1
|
Randeni A, Colvin S, Krishnamurthy S. Abnormal Transcytosis Mechanisms in the Pathogenesis of Hydrocephalus: A Review. Int J Mol Sci 2025; 26:4881. [PMID: 40430021 PMCID: PMC12112570 DOI: 10.3390/ijms26104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Hydrocephalus is a chronic neurological condition caused by abnormal cerebrospinal fluid (CSF) accumulation, significantly impacting patients' quality of life. Its causes remain poorly understood, making neurosurgery the primary treatment. Research suggests that hydrocephalus may result from impaired macromolecular clearance, leading to increased osmotic load in the ventricles. Macromolecules are cleared via processes such as transcytosis, involving caveolae- and clathrin-dependent pathways, soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins, and vesicular trafficking. Abnormalities in transcytosis components, such as mutations in alpha-SNAP (α-soluble NSF attachment protein) and SNARE complexes, disrupt membrane organization and vesicle fusion, potentially contributing to hydrocephalus. Other factors, including alpha-synuclein and Rab proteins, may also play roles in vesicle dynamics. Insights from animal models, such as hyh (hydrocephalus with hop gait) mice, highlight the pathological consequences of these disruptions. Understanding transcytosis abnormalities in hydrocephalus could lead to novel therapeutic strategies aimed at enhancing macromolecular clearance, reducing ventricular fluid buildup, and improving patient outcomes.
Collapse
Affiliation(s)
- Adithi Randeni
- Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK;
| | - Sydney Colvin
- School of Osteopathic Medicine, Campbell University, 4350 US Hwy 421 S, Lillington, NC 27546, USA;
| | - Satish Krishnamurthy
- Neurosurgery Department, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
2
|
Cheppali SK, Li C, Xing W, Sun R, Yang M, Xue Y, Lu SY, Yao J, Sun S, Chen C, Sui SF. Single-molecule two- and three-colour FRET studies reveal a transition state in SNARE disassembly by NSF. Nat Commun 2025; 16:250. [PMID: 39747074 PMCID: PMC11695992 DOI: 10.1038/s41467-024-55531-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/15/2024] [Indexed: 01/04/2025] Open
Abstract
SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) proteins are the minimal machinery required for vesicle fusion in eukaryotes. Formation of a highly stable four-helix bundle consisting of SNARE motif of these proteins, drives vesicle/membrane fusion involved in several physiological processes such as neurotransmission. Recycling/disassembly of the protein machinery involved in membrane fusion is essential and is facilitated by an AAA+ ATPase, N-ethylmaleimide sensitive factor (NSF) in the presence of an adapter protein, α-SNAP. Here we use single-molecule fluorescence spectroscopy approaches to elucidate the chain of events that occur during the disassembly of SNARE complex by NSF. Our observations indicate two major pathways leading to the sequential disassembly of the SNARE complex: one where a syntaxin separated intermediate state is observed before syntaxin disassembles first, and a second where Vamp disassembles from the other proteins first. These studies uncover two parallel sequential pathways for the SNARE disassembly by NSF along with a syntaxin separated intermediate that couldn't be observed otherwise.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chang Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenjing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ruirui Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mengyi Yang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yi Xue
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center of Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
| |
Collapse
|
3
|
Khan YA, Ian White K, Pfuetzner RA, Singal B, Esquivies L, Mckenzie G, Liu F, DeLong K, Choi UB, Montabana E, Mclaughlin T, Wickner WT, Brunger AT. Sec18 side-loading is essential for universal SNARE recycling across cellular contexts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610324. [PMID: 39257774 PMCID: PMC11384006 DOI: 10.1101/2024.08.30.610324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
SNARE proteins drive membrane fusion as their core domains zipper into a parallel four-helix bundle1,2. After fusion, these bundles are disassembled by the AAA+ protein Sec18/NSF and its adaptor Sec17/ α-SNAP3,4 to make them available for subsequent rounds of membrane fusion. SNARE domains are often flanked by C-terminal transmembrane or N-terminal domains5. Previous structures of the NSF-α-SNAP-SNARE complex revealed SNARE domain threaded through the D1 ATPase ring6, posing a topological constraint as SNARE transmembrane domains would prevent complete substrate threading as suggested for other AAA+ systems7. Here, in vivo mass-spectrometry reveals N-terminal SNARE domain interactions with Sec18, exacerbating this topological issue. Cryo-EM structures of a yeast SNARE complex, Sec18, and Sec17 in a non-hydrolyzing condition shows SNARE Sso1 threaded through the D1 and D2 ATPase rings of Sec18, with its folded, N-terminal Habc domain interacting with the D2 ring. This domain does not unfold during Sec18/NSF activity. Cryo-EM structures under hydrolyzing conditions revealed substrate-released and substrate-free states of Sec18 with a coordinated opening in the side of the ATPase rings. Thus, Sec18/NSF operates by substrate side-loading and unloading topologically constrained SNARE substrates.
Collapse
Affiliation(s)
- Yousuf A. Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| | - K. Ian White
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Richard A. Pfuetzner
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Bharti Singal
- Stanford Cryo-EM microscopy center, Stanford University, Palo Alto, CA, USA
| | - Luis Esquivies
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Garvey Mckenzie
- Stanford University Mass Spectrometry, Stanford University, Palo Alto, CA, USA
| | - Fang Liu
- Stanford University Mass Spectrometry, Stanford University, Palo Alto, CA, USA
| | - Katherine DeLong
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Uchoer B. Choi
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | | | - Theresa Mclaughlin
- Stanford University Mass Spectrometry, Stanford University, Palo Alto, CA, USA
| | - William T. Wickner
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Qiu M, Zhao X, Guo T, He H, Deng Y. N-ethylmaleimide-sensitive factor elicits a neuroprotection against ischemic neuronal injury by restoring autophagic/lysosomal dysfunction. Cell Death Discov 2024; 10:368. [PMID: 39155286 PMCID: PMC11330971 DOI: 10.1038/s41420-024-02144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024] Open
Abstract
Autophagosome-lysosome fusion defects play a critical role in driving autolysosomal dysfunction, leading to autophagic/lysosomal impairment in neurons following ischemic stroke. However, the mechanisms hindering autophagosome-lysosome fusion remain unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) is an essential ATPase to reactivate STX17 and VAMP8, which are the paired molecules to mediate fusion between autophagosomes and lysosomes. However, NSF is frequently inactivated to inhibit the reactivation of STX17 and VAMP8 in ischemic neurons. Herein, we investigated whether autophagosome-lysosome fusion could be facilitated to alleviate autophagic/lysosomal impairment in ischemic neurons by over-expressing NSF. Rat model of middle cerebral artery occlusion (MCAO) and HT22 neuron ischemia model of oxygen-glucose deprivation (OGD) were prepared, respectively. The results demonstrated that NSF activity was significantly suppressed, accompanied by reduced expressions of STX17 and VAMP8 in penumbral neurons 48 h post-MCAO and in HT22 neurons 2 h post-OGD. Moreover, the attenuated autolysosome formation accompanied by autophagic/lysosomal dysfunction was observed. Thereafter, NSF activity in HT22 neurons was altered by over-expression and siRNA knockdown, respectively. After transfection with recombinant NSF-overexpressing lentiviruses, both STX17 and VAMP8 expressions were concurrently elevated to boost autophagosome-lysosome fusion, as shown by enhanced immunofluorescence intensity co-staining with LC3 and LAMP-1. Consequently, the OGD-created autophagic/lysosomal dysfunction was prominently ameliorated, as reflected by augmented autolysosomal functions and decreased autophagic substrates. By contrast, NSF knockdown conversely aggravated the autophagic/lysosomal impairment, and thereby exacerbated neurological damage. Our study indicates that NSF over-expression induces neuroprotection against ischemic neuronal injury by restoring autophagic/lysosomal dysfunction via the facilitation of autophagosome-lysosome fusion. Over-expression of NSF promotes fusion by reactivating STX17 and VAMP8. Black arrows represent the pathological process after cerebral ischemia, green arrows represent the mechanism of remission after NSF over-expression, and red arrows represent the effect on the pathological process after NSF knockdown.
Collapse
Affiliation(s)
- Miaomiao Qiu
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaoming Zhao
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Tao Guo
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongyun He
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yihao Deng
- School of Basic Medical Sciences, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
5
|
Pribicevic S, Graham AC, Cafiso DS, Pérez-Lara Á, Jahn R. Intermediate steps in the formation of neuronal SNARE complexes. J Biol Chem 2024; 300:107591. [PMID: 39032647 PMCID: PMC11381810 DOI: 10.1016/j.jbc.2024.107591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 05/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature-dependent with a reduced concentration at 37 °C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25 and that the SN2 segment of SNAP25 is the last to enter the SNARE complex.
