1
|
Charoenkwan P, Chumnanpuen P, Schaduangrat N, Oh C, Manavalan B, Shoombuatong W. PSRQSP: An effective approach for the interpretable prediction of quorum sensing peptide using propensity score representation learning. Comput Biol Med 2023; 158:106784. [PMID: 36989748 DOI: 10.1016/j.compbiomed.2023.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
Quorum sensing peptides (QSPs) are microbial signaling molecules involved in several cellular processes, such as cellular communication, virulence expression, bioluminescence, and swarming, in various bacterial species. Understanding QSPs is essential for identifying novel drug targets for controlling bacterial populations and pathogenicity. In this study, we present a novel computational approach (PSRQSP) for improving the prediction and analysis of QSPs. In PSRQSP, we develop a novel propensity score representation learning (PSR) scheme. Specifically, we utilized the PSR approach to extract and learn a comprehensive set of estimated propensities of 20 amino acids, 400 dipeptides, and 400 g-gap dipeptides from a pool of scoring card method-based models. Finally, to maximize the utility of the propensity scores, we explored a set of optimal propensity scores and combined them to construct a final meta-predictor. Our experimental results showed that combining multiview propensity scores was more beneficial for identifying QSPs than the conventional feature descriptors. Moreover, extensive benchmarking experiments based on the independent test were sufficient to demonstrate the predictive capability and effectiveness of PSRQSP by outperforming the conventional ML-based and existing methods, with an accuracy of 94.44% and AUC of 0.967. PSR-derived propensity scores were employed to determine the crucial physicochemical properties for a better understanding of the functional mechanisms of QSPs. Finally, we constructed an easy-to-use web server for the PSRQSP (http://pmlabstack.pythonanywhere.com/PSRQSP). PSRQSP is anticipated to be an efficient computational tool for accelerating the data-driven discovery of potential QSPs for drug discovery and development.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pramote Chumnanpuen
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, 16419, Gyeonggi-do, Republic of Korea.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Bacterial Quorum-Sensing Peptides as Immune Modulators Present in Systemic Circulation. Biomolecules 2023; 13:biom13020296. [PMID: 36830664 PMCID: PMC9953703 DOI: 10.3390/biom13020296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Quorum-sensing peptides (QSPs) are bacterial peptides traditionally considered only as inter-bacterial communication molecules. Recently, their involvement in microbiome-host interactions influencing host diseases such as cancer and sarcopenia were explored. However, it is still unknown to what extent these peptides have the potential to modulate the immune system. In this proof-of-concept study, we screened 89 QSPs for their potential to induce IL-6 and TNFα in murine splenocytes and J774 macrophages. Confirmatory experiments on the positive screening-hits were conducted using murine splenocytes and human PBMCs of different ages. Finally, to investigate the biological relevance of immunomodulatory QSPs, we analysed plasma in a human cohort for the presence of the immunomodulatory QSP Q010. To do this, we used a newly developed UHPLC-MS/MS method. Our findings indicated that specific QSPs activate immune cells in vitro, with Q007, Q010, Q017 and Q212 being the top four screening hits. Q007 and Q010 were affirmed in subsequent confirmatory experiments using murine splenocytes and human PBMCs. Finally, Q010 was detected in human plasma, demonstrating for the first time the presence of an immunomodulatory QSP in human circulation. In conclusion, our data are the first evidence indicating the potential of biologically relevant quorum-sensing peptides to modulate the immune system.
