1
|
Wang S, Li F, Feng X, Feng M, Niu X, Jiang X, Chen W, Bai R. Promoting collagen synthesis: a viable strategy to combat skin ageing. J Enzyme Inhib Med Chem 2025; 40:2488821. [PMID: 40213810 PMCID: PMC11995770 DOI: 10.1080/14756366.2025.2488821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Skin ageing is a complex physiological process primarily characterised by the deepening of wrinkles and the sagging of the skin. Collagen is essential for maintaining skin elasticity and firmness. As skin ages, it experiences structural and functional changes in collagen, including a decrease in collagen synthesis and an increase in collagen hydrolysis. Thus, promoting collagen synthesis represents a practical strategy for mitigating skin ageing. This review systematically described the functions, classifications and biosynthesis process of collagen, as well as its role in skin ageing. Additionally, the major signalling pathways and targets associated with collagen synthesis were also discussed. More importantly, the review provided a detailed summary of natural products with collagen synthesis-promoting effects and highlighted small molecule compounds with potential anti-ageing activity, especially PPARδ agonists. The relevant content offers potential targets and lead compounds for the development of anti-skin ageing therapies.
Collapse
Affiliation(s)
- Shan Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Xilong Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Meiling Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Xiaotian Niu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, PR China
| |
Collapse
|
2
|
Procknow SS, Kozel BA. Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol 2022; 323:C666-C677. [PMID: 35816641 PMCID: PMC9448287 DOI: 10.1152/ajpcell.00228.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022]
Abstract
Elastin provides recoil to tissues that stretch such as the lung, blood vessels, and skin. It is deposited in a brief window starting in the prenatal period and extending to adolescence in vertebrates, and then slowly turns over. Elastin insufficiency is seen in conditions such as Williams-Beuren syndrome and elastin-related supravalvar aortic stenosis, which are associated with a range of vascular and connective tissue manifestations. Regulation of the elastin (ELN) gene occurs at multiple levels including promoter activation/inhibition, mRNA stability, interaction with microRNAs, and alternative splicing. However, these mechanisms are incompletely understood. Better understanding of the processes controlling ELN gene expression may improve medicine's ability to intervene in these rare conditions, as well as to replace age-associated losses by re-initiating elastin production. This review describes what is known about the ELN gene promoter structure, transcriptional regulation by cytokines and transcription factors, and posttranscriptional regulation via mRNA stability and micro-RNA and highlights new approaches that may influence regenerative medicine.
Collapse
Affiliation(s)
- Sara S Procknow
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Florio G, Pugno NM, Buehler MJ, Puglisi G. A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations. Acta Biomater 2021; 134:477-489. [PMID: 34303013 DOI: 10.1016/j.actbio.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023]
Abstract
We propose a simple general framework to predict folding, native states, energy barriers, protein unfolding, as well as mutation induced diseases and other protein structural analyses. The model should not be considered as an alternative to classical approaches (Molecular Dynamics or Monte Carlo) because it neglects low scale details and rather focuses on global features of proteins and structural information. We aim at the description of phenomena that are out of the range of classical molecular modeling approaches due to the large computational cost: multimolecular interactions, cyclic behavior under variable external interactions, and similar. To demonstrate the effectiveness of the approach in a real case, we focus on the folding and unfolding behavior of tropoelastin and its mutations. Specifically, we derive a discrete mechanical model whose structure is deduced based on a coarse graining approach that allows us to group the amino acids sequence in a smaller number of `equivalent' masses. Nearest neighbor energy terms are then introduced to reproduce the interaction of such amino acid groups. Nearest and non-nearest neighbor energy terms, inter and intra functional blocks are phenomenologically added in the form of Morse potentials. As we show, the resulting system reproduces important properties of the folding-unfolding mechanical response, including the monotonic and cyclic force-elongation behavior, representing a physiologically important information for elastin. The comparison with the experimental behavior of mutated tropoelastin confirms the predictivity of the model. STATEMENT OF SIGNIFICANCE: Classical approaches to the study of phenomena at the molecular scale such as Molecular Dynamics (MD) represent an incredible tool to unveil mechanical and conformational properties of macromolecules, in particular for biological and medical applications. On the other hand, due to the computational cost, the time and spatial scales are limited. Focusing of the real case of tropoelastin, we propose a new approach based on a careful coarse graining of the system, able to describe the overall properties of the macromolecule and amenable of extension to larger scale effects (protein bundles, protein-protein interactions, cyclic loading). The comparison with tropoelastin behavior, also for mutations, is very promising.
