1
|
Pohlit H, Bohlin J, Katiyar N, Hilborn J, Tenje M. Technology platform for facile handling of 3D hydrogel cell culture scaffolds. Sci Rep 2023; 13:12829. [PMID: 37550357 PMCID: PMC10406881 DOI: 10.1038/s41598-023-39081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Hydrogels are used extensively as cell-culture scaffolds for both 2D and 3D cell cultures due to their biocompatibility and the ease in which their mechanical and biological properties can be tailored to mimic natural tissue. The challenge when working with hydrogel-based scaffolds is in their handling, as hydrogels that mimic e.g. brain tissue, are both fragile and brittle when prepared as thin (sub-mm) membranes. Here, we describe a method for facile handling of thin hydrogel cell culture scaffolds by molding them onto a polycaprolactone (PCL) mesh support attached to a commonly used Transwell set-up in which the original membrane has been removed. In addition to demonstrating the assembly of this set-up, we also show some applications for this type of biological membrane. A polyethylene glycol (PEG)-gelatin hydrogel supports cell adhesion, and the structures can be used for biological barrier models comprising either one or multiple hydrogel layers. Here, we demonstrate the formation of a tight layer of an epithelial cell model comprising MDCK cells cultured over 9 days by following the build-up of the transepithelial electrical resistances. Second, by integrating a pure PEG hydrogel into the PCL mesh, significant swelling is induced, which leads to the formation of a non-adherent biological scaffold with a large curvature that is useful for spheroid formation. In conclusion, we demonstrate the development of a handling platform for hydrogel cell culture scaffolds for easy integration with conventional measurement techniques and miniaturized organs-on-chip systems.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jan Bohlin
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Neeraj Katiyar
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Maria Tenje
- Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Xu X, Li X, Qiu S, Zhou Y, Li L, Chen X, Zheng K, Xu Y. Concentration Selection of Biofriendly Enzyme-Modified Gelatin Hydrogels for Periodontal Bone Regeneration. ACS Biomater Sci Eng 2023; 9:4341-4355. [PMID: 37294274 DOI: 10.1021/acsbiomaterials.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Periodontitis is challenging to cure radically due to its complex periodontal structure and particular microenvironment of dysbiosis and inflammation. However, with the assistance of various materials, cell osteogenic differentiation could be improved, and the ability of hard tissue regeneration could be enhanced. This study aimed to explore the appropriate concentration ratio of biofriendly transglutaminase-modified gelatin hydrogels for promoting periodontal alveolar bone regeneration. Through a series of characterization and cell experiments, we found that all the hydrogels possessed multi-space network structures and demonstrated their biocompatibility. In vivo and in vitro osteogenic differentiation experiments also confirmed that the group 40-5 (transglutaminase-gelatin concentration ratio) possessed a favorable osteogenic potential. In summary, we conclude that such hydrogel with a 40-5 concentration is most conducive to promoting periodontal bone reconstruction, which might be a new route to deal with the dilemma of clinical periodontal treatment.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xu Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
3
|
Liu HC, Kijanka P, Urban MW. Two-dimensional (2D) dynamic vibration optical coherence elastography (DV-OCE) for evaluating mechanical properties: a potential application in tissue engineering. BIOMEDICAL OPTICS EXPRESS 2021; 12:1217-1235. [PMID: 33796348 PMCID: PMC7984779 DOI: 10.1364/boe.416661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Mechanical properties in tissues are an important indicator because they are associated with disease states. One of the well-known excitation sources in optical coherence elastography (OCE) to determine mechanical properties is acoustic radiation force (ARF); however, a complicated focusing alignment cannot be avoided. Another excitation source is a piezoelectric (PZT) stack to obtain strain images via compression, which can affect the intrinsic mechanical properties of tissues in tissue engineering. In this study, we report a new technique called two-dimensional (2D) dynamic vibration OCE (DV-OCE) to evaluate 2D wave velocities without tedious focusing alignment procedures and is a non-contact method with respect to the samples. The three-dimensional (3D) Fourier transform was utilized to transfer the traveling waves (x, y, t) into 3D k-space (kx, ky, f). A spatial 2D wavenumber filter and multi-angle directional filter were employed to decompose the waves with omni-directional components into four individual traveling directions. The 2D local wave velocity algorithm was used to calculate a 2D wave velocity map. Six materials, two homogeneous phantoms with 10 mm thickness, two homogeneous phantoms with 2 mm thickness, one heterogeneous phantom with 2 mm diameter inclusion and an ex vivo porcine kidney, were examined in this study. In addition, the ARF-OCE was used to evaluate wave velocities for comparison. Numerical simulations were performed to validate the proposed 2D dynamic vibration OCE technique. We demonstrate that the experimental results were in a good agreement with the results from ARF-OCE (transient OCE) and numerical simulations. Our proposed 2D dynamic vibration OCE could potentially pave the way for mechanical evaluation in tissue engineering and for laboratory translation with easy-to-setup and contactless advantages.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Piotr Kijanka