Collapse
|
3
|
Di Menna L, Busceti CL, Ginerete RP, D'Errico G, Orlando R, Alborghetti M, Bruno V, Battaglia G, Fornai F, Leoni L, Rampioni G, Visca P, Monn JA, Nicoletti F. The bacterial quorum sensing molecule, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibits signal transduction mechanisms in brain tissue and is behaviorally active in mice. Pharmacol Res 2021; 170:105691. [PMID: 34044128 DOI: 10.1016/j.phrs.2021.105691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Interkingdom communication between bacteria and host organisms is one of the most interesting research topics in biology. Quorum sensing molecules produced by Gram-negative bacteria, such as acylated homoserine lactones and quinolones, have been shown to interact with host cell receptors, stimulating innate immunity and bacterial clearance. To our knowledge, there is no evidence that these molecules influence CNS function. Here, we have found that low micromolar concentrations of the Pseudomonas aeruginosa quorum sensing autoinducer, 2-heptyl-3-hydroxy-4-quinolone (PQS), inhibited polyphosphoinositide hydrolysis in mouse brain slices, whereas four selected acylated homoserine lactones were inactive. PQS also inhibited forskolin-stimulated cAMP formation in brain slices. We therefore focused on PQS in our study. Biochemical effects of PQS were not mediated by the bitter taste receptors, T2R4 and T2R16. Interestingly, submicromolar concentrations of PQS could be detected in the serum and brain tissue of adult mice under normal conditions. Levels increased in five selected brain regions after single i.p. injection of PQS (10 mg/kg), peaked after 15 min, and returned back to normal between 1 and 4 h. Systemically administered PQS reduced spontaneous locomotor activity, increased the immobility time in the forced swim test, and largely attenuated motor response to the psychostimulant, methamphetamine. These findings offer the first demonstration that a quorum sensing molecule specifically produced by Pseudomonas aeruginosa is centrally active and influences cell signaling and behavior. Quorum sensing autoinducers might represent new interkingdom signaling molecules between ecological communities of commensal, symbiotic, and pathogenic microorganisms and the host CNS.
Collapse
Affiliation(s)
| | | | | | | | - R Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - M Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - V Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - G Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy
| | - F Fornai
- IRCCS Neuromed, Pozzilli, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - L Leoni
- Department of Science, Roma Tre University, Roma, Italy
| | - G Rampioni
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | - P Visca
- Department of Science, Roma Tre University, Roma, Italy; Fondazione Santa Lucia IRCCS, Roma, Italy
| | | | - F Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Phamacology, Sapienza University, Roma, Italy.
| |
Collapse
|
4
|
Cai L, Wang L, Fu X, Xia C, Zeng X, Zou Q. ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation. Brief Bioinform 2020; 22:6032630. [PMID: 33313672 DOI: 10.1093/bib/bbaa367] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
The peptide therapeutics market is providing new opportunities for the biotechnology and pharmaceutical industries. Therefore, identifying therapeutic peptides and exploring their properties are important. Although several studies have proposed different machine learning methods to predict peptides as being therapeutic peptides, most do not explain the decision factors of model in detail. In this work, an Interpretable Therapeutic Peptide Prediction (ITP-Pred) model based on efficient feature fusion was developed. First, we proposed three kinds of feature descriptors based on sequence and physicochemical property encoded, namely amino acid composition (AAC), group AAC and coding autocorrelation, and concatenated them to obtain the feature representation of therapeutic peptide. Then, we input it into the CNN-Bi-directional Long Short-Term Memory (BiLSTM) model to automatically learn recognition of therapeutic peptides. The cross-validation and independent verification experiments results indicated that ITP-Pred has a higher prediction performance on the benchmark dataset than other comparison methods. Finally, we analyzed the output of the model from two aspects: sequence order and physical and chemical properties, mining important features as guidance for the design of better models that can complement existing methods.
Collapse
Affiliation(s)
| | | | | | | | | | - Quan Zou
- University of Electronic Science and Technology of China
| |
Collapse
|
5
|
Debunne N, De Spiegeleer A, Depuydt D, Janssens Y, Descamps A, Wynendaele E, De Spiegeleer B. Influence of Blood Collection Methods and Long-Term Plasma Storage on Quorum-Sensing Peptide Stability. ACS OMEGA 2020; 5:16120-16127. [PMID: 32656434 PMCID: PMC7346264 DOI: 10.1021/acsomega.0c01723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/08/2020] [Indexed: 05/08/2023]
Abstract
Finding adequate biomarkers for rapid and accurate disease detection, prognosis, and therapy is increasingly important. Quorum-sensing peptides are herein a new emerging group, produced by bacteria, fungi, protozoa, and viruses, with blood being the most straightforward sample type to detect/quantitate them. However, detailed information about suitable blood sample collection methods and storage conditions for measuring these quorum-sensing peptides hampers further clinical research and development. Here, we first tested the time-dependent stability of a set of chemically diverse quorum-sensing peptides, spiked in blood at different temperatures (4, 21, and 37 °C) in four different ethylenediamine tetraacetic acid (EDTA)-containing plasma tubes (with different protein-stabilizing additives) over a period of up to 7.5 h. Next, we determined the storage stability of these quorum-sensing peptides in plasma at different temperatures (4, -35, and -80 °C). UPLC/MS-MS was used to selectively detect and quantify the spiked quorum-sensing peptides. The results of this study indicate that a cost-effective tube, designed for traditional proteomics and stored at 4 °C, is the preferred collection condition when quorum-sensing peptides need to be detected/quantified in human plasma. When the tubes are handled at room temperature (21 °C), a more specialized tube is required. Long-term storage of plasma samples, even under low-temperature conditions (-80 °C), indicates rapid degradation of certain quorum-sensing peptides.