Collapse
|
4
|
Shamilov R, Robinson VL, Aneskievich BJ. Seeing Keratinocyte Proteins through the Looking Glass of Intrinsic Disorder. Int J Mol Sci 2021; 22:ijms22157912. [PMID: 34360678 PMCID: PMC8348711 DOI: 10.3390/ijms22157912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
Collapse
Affiliation(s)
- Rambon Shamilov
- Graduate Program in Pharmacology & Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Storrs, CT 06269, USA;
| | - Victoria L. Robinson
- Department of Molecular and Cellular Biology, College of Liberal Arts & Sciences, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA;
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
- Correspondence: ; Tel.: +1-860-486-3053
| |
Collapse
|
5
|
Dandurand J, Dantras E, Lacabanne C, Pepe A, Bochicchio B, Samouillan V. Thermal and dielectric fingerprints of self-assembling elastin peptides derived from exon30. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Reichheld SE, Muiznieks LD, Huynh Q, Wang N, Ing C, Miao M, Sitarz EE, Pomès R, Sharpe S, Keeley FW. The evolutionary background and functional consequences of the rs2071307 polymorphism in human tropoelastin. Biopolymers 2020; 112:e23414. [PMID: 33351193 DOI: 10.1002/bip.23414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/01/2023]
Abstract
Elastin is a major polymeric protein of the extracellular matrix, providing critical properties of extensibility and elastic recoil. The rs2071307 genomic polymorphism, resulting in the substitution of a serine for a glycine residue in a VPG motif in tropoelastin, has an unusually high minor allele frequency in humans. A consequence of such allelic heterozygosity would be the presence of a heterogeneous elastin polymer in up to 50% of the population, a situation which appears to be unique to Homo sapiens. VPG motifs are extremely common in hydrophobic domains of tropoelastins and are the sites of transient β-turns that are essential for maintaining the conformational flexibility required for its function as an entropic elastomer. Earlier data demonstrated that single amino acid substitutions in tropoelastin can have functional consequences for polymeric elastin, particularly when present in mixed polymers. Here, using NMR and molecular dynamics approaches, we show the rs2071307 polymorphism reduces local propensity for β-turn formation, with a consequent increase in polypeptide hydration and an expansion of the conformational ensemble manifested as an increased hydrodynamic radius, radius of gyration and asphericity. Furthermore, this substitution affects functional properties of polymeric elastin, particularly in heterogeneous polymers mimicking allelic heterozygosity. We discuss whether such effects, together with the unusually high minor allele frequency of the polymorphism, could imply some some evolutionary advantage for the heterozygous state.
Collapse
Affiliation(s)
- Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Elvesys Microfluidics Innovation Center, 172 rue de Charonne, 75011, Paris, France
| | - Quang Huynh
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Nick Wang
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,135 W 52nd St. Apt 20A, 10019-7691, New York, New York, USA
| | - Christopher Ing
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,ProteinQure, Suite 304, 119 Spadina Avenue, M5V2L1, Toronto, Ontario, Canada
| | - Ming Miao
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Eva E Sitarz
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Fred W Keeley
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, USA.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sequence variants of human tropoelastin affecting assembly, structural characteristics and functional properties of polymeric elastin in health and disease. Matrix Biol 2019; 84:68-80. [DOI: 10.1016/j.matbio.2019.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
|
8
|
Vindin H, Mithieux SM, Weiss AS. Elastin architecture. Matrix Biol 2019; 84:4-16. [DOI: 10.1016/j.matbio.2019.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/15/2022]
|
9
|
Muiznieks LD, Sharpe S, Pomès R, Keeley FW. Role of Liquid–Liquid Phase Separation in Assembly of Elastin and Other Extracellular Matrix Proteins. J Mol Biol 2018; 430:4741-4753. [DOI: 10.1016/j.jmb.2018.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
10
|
Zhou Z, Zhang S, Cao Y, Marelli B, Xia X, Tao TH. Engineering the Future of Silk Materials through Advanced Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706983. [PMID: 29956397 DOI: 10.1002/adma.201706983] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Indexed: 05/05/2023]
Abstract
Silk is a natural fiber renowned for its outstanding mechanical properties that have enabled the manufacturing of ultralight and ultrastrong textiles. Recent advances in silk processing and manufacturing have underpinned a re-interpretation of silk from textiles to technological materials. Here, it is argued that silk materials-optimized by selective pressure to work in the environment at the biotic-abiotic interface-can be harnessed by human micro- and nanomanufacturing technology to impart new functionalities and opportunities. A critical overview of recent progress in silk technology is presented with emphasis on high-tech applications enabled by recent innovations in multilevel modifications, multiscale manufacturing, and multimodal characterization of silk materials. These advances have enabled successful demonstrations of silk materials across several disciplines, including tissue engineering, drug delivery, implantable medical devices, and biodissolvable/degradable devices.