Collapse
Affiliation(s)
- Sonja Pribicevic
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Abigail C Graham
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - David S Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA.
| | - Ángel Pérez-Lara
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Omari S, Roded A, Eisenberg M, Ali H, Fukuda M, Galli SJ, Sagi-Eisenberg R. Mast cell secretory granule fusion with amphisomes coordinates their homotypic fusion and release of exosomes. Cell Rep 2024; 43:114482. [PMID: 38985670 DOI: 10.1016/j.celrep.2024.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Secretory granule (SG) fusion is an intermediate step in SG biogenesis. However, the precise mechanism of this process is not completely understood. We show that Golgi-derived mast cell (MC) SGs enlarge through a mechanism that is dependent on phosphoinositide (PI) remodeling and fusion with LC3+ late endosomes (amphisomes), which serve as hubs for the fusion of multiple individual SGs. Amphisome formation is regulated by the tyrosine phosphatase PTPN9, while the subsequent SG fusion event is additionally regulated by the tetraspanin protein CD63 and by PI4K. We also demonstrate that fusion with amphisomes imparts to SGs their capacity of regulated release of exosomes. Finally, we show that conversion of PI(3,4,5)P3 to PI(4,5)P2 and the subsequent recruitment of dynamin stimulate SG fission. Our data unveil a key role for lipid-regulated interactions with the endocytic and autophagic systems in controlling the size and number of SGs and their capacity to release exosomes.
Collapse
Affiliation(s)
- Sewar Omari
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amit Roded
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maggie Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hydar Ali
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Stephen J Galli
- Departments of Pathology and of Microbiology and Immunology, and Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305-5176, USA
| | - Ronit Sagi-Eisenberg
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Wang J, Liu L, Luo R, Zhang Q, Wang X, Ling F, Wang P. Genome-wide analysis of filamentous temperature-sensitive H protease (ftsH) gene family in soybean. BMC Genomics 2024; 25:524. [PMID: 38802777 PMCID: PMC11131285 DOI: 10.1186/s12864-024-10389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The filamentous temperature-sensitive H protease (ftsH) gene family belongs to the ATP-dependent zinc metalloproteins, and ftsH genes play critical roles in plant chloroplast development and photosynthesis. RESULTS In this study, we performed genome-wide identification and a systematic analysis of soybean ftsH genes. A total of 18 GmftsH genes were identified. The subcellular localization was predicted to be mainly in cell membranes and chloroplasts, and the gene structures, conserved motifs, evolutionary relationships, and expression patterns were comprehensively analyzed. Phylogenetic analysis of the ftsH gene family from soybean and various other species revealed six distinct clades, all of which showed a close relationship to Arabidopsis thaliana. The members of the GmftsH gene family were distributed on 13 soybean chromosomes, with intron numbers ranging from 3 to 15, 13 pairs of repetitive segment. The covariance between these genes and related genes in different species of Oryza sativa, Zea mays, and Arabidopsis thaliana was further investigated. The transcript expression data revealed that the genes of this family showed different expression patterns in three parts, the root, stem, and leaf, and most of the genes were highly expressed in the leaves of the soybean plants. Fluorescence-based real-time quantitative PCR (qRT-PCR) showed that the expression level of GmftsH genes varied under different stress treatments. Specifically, the genes within this family exhibited various induction levels in response to stress conditions of 4℃, 20% PEG-6000, and 100 mmol/L NaCl. These findings suggest that the GmftsH gene family may play a crucial role in the abiotic stress response in soybeans. It was also found that the GmftsH7 gene was localized on the cell membrane, and its expression was significantly upregulated under 4 ℃ treatment. In summary, by conducting a genome-wide analysis of the GmftsH gene family, a strong theoretical basis is established for future studies on the functionality of GmftsH genes. CONCLUSIONS This research can potentially serve as a guide for enhancing the stress tolerance characteristics of soybean.
Collapse
Affiliation(s)
- Jiabao Wang
- JiLin Agricultural University, Changchun, China
| | - Lu Liu
- JiLin Agricultural University, Changchun, China
| | - Rui Luo
- East China Normal University, Shanghai, China
| | - Qi Zhang
- JiLin Agricultural University, Changchun, China
| | - Xinyu Wang
- JiLin Agricultural University, Changchun, China
| | - Fenglou Ling
- JiLin Agricultural University, Changchun, China.
| | - Piwu Wang
- JiLin Agricultural University, Changchun, China.
| |
Collapse
|
8
|
Tebbe L, Kakakhel M, Al-Ubaidi MR, Naash MI. The role of syntaxins in retinal function and health. Front Cell Neurosci 2024; 18:1380064. [PMID: 38799985 PMCID: PMC11119284 DOI: 10.3389/fncel.2024.1380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) superfamily plays a pivotal role in cellular trafficking by facilitating membrane fusion events. These SNARE proteins, including syntaxins, assemble into complexes that actively facilitate specific membrane fusion events. Syntaxins, as integral components of the SNARE complex, play a crucial role in initiating and regulating these fusion activities. While specific syntaxins have been extensively studied in various cellular processes, including neurotransmitter release, autophagy and endoplasmic reticulum (ER)-to-Golgi protein transport, their roles in the retina remain less explored. This review aims to enhance our understanding of syntaxins' functions in the retina by shedding light on how syntaxins mediate membrane fusion events unique to the retina. Additionally, we seek to establish a connection between syntaxin mutations and retinal diseases. By exploring the intricate interplay of syntaxins in retinal function and health, we aim to contribute to the broader comprehension of cellular trafficking in the context of retinal physiology and pathology.
Collapse
Affiliation(s)
| | | | | | - Muna I. Naash
- *Correspondence: Muna I. Naash, ; Muayyad R. Al-Ubaidi,
| |
Collapse
|
9
|
Bosma EK, Darwesh S, Habani YI, Cammeraat M, Serrano Martinez P, van Breest Smallenburg ME, Zheng JY, Vogels IMC, van Noorden CJF, Schlingemann RO, Klaassen I. Differential roles of eNOS in late effects of VEGF-A on hyperpermeability in different types of endothelial cells. Sci Rep 2023; 13:21436. [PMID: 38052807 PMCID: PMC10698188 DOI: 10.1038/s41598-023-46893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Vascular endothelial growth factor (VEGF)-A induces endothelial hyperpermeability, but the molecular pathways remain incompletely understood. Endothelial nitric oxide synthase (eNOS) regulates acute effects of VEGF-A on permeability of endothelial cells (ECs), but it remains unknown whether and how eNOS regulates late effects of VEGF-A-induced hyperpermeability. Here we show that VEGF-A induces hyperpermeability via eNOS-dependent and eNOS-independent mechanisms at 2 days after VEGF-A stimulation. Silencing of expression of the eNOS gene (NOS3) reduced VEGF-A-induced permeability for dextran (70 kDa) and 766 Da-tracer in human dermal microvascular ECs (HDMVECs), but not in human retinal microvascular ECs (HRECs) and human umbilical vein ECs (HUVECs). However, silencing of NOS3 expression in HRECs increased permeability to dextran, BSA and 766 Da-tracer in the absence of VEGF-A stimulation, suggesting a barrier-protective function of eNOS. We also investigated how silencing of NOS3 expression regulates the expression of permeability-related transcripts, and found that NOS3 silencing downregulates the expression of PLVAP, a molecule associated with trans-endothelial transport via caveolae, in HDMVECs and HUVECs, but not in HRECs. Our findings underscore the complexity of VEGF-A-induced permeability pathways in ECs and the role of eNOS therein, and demonstrate that different pathways are activated depending on the EC phenotype.
Collapse
Affiliation(s)
- Esmeralda K Bosma
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Shahan Darwesh
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Yasmin I Habani
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Maxime Cammeraat
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Mathilda E van Breest Smallenburg
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
| | - Jia Y Zheng
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Ilse M C Vogels
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Fondation Asile Des Aveugles, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Department of Ophthalmology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Buzzatto MV, Berberián MV, Di Bartolo AL, Masone D, Tomes CN. α-Synuclein is required for sperm exocytosis at a post-fusion stage. Front Cell Dev Biol 2023; 11:1125988. [PMID: 37287458 PMCID: PMC10242118 DOI: 10.3389/fcell.2023.1125988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.