Collapse
Affiliation(s)
- Nathan Debunne
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Anton De Spiegeleer
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
- Department
of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, Ghent B-9000, Belgium
- VIB
Inflammation Research Center, Unit for Molecular Immunology and Inflammation, Ghent University, Technologiepark 71, B-9000 Ghent, Belgium
| | - Dorian Depuydt
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Yorick Janssens
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Amélie Descamps
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug
Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical
Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
- . Tel.: +32 9 264 81 00. Fax: +32 9 264 81 93
| |
Collapse
|
6
|
De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. Quorum sensing molecules as a novel microbial factor impacting muscle cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165646. [DOI: 10.1016/j.bbadis.2019.165646] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
7
|
Verbeke F, Bracke N, Debunne N, Wynendaele E, De Spiegeleer B. LC-MS Compatible Antiadsorption Diluent for Peptide Analysis. Anal Chem 2020; 92:1712-1719. [PMID: 31874035 DOI: 10.1021/acs.analchem.9b01840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Analytical method development for peptides often proves challenging since these molecules can adsorb to the plastic or glass consumables used in the analysis. This adsorption causes considerable loss and unreliable results, especially in the lower concentration range. Therefore, a variety of antiadsorption strategies have previously been developed to cope with this adsorption, often however incompatible with direct liquid chromatography-mass spectrometry (LC-MS) analysis. Here, a novel antiadsorption diluent is introduced, based on controlled hydrolysis and precipitation of bovine serum albumin. This diluent considerably decreases the adsorption of certain peptides to glass. Moreover, it is LC-MS compatible and can also be used in combination with formic acid and/or acetonitrile addition.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Nathan Debunne
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , B-9000 Ghent , Belgium
| |
Collapse
|
8
|
De Spiegeleer A, Elewaut D, Van Den Noortgate N, Janssens Y, Debunne N, Van Langenhove S, Govindarajan S, De Spiegeleer B, Wynendaele E. WITHDRAWN: This article has been withdrawn. Biochim Biophys Acta Mol Basis Dis 2019:165585. [PMID: 31678164 DOI: 10.1016/j.bbadis.2019.165585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author for administrative reasons. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Anton De Spiegeleer
- Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium
| | - Dirk Elewaut
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Nele Van Den Noortgate
- Department of Geriatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Selien Van Langenhove
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Srinath Govindarajan
- Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, 9052, Zwijnaarde, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Abstract
Communication between and within communities of cells or independent organisms is a crucial prerequisite for species survival. In response to variations in the extracellular environment, the collective behavior of cell populations can be coordinated by regulating community-level gene expression. This mechanism is strongly conserved during evolution, being shared both by bacterial communities and central nervous system cells. Notably, cyclic dipeptides (CDPs) are molecules that are implicated in these quorum sensing behaviors in both settings. Bacteria coordinate their collective behavior by producing CDPs (quorum sensing inducers) that enhance the capacity of individual members of the community to detect these signals and thus amplify the community-level response. In this review, we highlight recent data indicating that strikingly similar molecular mechanisms control communications between glial and neuronal cells to maintain homeostasis in the central nervous system, with a specific focus on the role of the thyrotropin-releasing hormone—derived CDP cyclo(His-Pro) in the protection against neurotoxic insults.