Collapse
Affiliation(s)
- Zhitao Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaoqing Zhang
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Yunteng Cao
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Benedetto Marelli
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139-4307, USA
| | - Xiaoxia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Mechanical Engineering, the University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol 2018; 71-72:144-160. [PMID: 29501665 DOI: 10.1016/j.matbio.2018.02.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Elastic fibers provide recoil to tissues that undergo repeated deformation, such as blood vessels, lungs and skin. Composed of elastin and its accessory proteins, the fibers are produced within a restricted developmental window and are stable for decades. Their eventual breakdown is associated with a loss of tissue resiliency and aging. Rare alteration of the elastin (ELN) gene produces disease by impacting protein dosage (supravalvar aortic stenosis, Williams Beuren syndrome and Williams Beuren region duplication syndrome) and protein function (autosomal dominant cutis laxa). This review highlights aspects of the elastin molecule and its assembly process that contribute to human disease and also discusses potential therapies aimed at treating diseases of elastin insufficiency.
Collapse
Affiliation(s)
| | - Beth A Kozel
- National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
12
|
Mithieux SM, Weiss AS. Design of an elastin-layered dermal regeneration template. Acta Biomater 2017; 52:33-40. [PMID: 27903444 PMCID: PMC5402719 DOI: 10.1016/j.actbio.2016.11.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/04/2016] [Accepted: 11/23/2016] [Indexed: 02/01/2023]
Abstract
We demonstrate a novel approach for the production of tunable quantities of elastic fibers. We also show that exogenous tropoelastin is rate-limiting for elastin synthesis regardless of the age of the dermal fibroblast donor. Additionally, we provide a strategy to further enhance synthesis by older cells through the application of conditioned media. We show that this approach delivers an elastin layer on one side of the leading dermal repair template for contact with the deep dermis in order to deliver prefabricated elastic fibers to a physiologically appropriate site during subsequent surgery. This system is attractive because it provides for the first time a viable path for sufficient, histologically detectable levels of patient elastin into full-thickness wound sites that have until now lacked this elastic underlayer. STATEMENT OF SIGNIFICANCE The scars of full thickness wounds typically lack elasticity. Elastin is essential for skin elasticity and is enriched in the deep dermis. This paper is significant because it shows that: (1) we can generate elastic fibers in tunable quantities, (2) tropoelastin is the rate-limiting component in elastin synthesis in vitro, (3) we can generate elastin fibers regardless of donor age, (4) we describe a novel approach to further increase the numbers and thickness of elastic fibers for older donors, (5) we improve on Integra Dermal Regeneration Template and generate a new hybrid biomaterial intended to subsequently surgically deliver these elastic fibers, (6) the elastic fiber layer is presented on the side of Integra that is intended for delivery into its physiologically appropriate site i.e. the deep dermis.
Collapse
Affiliation(s)
- Suzanne M Mithieux
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia; Bosch Institute, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
13
|
Single nucleotide polymorphisms and domain/splice variants modulate assembly and elastomeric properties of human elastin. Implications for tissue specificity and durability of elastic tissue. Biopolymers 2017; 107. [DOI: 10.1002/bip.23007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
|
14
|
Muiznieks LD, Keeley FW. Biomechanical Design of Elastic Protein Biomaterials: A Balance of Protein Structure and Conformational Disorder. ACS Biomater Sci Eng 2016; 3:661-679. [DOI: 10.1021/acsbiomaterials.6b00469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lisa D. Muiznieks
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
| | - Fred W. Keeley
- Molecular
Structure and Function Program, Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, Canada M5G 0A4
- Department
of Biochemistry and Department of Laboratory Medicine and Pathobiology, 1 King’s College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|