Collapse
Affiliation(s)
- Micaela Vanina Buzzatto
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Victoria Berberián
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Ciencias Básicas (ICB)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET-Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
11
|
García-Marín LM, Reyes-Pérez P, Diaz-Torres S, Medina-Rivera A, Martin NG, Mitchell BL, Rentería ME. Shared molecular genetic factors influence subcortical brain morphometry and Parkinson's disease risk. NPJ Parkinsons Dis 2023; 9:73. [PMID: 37164954 PMCID: PMC10172359 DOI: 10.1038/s41531-023-00515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
Parkinson's disease (PD) is a late-onset and genetically complex neurodegenerative disorder. Here we sought to identify genes and molecular pathways underlying the associations between PD and the volume of ten brain structures measured through magnetic resonance imaging (MRI) scans. We leveraged genome-wide genetic data from several cohorts, including the International Parkinson's Disease Genomics Consortium (IPDG), the UK Biobank, the Adolescent Brain Cognitive Development (ABCD) study, the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE), the Enhancing Neuroimaging Genetics through Meta-Analyses (ENIGMA), and 23andMe. We observed significant positive genetic correlations between PD and intracranial and subcortical brain volumes. Genome-wide association studies (GWAS) - pairwise analyses identified 210 genomic segments with shared aetiology between PD and at least one of these brain structures. Pathway enrichment results highlight potential links with chronic inflammation, the hypothalamic-pituitary-adrenal pathway, mitophagy, disrupted vesicle-trafficking, calcium-dependent, and autophagic pathways. Investigations for putative causal genetic effects suggest that a larger putamen volume could influence PD risk, independently of the potential causal genetic effects of intracranial volume (ICV) on PD. Our findings suggest that genetic variants influencing larger intracranial and subcortical brain volumes, possibly during earlier stages of life, influence the risk of developing PD later in life.
Collapse
Affiliation(s)
- Luis M García-Marín
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| | - Paula Reyes-Pérez
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Santiago Diaz-Torres
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación del Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Nicholas G Martin
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Brittany L Mitchell
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Miguel E Rentería
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Hayashi T, Yano N, Kora K, Yokoyama A, Maizuru K, Kayaki T, Nishikawa K, Osawa M, Niwa A, Takenouchi T, Hijikata A, Shirai T, Suzuki H, Kosaki K, Saito MK, Takita J, Yoshida T. Involvement of mTOR pathway in neurodegeneration in NSF-related developmental and epileptic encephalopathy. Hum Mol Genet 2023; 32:1683-1697. [PMID: 36645181 PMCID: PMC10162430 DOI: 10.1093/hmg/ddad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Membrane fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. During neurotransmitter exocytosis, SNARE proteins on a synaptic vesicle and the target membrane form a complex, resulting in neurotransmitter release. N-ethylmaleimide-sensitive factor (NSF), a homohexameric ATPase, disassembles the complex, allowing individual SNARE proteins to be recycled. Recently, the association between pathogenic NSF variants and developmental and epileptic encephalopathy (DEE) was reported; however, the molecular pathomechanism of NSF-related DEE remains unclear. Here, three patients with de novo heterozygous NSF variants were presented, of which two were associated with DEE and one with a very mild phenotype. One of the DEE patients also had hypocalcemia from parathyroid hormone deficiency and neuromuscular junction impairment. Using PC12 cells, a neurosecretion model, we show that NSF with DEE-associated variants impaired the recycling of vesicular membrane proteins and vesicle enlargement in response to exocytotic stimulation. In addition, DEE-associated variants caused neurodegenerative change and defective autophagy through overactivation of the mammalian/mechanistic target of rapamycin (mTOR) pathway. Treatment with rapamycin, an mTOR inhibitor or overexpression of wild-type NSF ameliorated these phenotypes. Furthermore, neurons differentiated from patient-derived induced pluripotent stem cells showed neurite degeneration, which was also alleviated by rapamycin treatment or gene correction using genome editing. Protein structure analysis of NSF revealed that DEE-associated variants might disrupt the transmission of the conformational change of NSF monomers and consequently halt the rotation of ATP hydrolysis, indicating a dominant negative mechanism. In conclusion, this study elucidates the pathomechanism underlying NSF-related DEE and identifies a potential therapeutic approach.
Collapse
Affiliation(s)
- Takahiro Hayashi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naoko Yano
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kengo Kora
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Atsushi Yokoyama
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kanako Maizuru
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Taisei Kayaki
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kinuko Nishikawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Mitsujiro Osawa
- Thyas Co. Ltd, Kyoto 606-8501, Japan
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA) Kyoto University, Kyoto 606-8507, Japan
| | - Junko Takita
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Yoshida
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Walker SD, Olivares AO. The activated ClpP peptidase forcefully grips a protein substrate. Biophys J 2022; 121:3907-3916. [PMID: 36045571 PMCID: PMC9674977 DOI: 10.1016/j.bpj.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ∼160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.
Collapse
Affiliation(s)
- Steven D Walker
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Graduate Program, Vanderbilt University, Nashville, Tennessee
| | - Adrian O Olivares
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
14
|
Zhang HY, Tian Y, Shi HY, Cai Y, Xu Y. The critical role of the endolysosomal system in cerebral ischemia. Neural Regen Res 2022; 18:983-990. [PMID: 36254978 PMCID: PMC9827782 DOI: 10.4103/1673-5374.355745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired "maturation" of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui-Yi Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ye Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Han-Yan Shi
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ya Cai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China,Correspondence to: Ying Xu, .
| |
Collapse
|
15
|
Özdemir Ç, Şahin N, Edgünlü T. Vesicle trafficking with snares: a perspective for autism. Mol Biol Rep 2022; 49:12193-12202. [PMID: 36198849 DOI: 10.1007/s11033-022-07970-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Vesicle-mediated membrane traffic is the mechanism fundamental to many biological events, especially the release of neurotransmitters. The main proteins of the mechanism that mediates membrane fusion in vesicle-mediated membrane traffic are N-ethylmaleimide sensitive factor (NSF) supplemental protein (SNAP) receptor (SNAREs) proteins. SNAREs are classified into vesicle-associated SNAREs (vesicle-SNAREs/v-SNAREs) and target membrane-associated SNAREs (target-SNARE/t-SNAREs). Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by many symptoms, especially complications in social communication and stereotypical behaviours. Defects in synaptogenesis and neurotransmission, oxidative stress, and developmental defects in the early stages of development are defined in the pathogenesis of the disease. SNARE proteins are on the basis of synaptogenesis and neurotransmission. Although the formation mechanisms and underlying causes of the SNARE complex are not fully understood, expression differences, polymorphisms, abnormal expressions or dysfunctions of the proteins that make up the SNARE complex have been associated with many neurodevelopmental diseases, including autism. Further understanding of SNARE mechanisms is crucial both for understanding ASD and for developing new treatments. In this review, the formation mechanisms of the SNARE complex and the roles of various factors involved in this process are explained. In addition, a brief evaluation of clinical and basic studies on the SNARE complex in autism spectrum disorders was made.
Collapse
Affiliation(s)
- Çilem Özdemir
- Department of Medical Biology, Health Sciences Institution, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Nilfer Şahin
- Department of Child and Adolescent Mental Health Diseases School of Medicine, Muğla Sıtkı Koçman University, Mugla, Turkey
| | - Tuba Edgünlü
- Department of Medical Biology, School of Medicine, Muğla Sıtkı Koçman University, 48000, Mugla, Turkey.
| |
Collapse
|
16
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
17
|
SNARE proteins: zip codes in vesicle targeting? Biochem J 2022; 479:273-288. [PMID: 35119456 PMCID: PMC8883487 DOI: 10.1042/bcj20210719] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022]
Abstract
Membrane traffic in eukaryotic cells is mediated by transport vesicles that bud from a precursor compartment and are transported to their destination compartment where they dock and fuse. To reach their intracellular destination, transport vesicles contain targeting signals such as Rab GTPases and polyphosphoinositides that are recognized by tethering factors in the cytoplasm and that connect the vesicles with their respective destination compartment. The final step, membrane fusion, is mediated by SNARE proteins. SNAREs are connected to targeting signals and tethering factors by multiple interactions. However, it is still debated whether SNAREs only function downstream of targeting and tethering or whether they also participate in regulating targeting specificity. Here, we review the evidence and discuss recent data supporting a role of SNARE proteins as targeting signals in vesicle traffic.