Collapse
|
10
|
Chromatography of Quorum Sensing Peptides: An Important Functional Class of the Bacterial Peptidome. Chromatographia 2017. [DOI: 10.1007/s10337-017-3411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Janssens Y, Verbeke F, Debunne N, Wynendaele E, Peremans K, De Spiegeleer B. Analysis of iodinated quorum sensing peptides by LC-UV/ESI ion trap mass spectrometry. J Pharm Anal 2017; 8:69-74. [PMID: 29568670 PMCID: PMC5859190 DOI: 10.1016/j.jpha.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/24/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
Five different quorum sensing peptides (QSP) were iodinated using different iodination techniques. These iodinated peptides were analyzed using a C18 reversed phase HPLC system, applying a linear gradient of water and acetonitrile containing 0.1% (m/v) formic acid as mobile phase. Electrospray ionization (ESI) ion trap mass spectrometry was used for the identification of the modified peptides, while semi-quantification was performed using total ion current (TIC) spectra. Non-iodinated peptides and mono- and di-iodinated peptides (NIP, MIP and DIP respectively) were well separated and eluted in that order. Depending on the used iodination method, iodination yields varied from low (2%) to high (57%).
Collapse
Affiliation(s)
- Yorick Janssens
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Frederick Verbeke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Nathan Debunne
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
12
|
Wynendaele E, Verbeke F, Stalmans S, Gevaert B, Janssens Y, Van De Wiele C, Peremans K, Burvenich C, De Spiegeleer B. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier. PLoS One 2015; 10:e0142071. [PMID: 26536593 PMCID: PMC4633044 DOI: 10.1371/journal.pone.0142071] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/17/2015] [Indexed: 12/30/2022] Open
Abstract
Bacteria communicate with each other by the use of signaling molecules, a process called 'quorum sensing'. One group of quorum sensing molecules includes the oligopeptides, which are mainly produced by Gram-positive bacteria. Recently, these quorum sensing peptides were found to biologically influence mammalian cells, promoting i.a. metastasis of cancer cells. Moreover, it was found that bacteria can influence different central nervous system related disorders as well, e.g. anxiety, depression and autism. Research currently focuses on the role of bacterial metabolites in this bacteria-brain interaction, with the role of the quorum sensing peptides not yet known. Here, three chemically diverse quorum sensing peptides were investigated for their brain influx (multiple time regression technique) and efflux properties in an in vivo mouse model (ICR-CD-1) to determine blood-brain transfer properties: PhrCACET1 demonstrated comparatively a very high initial influx into the mouse brain (Kin = 20.87 μl/(g×min)), while brain penetrabilities of BIP-2 and PhrANTH2 were found to be low (Kin = 2.68 μl/(g×min)) and very low (Kin = 0.18 μl/(g×min)), respectively. All three quorum sensing peptides were metabolically stable in plasma (in vitro) during the experimental time frame and no significant brain efflux was observed. Initial tissue distribution data showed remarkably high liver accumulation of BIP-2 as well. Our results thus support the potential role of some quorum sensing peptides in different neurological disorders, thereby enlarging our knowledge about the microbiome-brain axis.
Collapse
Affiliation(s)
- Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Frederick Verbeke
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sofie Stalmans
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Christophe Van De Wiele
- Department of Radiology and Nuclear Medicine, Faculty of Medicine and Health Sciences, Ghent University Hospital, Ghent, Belgium
| | - Kathelijne Peremans
- Department of Medical Imaging, Medicine and Clinical Biology of Small Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christian Burvenich
- Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Verbeke F, Wynendaele E, Braet S, D’Hondt M, De Spiegeleer B. Quality evaluation of synthetic quorum sensing peptides used in R&D. J Pharm Anal 2015; 5:169-181. [PMID: 29403929 PMCID: PMC5762210 DOI: 10.1016/j.jpha.2014.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/23/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023] Open
Abstract
Peptides are becoming an important class of molecules in the pharmaceutical field. Closely related peptide-impurities in peptides are inherent to the synthesis approach and have demonstrated to potentially mask biomedical experimental results. Quorum sensing peptides are attracting high interest in R&D and therefore a representative set of quorum sensing peptides, with a requested purity of at least 95.0%, was evaluated for their purity and nature of related impurities. In-house quality control (QC) revealed a large discrepancy between the purity levels as stated on the supplier׳s certificate of analysis and our QC results. By using our QC analysis flowchart, we demonstrated that only 44.0% of the peptides met the required purity. The main compound of one sample was even found to have a different structure compared to the desired peptide. We also found that the majority of the related impurities were lacking amino acid(s) in the desired peptide sequence. Relying on the certificates of analysis as provided by the supplier might have serious consequences for peptide research, and peptide-researchers should implement and maintain a thorough in-house QC.
Collapse
Affiliation(s)
| | | | | | | | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|