar flagella morphology and immune characteristics to the wild-type strain, hence we speculated that knockout of FlaB might promote the expression and function of other flagellin proteins. Furthermore, this study provides a rapid and simple method for obtaining stable mutants of V. anguillarum free from foreign plasmid DNA.
Collapse
Affiliation(s)
- Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jinping Luo
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Qianqian Xing
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Jiali Lv
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Panhuang Wang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Cuihua Wang
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, People's Republic of China.
| | - Yang Li
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, Huzhou Cent Hosp, Huzhou University, College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
4
|
Zhang K, Qin Z, Chang Y, Liu J, Malkowski MG, Shipa S, Li L, Qiu W, Zhang JR, Li C. Analysis of a flagellar filament cap mutant reveals that HtrA serine protease degrades unfolded flagellin protein in the periplasm of Borrelia burgdorferi. Mol Microbiol 2019; 111:1652-1670. [PMID: 30883947 DOI: 10.1111/mmi.14243] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2019] [Indexed: 12/16/2022]
Abstract
Unlike external flagellated bacteria, spirochetes have periplasmic flagella (PF). Very little is known about how PF are assembled within the periplasm of spirochaetal cells. Herein, we report that FliD (BB0149), a flagellar cap protein (also named hook-associated protein 2), controls flagellin stability and flagellar filament assembly in the Lyme disease spirochete Borrelia burgdorferi. Deletion of fliD leads to non-motile mutant cells that are unable to assemble flagellar filaments and pentagon-shaped caps (10 nm in diameter, 12 nm in length). Interestingly, FlaB, a major flagellin protein of B. burgdorferi, is degraded in the fliD mutant but not in other flagella-deficient mutants (i.e., in the hook, rod, or MS-ring). Biochemical and genetic studies reveal that HtrA, a serine protease of B. burgdorferi, controls FlaB turnover. Specifically, HtrA degrades unfolded but not polymerized FlaB, and deletion of htrA increases the level of FlaB in the fliD mutant. Collectively, we propose that the flagellar cap protein FliD promotes flagellin polymerization and filament growth in the periplasm. Deletion of fliD abolishes this process, which leads to leakage of unfolded FlaB proteins into the periplasm where they are degraded by HtrA, a protease that prevents accumulation of toxic products in the periplasm.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute, Virginia Commonwealth University, Richmond, VI, 23298, USA
| | - Zhuan Qin
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Yunjie Chang
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Jun Liu
- Department of Microbial Pathogenesis & Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, 06516, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, 14203, USA
| | - Saimtun Shipa
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Li Li
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Weigang Qiu
- Department of Biological Sciences, City University of New York, New York, NY, 10021, USA
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Chunhao Li
- Department of Oral and Craniofacial Molecular Biology, Philips Research Institute, Virginia Commonwealth University, Richmond, VI, 23298, USA
| |
Collapse
|
5
|
Ratthawongjirakul P, Thongkerd V, Chaicumpa W. The impacts of a fliD mutation on the biofilm formation of Helicobacter pylori. Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa. J Bacteriol 2015; 197:3066-75. [PMID: 26170416 DOI: 10.1128/jb.00415-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCE Physiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm. Here, we demonstrate the existence of a ternary complex consisting of the denitrifying enzyme NirS, the chaperone DnaK, and the flagellar protein FliC in the periplasm of the pathogenic bacterium P. aeruginosa. The dependence of flagellum formation and motility on the presence of an intact NirS was shown, structurally connecting both cellular processes, which are important for biofilm formation and pathogenicity of the bacterium.
Collapse
|
7
|
The flagellar soluble protein FliK determines the minimal length of the hook in Salmonella enterica serovar Typhimurium. J Bacteriol 2014; 196:1753-8. [PMID: 24563036 DOI: 10.1128/jb.00050-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The length of the flagellar hook is controlled by the soluble protein FliK. FliK is structurally divided into two halves with distinct functions; the N-terminal half determines hook length, while the C-terminal half switches the secretion substrate specificity, consequently terminating hook elongation. FliK properly achieves both functions only when it is secreted. In a previous paper, we showed that a temperature-sensitive flgE mutant of Salmonella enterica serovar Typhimurium, SJW2219, produced basal bodies with short hooks (average length, 25 nm) at 37°C. In this study, we show that the mutant cells grown at 37°C secrete FliK but not flagellin (FliC), indicating that FliK is abortively secreted into the medium when the hook is shorter than 30 nm. In contrast, FliK unfailingly switches the gate modes when the hook is longer than 30 nm. Taking the FliC, FliK, and FlgM secretion patterns into account, we conclude that FliK determines the minimal length of the hook. We will discuss how FliK detects the critical switching point of the secretion gate.
Collapse
|