Collapse
|
18
|
Wang R, Deng M, Yang C, Yu Q, Zhang L, Zhu Q, Guo X. A Qa-SNARE complex contributes to soybean cyst nematode resistance via regulation of mitochondria-mediated cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7145-7162. [PMID: 34165531 DOI: 10.1093/jxb/erab301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 05/27/2023]
Abstract
The resistance to Heterodera glycines 1 (Rhg1) locus is widely used by soybean breeders to reduce yield loss caused by soybean cyst nematode (SCN). α-SNAP (α-soluble NSF attachment protein) within Rhg1 locus contributes to SCN resistance by modulation of cell status at the SCN feeding site; however, the underlying mechanism is largely unclear. Here, we identified an α-SNAP-interacting protein, GmSYP31A, a Qa-SNARE (soluble NSF attachment protein receptor) protein from soybean. Expression of GmSYP31A significantly induced cell death in Nicotiana benthamiana leaves, and co-expression of α-SNAP and GmSYP31A could accelerate cell death. Overexpression of GmSYP31A increased SCN resistance, while silencing or overexpression of a dominant-negative form of GmSYP31A increased SCN sensitivity. GmSYP31A expression also disrupted endoplasmic reticulum-Golgi trafficking, and the exocytosis pathway. Moreover, α-SNAP was also found to interact with GmVDAC1D (voltage-dependent anion channel). The cytotoxicity induced by the expression of GmSYP31A could be relieved either with the addition of an inhibitor of VDAC protein, or by silencing the VDAC gene. Taken together, our data not only demonstrate that α-SNAP works together with GmSYP31A to increase SCN resistance through triggering cell death, but also highlight the unexplored link between the mitochondrial apoptosis pathway and vesicle trafficking.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Deng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qianqian Yu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qun Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
19
|
Prattes M, Grishkovskaya I, Hodirnau VV, Rössler I, Klein I, Hetzmannseder C, Zisser G, Gruber CC, Gruber K, Haselbach D, Bergler H. Structural basis for inhibition of the AAA-ATPase Drg1 by diazaborine. Nat Commun 2021; 12:3483. [PMID: 34108481 PMCID: PMC8190095 DOI: 10.1038/s41467-021-23854-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 02/01/2023] Open
Abstract
The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.
Collapse
Affiliation(s)
- Michael Prattes
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Irina Grishkovskaya
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | | | - Ingrid Rössler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Isabella Klein
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Gertrude Zisser
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
| | - Helmut Bergler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
20
|
Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nat Commun 2021; 12:3206. [PMID: 34050166 PMCID: PMC8163800 DOI: 10.1038/s41467-021-23530-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022] Open
Abstract
Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles rigid SNARE (soluble NSF attachment protein receptor) complexes in single unraveling step. This global disassembly distinguishes NSF from other molecular motors that make incremental and processive motions, but the molecular underpinnings of its remarkable energy efficiency remain largely unknown. Using multiple single-molecule methods, we found remarkable cooperativity in mechanical connection between NSF and the SNARE complex, which prevents dysfunctional 20S complexes that consume ATP without productive disassembly. We also constructed ATP hydrolysis cycle of the 20S complex, in which NSF largely shows randomness in ATP binding but switches to perfect ATP hydrolysis synchronization to induce global SNARE disassembly, minimizing ATP hydrolysis by non-20S complex-forming NSF molecules. These two mechanisms work in concert to concentrate ATP consumption into functional 20S complexes, suggesting evolutionary adaptations by the 20S complex to the energetically expensive mechanical task of SNARE complex disassembly. Fueled by ATP hydrolysis in N-ethylmaleimide sensitive factor (NSF), the 20S complex disassembles SNARE complexes in a single unravelling step. Here authors use single-molecule methods to show cooperativity between the NSF and SNARE complex, which prevents ATP consumption without productive disassembly.
Collapse
|
21
|
Liu F, Li JP, Li LS, Liu Q, Li SW, Song ML, Li S, Zhang Y. The canonical α-SNAP is essential for gametophytic development in Arabidopsis. PLoS Genet 2021; 17:e1009505. [PMID: 33886546 PMCID: PMC8096068 DOI: 10.1371/journal.pgen.1009505] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/04/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
The development of male and female gametophytes is a pre-requisite for successful reproduction of angiosperms. Factors mediating vesicular trafficking are among the key regulators controlling gametophytic development. Fusion between vesicles and target membranes requires the assembly of a fusogenic soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) complex, whose disassembly in turn ensures the recycle of individual SNARE components. The disassembly of post-fusion SNARE complexes is controlled by the AAA+ ATPase N-ethylmaleimide-sensitive factor (Sec18/NSF) and soluble NSF attachment protein (Sec17/α-SNAP) in yeast and metazoans. Although non-canonical α-SNAPs have been functionally characterized in soybeans, the biological function of canonical α-SNAPs has yet to be demonstrated in plants. We report here that the canonical α-SNAP in Arabidopsis is essential for male and female gametophytic development. Functional loss of the canonical α-SNAP in Arabidopsis results in gametophytic lethality by arresting the first mitosis during gametogenesis. We further show that Arabidopsis α-SNAP encodes two isoforms due to alternative splicing. Both isoforms interact with the Arabidopsis homolog of NSF whereas have distinct subcellular localizations. The presence of similar alternative splicing of human α-SNAP indicates that functional distinction of two α-SNAP isoforms is evolutionarily conserved.
Collapse
Affiliation(s)
- Fei Liu
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Ji-Peng Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lu-Shen Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Qi Liu
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Shan-Wei Li
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Ming-Lei Song
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Sha Li
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| | - Yan Zhang
- State Key laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
- * E-mail: (SL); (YZ)
| |
Collapse
|
22
|
Rajwar A, Morya V, Kharbanda S, Bhatia D. DNA Nanodevices to Probe and Program Membrane Organization, Dynamics, and Applications. J Membr Biol 2020; 253:577-587. [DOI: 10.1007/s00232-020-00154-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/07/2020] [Indexed: 12/18/2022]
|
23
|
Warecki B, Ling X, Bast I, Sullivan W. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels. J Cell Biol 2020; 219:133702. [PMID: 32032426 PMCID: PMC7054997 DOI: 10.1083/jcb.201905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Mitotic cells must form a single nucleus during telophase or exclude part of their genome as damage-prone micronuclei. While research has detailed how micronuclei arise from cells entering anaphase with lagging chromosomes, cellular mechanisms allowing late-segregating chromosomes to rejoin daughter nuclei remain underexplored. Here, we find that late-segregating acentric chromosome fragments that rejoin daughter nuclei are associated with nuclear membrane but devoid of lamin and nuclear pore complexes in Drosophila melanogaster. We show that acentrics pass through membrane-, lamin-, and nuclear pore-based channels in the nuclear envelope that extend and retract as acentrics enter nuclei. Membrane encompassing the acentrics fuses with the nuclear membrane, facilitating integration of the acentrics into newly formed nuclei. Fusion, mediated by the membrane fusion protein Comt/NSF and ESCRT-III components Shrub/CHMP4B and CHMP2B, facilitates reintegration of acentrics into nuclei. These results suggest a previously unsuspected role for membrane fusion, similar to nuclear repair, in the formation of a single nucleus during mitotic exit and the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Xi Ling
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
24
|
Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:25150-25158. [PMID: 32968023 PMCID: PMC7547277 DOI: 10.1073/pnas.2011152117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The plasma membrane (PM) acts as the interface between intra- and extracellular environments and is thus important for intercellular communication and extracellular signal perception. The composition and amounts of PM proteins are tightly regulated, by molecular mechanisms that remain largely unknown in plant cells. We identified a pair of ANTH domain-containing proteins functioning as adaptors for the retrieval of VAMP72 members, which are components of the membrane fusion machinery, during clathrin-mediated endocytosis. Our results further indicate that the recycling mechanisms of homologous VAMP7 proteins are different in plants and animals, suggesting a divergence of the endocytosis mechanism between these two kingdoms. The plasma membrane (PM) acts as the interface between intra- and extracellular environments and exhibits a tightly regulated molecular composition. The composition and amount of PM proteins are regulated by balancing endocytic and exocytic trafficking in a cargo-specific manner, according to the demands of specific cellular states and developmental processes. In plant cells, retrieval of membrane proteins from the PM depends largely on clathrin-mediated endocytosis (CME). However, the mechanisms for sorting PM proteins during CME remain ambiguous. In this study, we identified a homologous pair of ANTH domain-containing proteins, PICALM1a and PICALM1b, as adaptor proteins for CME of the secretory vesicle-associated longin-type R-SNARE VAMP72 group. PICALM1 interacted with the SNARE domain of VAMP72 and clathrin at the PM. The loss of function of PICALM1 resulted in faulty retrieval of VAMP72, whereas general endocytosis was not considerably affected by this mutation. The double mutant of PICALM1 exhibited impaired vegetative development, indicating the requirement of VAMP72 recycling for normal plant growth. In the mammalian system, VAMP7, which is homologous to plant VAMP72, is retrieved from the PM via the interaction with a clathrin adaptor HIV Rev-binding protein in the longin domain during CME, which is not functional in the plant system, whereas retrieval of brevin-type R-SNARE members is dependent on a PICALM1 homolog. These results indicate that ANTH domain-containing proteins have evolved to be recruited distinctly for recycling R-SNARE proteins and are critical to eukaryote physiology.