- Department of Robotics and Mechatronics, AGH University of Science and Technology, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Jensen JH, Cakal SD, Li J, Pless CJ, Radeke C, Jepsen ML, Jensen TE, Dufva M, Lind JU. Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates. Sci Rep 2020; 10:13305. [PMID: 32764726 PMCID: PMC7411013 DOI: 10.1038/s41598-020-69936-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/15/2020] [Indexed: 11/09/2022] Open
Abstract
Cellular self-organization is the fundamental driving force behind the complex architectures of native tissue. Yet, attempts at replicating native tissue architectures in vitro often involve complex micro-fabrication methods and materials. While impressive progress has been made within engineered models of striated muscle, the wide adaptation of these models is held back by the need for specific tools and knowhow. In this report, we show that C2C12 myoblasts spontaneously organize into highly aligned myotube tissues on the mm to cm scale, when cultured on sufficiently soft yet fully isotropic gelatin hydrogel substrates. Interestingly, we only observed this phenomenon for hydrogels with Young’s modulus of 6 kPa and below. For slightly more rigid compositions, only local micrometer-scale myotube organization was observed, similar to that seen in conventional polystyrene dishes. The hydrogel-supported myotubes could be cultured for multiple weeks and matured into highly contractile phenotypes with notable upregulation of myosin heavy chain, as compared to myotubes developed in conventional petri dishes. The procedure for casting the ultra-soft gelatin hydrogels is straight forward and compatible with standardized laboratory tools. It may thus serve as a simple, yet versatile, approach to generating skeletal muscle tissue of improved physiological relevance for applied and basic research.
Collapse
Affiliation(s)
- Joen H Jensen
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Selgin D Cakal
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Jingwen Li
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, København Ø, Denmark
| | - Christian J Pless
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Carmen Radeke
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Morten Leth Jepsen
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100, København Ø, Denmark
| | - Martin Dufva
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark. .,The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.
| | - Johan U Lind
- Department of Health Technology, Technical University of Denmark, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Leth Jepsen M, Willumsen A, Mazzoni C, Boisen A, Hagner Nielsen L, Dufva M. 3D Printed Stackable Titer Plate Inserts Supporting Three Interconnected Tissue Models for Drug Transport Studies. ACTA ACUST UNITED AC 2020; 4:e1900289. [DOI: 10.1002/adbi.201900289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/17/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Morten Leth Jepsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Andreas Willumsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Chiara Mazzoni
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| | - Martin Dufva
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN)Department of Health TechnologyTechnical University of Denmark Ørsteds Plads 345C Kgs. Lyngby 2800 Denmark
| |
Collapse
|
6
|
Lee DH, Tamura A, Arisaka Y, Seo JH, Yui N. Mechanically Reinforced Gelatin Hydrogels by Introducing Slidable Supramolecular Cross-Linkers. Polymers (Basel) 2019; 11:E1787. [PMID: 31683825 PMCID: PMC6918157 DOI: 10.3390/polym11111787] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Tough mechanical properties are generally required for tissue substitutes used in regeneration of damaged tissue, as these substitutes must be able to withstand the external physical force caused by stretching. Gelatin, a biopolymer derived from collagen, is a biocompatible and cell adhesive material, and is thus widely utilized as a component of biomaterials. However, the application of gelatin hydrogels as a tissue substitute is limited owing to their insufficient mechanical properties. Chemical cross-linking is a promising method to improve the mechanical properties of hydrogels. We examined the potential of the chemical cross-linking of gelatin hydrogels with carboxy-group-modified polyrotaxanes (PRXs), a supramolecular polymer comprising a poly(ethylene glycol) chain threaded into the cavity of α-cyclodextrins (α-CDs), to improve mechanical properties such as stretchability and toughness. Cross-linking gelatin hydrogels with threading α-CDs in PRXs could allow for freely mobile cross-linking points to potentially improve the mechanical properties. Indeed, the stretchability and toughness of gelatin hydrogels cross-linked with PRXs were slightly higher than those of the hydrogels with the conventional chemical cross-linkers 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS). In addition, the hysteresis loss of gelatin hydrogels cross-linked with PRXs after repeated stretching and relaxation cycles in a hydrated state was remarkably improved in comparison with that of conventional cross-linked hydrogels. It is considered that the freely mobile cross-linking points of gelatin hydrogels cross-linked with PRXs attenuates the stress concentration. Accordingly, gelatin hydrogels cross-linked with PRXs would provide excellent mechanical properties as biocompatible tissue substitutes exposed to a continuous external physical force.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| | - Ji-Hun Seo
- Department of Materials Science and Engineering, School of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan.
| |
Collapse
|