Collapse
|
25
|
Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. Int J Mol Sci 2020; 21:ijms21124565. [PMID: 32604954 PMCID: PMC7349727 DOI: 10.3390/ijms21124565] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
Each follicle represents the basic functional unit of the ovary. From its very initial stage of development, the follicle consists of an oocyte surrounded by somatic cells. The oocyte grows and matures to become fertilizable and the somatic cells proliferate and differentiate into the major suppliers of steroid sex hormones as well as generators of other local regulators. The process by which a follicle forms, proceeds through several growing stages, develops to eventually release the mature oocyte, and turns into a corpus luteum (CL) is known as “folliculogenesis”. The task of this review is to define the different stages of folliculogenesis culminating at ovulation and CL formation, and to summarize the most recent information regarding the newly identified factors that regulate the specific stages of this highly intricated process. This information comprises of either novel regulators involved in ovarian biology, such as Ube2i, Phoenixin/GPR73, C1QTNF, and α-SNAP, or recently identified members of signaling pathways previously reported in this context, namely PKB/Akt, HIPPO, and Notch.
Collapse
|
26
|
Abstract
Coxiella burnetii is a unique bacterial pathogen that replicates to high numbers in a lysosome-like intracellular niche. This study identified host proteins that contribute to the pathogen’s capacity to establish this niche and activate the Dot/Icm secretion system required for intracellular replication. Many host proteins were found to contribute to the establishment of C. burnetii virulence by aiding trafficking of the pathogen to the lysosome and creating the degradative lysosome environment. Pathogenic bacteria are able to sense and adapt to their environment by altering their gene expression profile. Here we demonstrated that C. burnetii detects specific amino acids present in the lysosome using a two-component system that up-regulates expression of genes required for Dot/Icm activity. Coxiella burnetii is an intracellular pathogen that replicates in a lysosome-like vacuole through activation of a Dot/Icm-type IVB secretion system and subsequent translocation of effectors that remodel the host cell. Here a genome-wide small interfering RNA screen and reporter assay were used to identify host proteins required for Dot/Icm effector translocation. Significant, and independently validated, hits demonstrated the importance of multiple protein families required for endocytic trafficking of the C. burnetii-containing vacuole to the lysosome. Further analysis demonstrated that the degradative activity of the lysosome created by proteases, such as TPP1, which are transported to the lysosome by receptors, such as M6PR and LRP1, are critical for C. burnetii virulence. Indeed, the C. burnetii PmrA/B regulon, responsible for transcriptional up-regulation of genes encoding the Dot/Icm apparatus and a subset of effectors, induced expression of a virulence-associated transcriptome in response to degradative products of the lysosome. Luciferase reporter strains, and subsequent RNA-sequencing analysis, demonstrated that particular amino acids activate the C. burnetii PmrA/B two-component system. This study has further enhanced our understanding of C. burnetii pathogenesis, the host–pathogen interactions that contribute to bacterial virulence, and the different environmental triggers pathogens can sense to facilitate virulence.
Collapse
|
27
|
Gates SN, Martin A. Stairway to translocation: AAA+ motor structures reveal the mechanisms of ATP-dependent substrate translocation. Protein Sci 2020; 29:407-419. [PMID: 31599052 PMCID: PMC6954725 DOI: 10.1002/pro.3743] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano-chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide-binding domains form active-site pockets near the subunit interfaces and aromatic pore-loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo-EM structures have been solved for substrate-bound AAA+ translocases that revealed spiral-staircase arrangements of pore-loop residues surrounding substrate polypeptides and indicating a conserved hand-over-hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP-bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP-hydrolysis steps and subunit movements to propel the substrate. Experiments with double-ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP-hydrolysis and mechano-chemical coupling.
Collapse
Affiliation(s)
- Stephanie N. Gates
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative BiosciencesUniversity of California at BerkeleyBerkeleyCalifornia
- Howard Hughes Medical InstituteUniversity of California at BerkeleyBerkeleyCalifornia
| | - Andreas Martin
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCalifornia
- California Institute for Quantitative BiosciencesUniversity of California at BerkeleyBerkeleyCalifornia
- Howard Hughes Medical InstituteUniversity of California at BerkeleyBerkeleyCalifornia
| |
Collapse
|
28
|
Moser T, Grabner CP, Schmitz F. Sensory Processing at Ribbon Synapses in the Retina and the Cochlea. Physiol Rev 2020; 100:103-144. [DOI: 10.1152/physrev.00026.2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, sensory neuroscientists have made major efforts to dissect the structure and function of ribbon synapses which process sensory information in the eye and ear. This review aims to summarize our current understanding of two key aspects of ribbon synapses: 1) their mechanisms of exocytosis and endocytosis and 2) their molecular anatomy and physiology. Our comparison of ribbon synapses in the cochlea and the retina reveals convergent signaling mechanisms, as well as divergent strategies in different sensory systems.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Chad P. Grabner
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany; Auditory Neuroscience Group, Max Planck Institute for Experimental Medicine, Göttingen, Germany; Synaptic Nanophysiology Group, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany; and Institute for Anatomy and Cell Biology, Department of Neuroanatomy, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
29
|
Fan KH, Feingold E, Rosenthal SL, Demirci FY, Ganguli M, Lopez OL, Kamboh MI. Whole-Exome Sequencing Analysis of Alzheimer's Disease in Non-APOE*4 Carriers. J Alzheimers Dis 2020; 76:1553-1565. [PMID: 32651314 PMCID: PMC7484092 DOI: 10.3233/jad-200037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetics of late-onset Alzheimer's disease (AD) is complex due to the heterogeneous nature of the disorder. APOE*4 is the strongest genetic risk factor for AD. Genome-wide association studies have identified more than 30 additional loci, each having relatively small effect size. Known AD loci explain only about 30% of the genetic variance, and thus much of the genetic variance remains unexplained. To identify some of the missing heritability of AD, we analyzed whole-exome sequencing (WES) data focusing on non-APOE*4 carriers from two WES datasets: 720 cases and controls from the University of Pittsburgh and 7,252 cases and controls from the Alzheimer's Disease Sequencing Project. Following separate WES analyses in each dataset, we performed meta-analysis for overlapping markers present in both datasets. Among the four variants reaching the exome-wide significance threshold, three were from known AD loci: APOE/rs7412 (odds ratio (OR) = 0.40; p = 5.46E-24), TOMM40/rs157581 (OR = 1.49; p = 4.04E-07), and TREM2/rs75932628 (OR = 4.00; p = 1.15E-07). The fourth significant variant, rs199533, was from a novel locus on chromosome 17 in the NSF gene (OR = 0.78; p = 2.88E-07). NSF was also significant in the gene-based analysis (p = 1.20E-05). In the GTEx data, NSF/rs199533 is a cis-eQTL for multiple genes in the brain and blood, including NSF that is highly expressed across all brain tissues, including regions that typically show amyloid-β accumulation. Further characterization of genes that are affected by NSF/rs199533 may help to shed light on the roles of these genes in AD etiology.
Collapse
Affiliation(s)
- Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha L. Rosenthal
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary Ganguli
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Anton V, Buntenbroich I, Schuster R, Babatz F, Simões T, Altin S, Calabrese G, Riemer J, Schauss A, Escobar-Henriques M. Plasticity in salt bridge allows fusion-competent ubiquitylation of mitofusins and Cdc48 recognition. Life Sci Alliance 2019; 2:e201900491. [PMID: 31740565 PMCID: PMC6861704 DOI: 10.26508/lsa.201900491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/08/2023] Open
Abstract
Mitofusins are dynamin-related GTPases that drive mitochondrial fusion by sequential events of oligomerization and GTP hydrolysis, followed by their ubiquitylation. Here, we show that fusion requires a trilateral salt bridge at a hinge point of the yeast mitofusin Fzo1, alternatingly forming before and after GTP hydrolysis. Mutations causative of Charcot-Marie-Tooth disease massively map to this hinge point site, underlining the disease relevance of the trilateral salt bridge. A triple charge swap rescues the activity of Fzo1, emphasizing the close coordination of the hinge residues with GTP hydrolysis. Subsequently, ubiquitylation of Fzo1 allows the AAA-ATPase ubiquitin-chaperone Cdc48 to resolve Fzo1 clusters, releasing the dynamin for the next fusion round. Furthermore, cross-complementation within the oligomer unexpectedly revealed ubiquitylated but fusion-incompetent Fzo1 intermediates. However, Cdc48 did not affect the ubiquitylated but fusion-incompetent variants, indicating that Fzo1 ubiquitylation is only controlled after membrane merging. Together, we present an integrated model on how mitochondrial outer membranes fuse, a critical process for their respiratory function but also putatively relevant for therapeutic interventions.
Collapse
Affiliation(s)
- Vincent Anton
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ira Buntenbroich
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ramona Schuster
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Tânia Simões
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Selver Altin
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Gaetano Calabrese
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Jan Riemer
- Institute for Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | | | - Mafalda Escobar-Henriques
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
31
|
Abeliovich H. New gadget in the membrane trafficking toolbox: A novel inhibitor of SNARE priming. J Biol Chem 2019; 294:17186-17187. [DOI: 10.1074/jbc.h119.011334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Abstract
Recent evidence from genetics, animal model systems and biochemical studies suggests that defects in membrane trafficking play an important part in the pathophysiology of Parkinson’s disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most frequent genetic cause of both familial and sporadic PD, and LRRK2 has been suggested as a druggable target for PD. Although the precise physiological function of LRRK2 remains largely unknown, mounting evidence suggests that LRRK2 controls membrane trafficking by interacting with key regulators of the endosomal-lysosomal pathway and synaptic recycling. In this review, we discuss the genetic, biochemical and functional links between LRRK2 and membrane trafficking. Understanding the mechanism by which LRRK2 influences such processes may contribute to the development of disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Eun-Mi Hur
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul 08826, Korea
| | - Eun-Hae Jang
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul 08826, Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Ga Ram Jeong
- Department of Neuroscience, Kyung Hee University, Seoul 02447, Korea
| | - Byoung Dae Lee
- Department of Neuroscience, Kyung Hee University, Seoul 02447, Korea
- Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, Korea
| |
Collapse
|
33
|
Zhang H, Yan H, Shim WB. Fusarium verticillioides SNARE protein FvSyn1 harbours two key functional motifs that play selective roles in fungal development and virulence. MICROBIOLOGY-SGM 2019; 165:1075-1085. [PMID: 31390325 DOI: 10.1099/mic.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fusarium verticillioides is one of the key fungal pathogens responsible for maize stalk rot. While stalk rot pathogens are prevalent worldwide, our understanding of the stalk rot virulence mechanism in pathogenic fungi is still very limited. We previously identified the F. verticillioides FvSYN1 gene, which was demonstrated to play an important role in maize stalk rot virulence. FvSyn1 belongs to a family of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that play critical roles in a variety of developmental processes. In this study, we further characterized the cellular features of the FvSyn1 protein, namely how different motifs contribute to development and virulence in F. verticillioides by generating motif-specific deletion mutants. Microscopic observation showed that the ∆Fvsyn1 mutant exhibits rough and hyper-branched hyphae when compared to the wild-type progenitor. Moreover, the ∆Fvsyn1 mutant was sensitive to cell wall stress agents, resulting in vegetative growth reduction. We showed that the FvSyn1::GFP protein is associated with the endomembrane, but this did not clarify why the deletion of FvSyn1 led to stress sensitivity and aberrant hyphal development. Characterization of the FvSyn1 domains indicated that both the syntaxin N-terminus (SynN) domain and the SNARE C-terminus domain play distinct roles in fungal development, but also function collectively in the context of virulence. We also determined that two domains in FvSyn1 are not required for fumonisin production. Interestingly, these two domains were involved in carbon nutrient utilization, including pectin, starch and sorbitol. This study further characterized the role of FvSyn1 domains in hyphal growth, cell wall stress response and virulence in F. verticillioides.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Huijuan Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
34
|
Steele TE, Glynn SE. Mitochondrial AAA proteases: A stairway to degradation. Mitochondrion 2019; 49:121-127. [PMID: 31377246 DOI: 10.1016/j.mito.2019.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial protein quality control requires the action of proteases to remove damaged or unnecessary proteins and perform key regulatory cleavage events. Important components of the quality control network are the mitochondrial AAA proteases, which capture energy from ATP hydrolysis to destabilize and degrade protein substrates on both sides of the inner membrane. Dysfunction of these proteases leads to the breakdown of mitochondrial proteostasis and is linked to the development of severe human diseases. In this review, we will describe recent insights into the structure and motions of the mitochondrial AAA proteases and related enzymes. Together, these studies have revealed the mechanics of ATP-driven protein destruction and significantly advanced our understanding of how these proteases maintain mitochondrial health.
Collapse
Affiliation(s)
- Tyler E Steele
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Steven E Glynn
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA; Center for Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
35
|
Ruete MC, Zarelli VEP, Masone D, de Paola M, Bustos DM, Tomes CN. A connection between reversible tyrosine phosphorylation and SNARE complex disassembly activity of N-ethylmaleimide-sensitive factor unveiled by the phosphomimetic mutant N-ethylmaleimide-sensitive factor-Y83E. ACTA ACUST UNITED AC 2019; 25:344-358. [DOI: 10.1093/molehr/gaz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/26/2022]
Abstract
Abstract
N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF–Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF–Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF–Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF’s activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF–Y83E.
Collapse
Affiliation(s)
- María Celeste Ruete
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Valeria Eugenia Paola Zarelli
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Instituto de Medicina y Biología Experimental de Cuyo–Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Martín Bustos
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Nora Tomes
- Instituto de Histología y Embriología de Mendoza Dr Mario H. Burgos–CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
36
|
Russell TL, Zhang J, Okoniewski M, Franke F, Bichet S, Hierlemann A. Medullary Respiratory Circuit Is Reorganized by a Seasonally-Induced Program in Preparation for Hibernation. Front Neurosci 2019; 13:376. [PMID: 31080399 PMCID: PMC6497738 DOI: 10.3389/fnins.2019.00376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
Deep hibernators go through several cycles of profound drops in body temperature during the winter season, with core temperatures sometimes reaching near freezing. Yet unlike non-hibernating mammals, they can sustain breathing rhythms. The physiological processes that make this possible are still not understood. In this study, we focused on the medullary Ventral Respiratory Column of a facultative hibernator, the Syrian hamster. Using shortened day-lengths, we induced a "winter-adapted" physiological state, which is a prerequisite for hibernation. When recording electrophysiological signals from acute slices in the winter-adapted pre-Bötzinger complex (preBötC), spike trains showed higher spike rates, amplitudes, complexity, as well as higher temperature sensitivity, suggesting an increase in connectivity and/or synaptic strength during the winter season. We further examined action potential waveforms and found that the depolarization integral, as measured by the area under the curve, is selectively enhanced in winter-adapted animals. This suggests that a shift in the ion handling kinetics is also being induced by the winter-adaptation program. RNA sequencing of respiratory pre-motor neurons, followed by gene set enrichment analysis, revealed differential regulation and splicing in structural, synaptic, and ion handling genes. Splice junction analysis suggested that differential exon usage is occurring in a select subset of ion handling subunits (ATP1A3, KCNC3, SCN1B), and synaptic structure genes (SNCB, SNCG, RAB3A). Our findings show that the hamster respiratory center undergoes a seasonally-cued alteration in electrophysiological properties, likely protecting against respiratory failure at low temperatures.
Collapse
Affiliation(s)
- Thomas L. Russell
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Jichang Zhang
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | | | - Felix Franke
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Sandrine Bichet
- Friedrich Miescher Institute for Biomedical Research, Department of Histology, Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
37
|
Huang X, Sun S, Wang X, Fan F, Zhou Q, Lu S, Cao Y, Wang QW, Dong MQ, Yao J, Sui SF. Mechanistic insights into the SNARE complex disassembly. SCIENCE ADVANCES 2019; 5:eaau8164. [PMID: 30989110 PMCID: PMC6457932 DOI: 10.1126/sciadv.aau8164] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 02/19/2019] [Indexed: 05/16/2023]
Abstract
NSF (N-ethylmaleimide-sensitive factor) and α-SNAP (α-soluble NSF attachment protein) bind to the SNARE (soluble NSF attachment protein receptor) complex, the minimum machinery to mediate membrane fusion, to form a 20S complex, which disassembles the SNARE complex for reuse. We report the cryo-EM structures of the α-SNAP-SNARE subcomplex and the NSF-D1D2 domain in the 20S complex at 3.9- and 3.7-Å resolutions, respectively. Combined with the biochemical and electrophysiological analyses, we find that α-SNAPs use R116 through electrostatic interactions and L197 through hydrophobic interactions to apply force mainly on two positions of the VAMP protein to execute disassembly process. Furthermore, we define the interaction between the amino terminus of the SNARE helical bundle and the pore loop of the NSF-D1 domain and demonstrate its essential role as a potential anchor for SNARE complex disassembly. Our studies provide a rotation model of α-SNAP-mediated disassembly of the SNARE complex.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojing Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fenghui Fan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiang Zhou
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yong Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Corresponding author.
| |
Collapse
|
38
|
Gingell JJ, Hendrikse ER, Hay DL. New Insights into the Regulation of CGRP-Family Receptors. Trends Pharmacol Sci 2019; 40:71-83. [DOI: 10.1016/j.tips.2018.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/29/2022]
|
39
|
Dingjan I, Linders PTA, Verboogen DRJ, Revelo NH, Ter Beest M, van den Bogaart G. Endosomal and Phagosomal SNAREs. Physiol Rev 2018; 98:1465-1492. [PMID: 29790818 DOI: 10.1152/physrev.00037.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein family is of vital importance for organelle communication. The complexing of cognate SNARE members present in both the donor and target organellar membranes drives the membrane fusion required for intracellular transport. In the endocytic route, SNARE proteins mediate trafficking between endosomes and phagosomes with other endosomes, lysosomes, the Golgi apparatus, the plasma membrane, and the endoplasmic reticulum. The goal of this review is to provide an overview of the SNAREs involved in endosomal and phagosomal trafficking. Of the 38 SNAREs present in humans, 30 have been identified at endosomes and/or phagosomes. Many of these SNAREs are targeted by viruses and intracellular pathogens, which thereby reroute intracellular transport for gaining access to nutrients, preventing their degradation, and avoiding their detection by the immune system. A fascinating picture is emerging of a complex transport network with multiple SNAREs being involved in consecutive trafficking routes.
Collapse
Affiliation(s)
- Ilse Dingjan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Peter T A Linders
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Danielle R J Verboogen
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Natalia H Revelo
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; and Department of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
40
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
41
|
Somasundaram A, Taraska JW. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol Biol Cell 2018; 29:1891-1903. [PMID: 29874123 PMCID: PMC6085826 DOI: 10.1091/mbc.e17-12-0716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium-triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine ACh transporter tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are preclustered at fusion sites and rapidly lost at fusion. The ATPase N-ethylmaleimide–sensitive factor is locally recruited at fusion. Interestingly, the endocytic Bin-Amphiphysin-Rvs domain–containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the overexpression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Collapse
Affiliation(s)
- Agila Somasundaram
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
42
|
Qi C, Guo B, Ren K, Yao H, Wang M, Sun T, Cai G, Liu H, Li R, Luo C, Wang W, Wu S. Chronic inflammatory pain decreases the glutamate vesicles in presynaptic terminals of the nucleus accumbens. Mol Pain 2018; 14:1744806918781259. [PMID: 29770746 PMCID: PMC6009081 DOI: 10.1177/1744806918781259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Reward system has been proved to be important to nociceptive behavior, and the nucleus accumbens (NAc) is a key node in reward circuitry. It has been further revealed that dopamine system modulates the NAc to influence the pain sensation, whereas the role of glutamatergic projection in the NAc in the modulation of chronic pain is still elusive. In this study, we used a complete Freund’s adjuvant-induced chronic inflammatory pain model to explore the changes of the glutamatergic terminals in the NAc, and we found that following the chronic inflammation, the protein level of vesicular glutamate transporter1 (VGLUT1) was significantly decreased in the NAc. Immunofluorescence staining further showed a reduced expression of VGLUT1-positive terminals in the dopamine receptor 2 (D2R) spiny projection neurons of NAc after chronic inflammatory pain. Furthermore, using a whole-cell recording in double transgenic mice, in which dopamine receptor 1- and D2R-expressing neurons can be visualized, we found that the frequency of spontaneous excitatory postsynaptic currents was significantly decreased and paired-pulse ratio of evoked excitatory postsynaptic currents was increased in D2R neurons, but not in dopamine receptor 1 neurons in NAc of complete Freund’s adjuvant group. Moreover, the abnormal expression of soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex contributed to the reduced formation of glutamate vesicles. Hence, our results demonstrated that decreased glutamate release in the indirect pathway of the NAc may be a critical mechanism for chronic pain and provided a novel evidence for the presynaptic mechanisms in chronic pain regulation.
Collapse
Affiliation(s)
- Chuchu Qi
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Baolin Guo
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Keke Ren
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Han Yao
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Mengmeng Wang
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Tangna Sun
- 2 Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, P.R. China
| | - Guohong Cai
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Haiying Liu
- 3 Cadet Brigade, Fourth Military Medical University, Xi'an, P.R. China
| | - Rui Li
- 3 Cadet Brigade, Fourth Military Medical University, Xi'an, P.R. China
| | - Ceng Luo
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Wenting Wang
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| | - Shengxi Wu
- 1 Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
43
|
Tanabashi S, Shoda K, Saito C, Sakamoto T, Kurata T, Uemura T, Nakano A. A Missense Mutation in the NSF Gene Causes Abnormal Golgi Morphology in Arabidopsis thaliana. Cell Struct Funct 2018; 43:41-51. [PMID: 29398689 DOI: 10.1247/csf.17026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi apparatus is a key station of glycosylation and membrane traffic. It consists of stacked cisternae in most eukaryotes. However, the mechanisms how the Golgi stacks are formed and maintained are still obscure. The model plant Arabidopsis thaliana provides a nice system to observe Golgi structures by light microscopy, because the Golgi in A. thaliana is in the form of mini-stacks that are distributed throughout the cytoplasm. To obtain a clue to understand the molecular basis of Golgi morphology, we took a forward-genetic approach to isolate A. thaliana mutants that show abnormal structures of the Golgi under a confocal microscope. In the present report, we describe characterization of one of such mutants, named #46-3. The #46-3 mutant showed pleiotropic Golgi phenotypes. The Golgi size was in majority smaller than the wild type, but varied from very small ones, sometimes without clear association of cis and trans cisternae, to abnormally large ones under a confocal microscope. At the ultrastructual level by electron microscopy, queer-shaped large Golgi stacks were occasionally observed. By positional mapping, genome sequencing, and complementation and allelism tests, we linked the mutant phenotype to the missense mutation D374N in the NSF gene, encoding the N-ethylmaleimide-sensitive factor (NSF), a key component of membrane fusion. This residue is near the ATP-binding site of NSF, which is very well conserved in eukaryotes, suggesting that the biochemical function of NSF is important for maintaining the normal morphology of the Golgi.Key words: Golgi morphology, N-ethylmaleimide-sensitive factor (NSF), Arabidopsis thaliana.
Collapse
Affiliation(s)
- Sayuri Tanabashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Keiko Shoda
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute
| | - Chieko Saito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Tomoaki Sakamoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo.,Live Cell Super-Resolution Live Imaging Research Team, RIKEN Center for Advanced Photonics
| |
Collapse
|
44
|
Bustos MA, Lucchesi O, Ruete MC, Tomes CN. Membrane-permeable Rab27A is a regulator of the acrosome reaction: Role of geranylgeranylation and guanine nucleotides. Cell Signal 2018; 44:72-81. [PMID: 29337043 DOI: 10.1016/j.cellsig.2018.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
Abstract
The acrosome reaction is the regulated exocytosis of mammalian sperm's single secretory granule, essential for fertilization. It relies on small GTPases, the cAMP binding protein Epac, and the SNARE complex, among other components. Here, we describe a novel tool to investigate Rab27-related signaling pathways: a hybrid recombinant protein consisting of human Rab27A fused to TAT, a cell penetrating peptide. With this tool, we aimed to unravel the connection between Rab3, Rab27 and Rap1 in sperm exocytosis and to deepen our understanding about how isoprenylation and guanine nucleotides influence the behaviour of Rab27 in exocytosis. Our results show that TAT-Rab27A-GTP-γ-S permeated into live sperm and triggered acrosomal exocytosis per se when geraylgeranylated but inhibited it when not lipid-modified. Likewise, an impermeant version of Rab27A elicited exocytosis in streptolysin O-permeabilized - but not in non-permeabilized - cells when geranylgeranylated and active. When GDP-β-S substituted for GTP-γ-S, isoprenylated TAT-Rab27A inhibited the acrosome reaction triggered by progesterone and an Epac-selective cAMP analogue, whereas the non-isoprenylated protein did not. Geranylgeranylated TAT-Rab27A-GTP-γ-S promoted the exchange of GDP for GTP on Rab3 and Rap1 detected by far-immunofluorescence with Rab3-GTP and Rap1-GTP binding cassettes. In contrast, TAT-Rab27A lacking isoprenylation or loaded with GDP-β-S prevented the activation of Rab3 and Rap1 elicited by progesterone. Challenging streptolysin O-permeabilized human sperm with calcium increased the population of sperm with Rap1-GTP, Rab3-GTP and Rab27-GTP in the acrosomal region; pretreatment with anti-Rab27 antibodies prevented the activation of all three. The novel findings reported here include: the description of membrane permeant TAT-Rab27A as a trustworthy tool to unveil the regulation of the human sperm acrosome reaction by Rab27 under physiological conditions; that the activation of endogenous Rab27 is required for that of Rab3 and Rap1; and the connection between Epac and Rab27 and between Rab27 and the configuration of the SNARE complex. Moreover, we present direct evidence that Rab27A's lipid modification, and activation/inactivation status correlate with its stimulatory or inhibitory roles in exocytosis.
Collapse
Affiliation(s)
- Matías A Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Ornella Lucchesi
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - María C Ruete
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina
| | - Claudia N Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, casilla de correo 56, 5500 Mendoza, Argentina.
| |
Collapse
|
45
|
Stamberger H, Weckhuysen S, De Jonghe P. STXBP1 as a therapeutic target for epileptic encephalopathy. Expert Opin Ther Targets 2017; 21:1027-1036. [DOI: 10.1080/14728222.2017.1386175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hannah Stamberger
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter De Jonghe
- Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
46
|
Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA, Ehrenfeld P, Rivera FJ, Michaut MA, Batiz LF. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci Rep 2017; 7:11765. [PMID: 28924180 PMCID: PMC5603506 DOI: 10.1038/s41598-017-12292-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.
Collapse
Affiliation(s)
- Alexis Arcos
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Matilde de Paola
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Diego Gianetti
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Acuña
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Zahady D Velásquez
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - María Paz Miró
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriela Toro
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Bryan Hinrichsen
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rosa Iris Muñoz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Yimo Lin
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Department of Neurosurgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Gonzalo A Mardones
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Ehrenfeld
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile.,Institute of Molecular Regenerative Medicine, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, A-5020, Austria
| | - Marcela A Michaut
- Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina. .,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina.
| | - Luis Federico Batiz
- Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile. .,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile. .,Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
47
|
Yang Z, Gou L, Chen S, Li N, Zhang S, Zhang L. Membrane Fusion Involved in Neurotransmission: Glimpse from Electron Microscope and Molecular Simulation. Front Mol Neurosci 2017. [PMID: 28638320 PMCID: PMC5461332 DOI: 10.3389/fnmol.2017.00168] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Membrane fusion is one of the most fundamental physiological processes in eukaryotes for triggering the fusion of lipid and content, as well as the neurotransmission. However, the architecture features of neurotransmitter release machinery and interdependent mechanism of synaptic membrane fusion have not been extensively studied. This review article expounds the neuronal membrane fusion processes, discusses the fundamental steps in all fusion reactions (membrane aggregation, membrane association, lipid rearrangement and lipid and content mixing) and the probable mechanism coupling to the delivery of neurotransmitters. Subsequently, this work summarizes the research on the fusion process in synaptic transmission, using electron microscopy (EM) and molecular simulation approaches. Finally, we propose the future outlook for more exciting applications of membrane fusion involved in synaptic transmission, with the aid of stochastic optical reconstruction microscopy (STORM), cryo-EM (cryo-EM), and molecular simulations.
Collapse
Affiliation(s)
- Zhiwei Yang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China.,Department of Applied Chemistry, Xi'an Jiaotong UniversityXi'an, China.,School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Lu Gou
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Shuyu Chen
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Na Li
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Shengli Zhang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| | - Lei Zhang
- Department of Applied Physics, Xi'an Jiaotong UniversityXi'an, China
| |
Collapse
|
48
|
Pavlos NJ, Friedman PA. GPCR Signaling and Trafficking: The Long and Short of It. Trends Endocrinol Metab 2017; 28:213-226. [PMID: 27889227 PMCID: PMC5326587 DOI: 10.1016/j.tem.2016.10.007] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/24/2023]
Abstract
Emerging findings disclose unexpected components of G protein-coupled receptor (GPCR) signaling and cell biology. Select GPCRs exhibit classical signaling, that is restricted to cell membranes, as well as newly described persistent signaling that depends on internalization of the GPCR bound to β-arrestins. Termination of non-canonical endosomal signaling requires intraluminal acidification and sophisticated protein trafficking machineries. Recent studies reveal the structural determinants of the trafficking chaperones. This review summarizes advances in GPCR signaling and trafficking with a focus on the parathyroid hormone receptor (PTHR) as a prototype, and on the actin-sorting nexin 27 (SNX27)-retromer tubule (ASRT) complex, an endosomal sorting hub responsible for recycling and preservation of cell surface receptors. The findings are integrated into a model of PTHR trafficking with implications for signal transduction, bone growth, and mineral ion metabolism.
Collapse
Affiliation(s)
- Nathan J Pavlos
- Cellular Orthopaedic Laboratory, School of Surgery, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter A Friedman
- Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, Department of Structural Biology University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
49
|
Han J, Pluhackova K, Böckmann RA. The Multifaceted Role of SNARE Proteins in Membrane Fusion. Front Physiol 2017; 8:5. [PMID: 28163686 PMCID: PMC5247469 DOI: 10.3389/fphys.2017.00005] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/04/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane fusion is a key process in all living organisms that contributes to a variety of biological processes including viral infection, cell fertilization, as well as intracellular transport, and neurotransmitter release. In particular, the various membrane-enclosed compartments in eukaryotic cells need to exchange their contents and communicate across membranes. Efficient and controllable fusion of biological membranes is known to be driven by cooperative action of SNARE proteins, which constitute the central components of the eukaryotic fusion machinery responsible for fusion of synaptic vesicles with the plasma membrane. During exocytosis, vesicle-associated v-SNARE (synaptobrevin) and target cell-associated t-SNAREs (syntaxin and SNAP-25) assemble into a core trans-SNARE complex. This complex plays a versatile role at various stages of exocytosis ranging from the priming to fusion pore formation and expansion, finally resulting in the release or exchange of the vesicle content. This review summarizes current knowledge on the intricate molecular mechanisms underlying exocytosis triggered and catalyzed by SNARE proteins. Particular attention is given to the function of the peptidic SNARE membrane anchors and the role of SNARE-lipid interactions in fusion. Moreover, the regulatory mechanisms by synaptic auxiliary proteins in SNARE-driven membrane fusion are briefly outlined.
Collapse
Affiliation(s)
- Jing Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China; Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-NürnbergErlangen, Germany
| | - Kristyna Pluhackova
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander Universität Erlangen-Nürnberg Erlangen, Germany
| |
Collapse
|
50
|
Kienle N, Kloepper TH, Fasshauer D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol 2016; 16:215. [PMID: 27756227 PMCID: PMC5070193 DOI: 10.1186/s12862-016-0790-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Background A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. Results Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. Conclusions Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0790-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nickias Kienle
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Tobias H Kloepper
- Sir William Dunn School of Pathology, Research Group Cell Biology of Intercellular Signaling, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Dirk Fasshauer
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|