1
|
Li C, He Q, Wang Y, Wang Z, Wang Z, Annapooranan R, Latz MI, Cai S. Highly robust and soft biohybrid mechanoluminescence for optical signaling and illumination. Nat Commun 2022; 13:3914. [PMID: 35798737 PMCID: PMC9263131 DOI: 10.1038/s41467-022-31705-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
Biohybrid is a newly emerging and promising approach to construct soft robotics and soft machines with novel functions, high energy efficiency, great adaptivity and intelligence. Despite many unique advantages of biohybrid systems, it is well known that most biohybrid systems have a relatively short lifetime, require complex fabrication process, and only remain functional with careful maintenance. Herein, we introduce a simple method to create a highly robust and power-free soft biohybrid mechanoluminescence, by encapsulating dinoflagellates, bioluminescent unicellular marine algae, into soft elastomeric chambers. The dinoflagellates retain their intrinsic bioluminescence, which is a near-instantaneous light response to mechanical forces. We demonstrate the robustness of various geometries of biohybrid mechanoluminescent devices, as well as potential applications such as visualizing external mechanical perturbations, deformation-induced illumination, and optical signaling in a dark environment. Our biohybrid mechanoluminescent devices are ultra-sensitive with fast response time and can maintain their light emission capability for weeks without special maintenance.
Collapse
Affiliation(s)
- Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qiguang He
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yang Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhijian Wang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zijun Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Raja Annapooranan
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, USA. .,Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Rifaie‐Graham O, Galensowske NFB, Dean C, Pollard J, Balog S, Gouveia MG, Chami M, Vian A, Amstad E, Lattuada M, Bruns N. Shear Stress-Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angew Chem Int Ed Engl 2021; 60:904-909. [PMID: 32961006 PMCID: PMC7839717 DOI: 10.1002/anie.202010099] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/22/2022]
Abstract
Some marine plankton called dinoflagellates emit light in response to the movement of surrounding water, resulting in a phenomenon called milky seas or sea sparkle. The underlying concept, a shear-stress induced permeabilisation of biocatalytic reaction compartments, is transferred to polymer-based nanoreactors. Amphiphilic block copolymers that carry nucleobases in their hydrophobic block are self-assembled into polymersomes. The membrane of the vesicles can be transiently switched between an impermeable and a semipermeable state by shear forces occurring in flow or during turbulent mixing of polymersome dispersions. Nucleobase pairs in the hydrophobic leaflet separate when mechanical force is applied, exposing their hydrogen bonding motifs and therefore making the membrane less hydrophobic and more permeable for water soluble compounds. This polarity switch is used to release payload of the polymersomes on demand, and to activate biocatalytic reactions in the interior of the polymersomes.
Collapse
Affiliation(s)
- Omar Rifaie‐Graham
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
- Current address: Department of Materials and Department of BioengineeringInstitute of Biomedical EngineeringImperial College LondonExhibition RoadLondonSW7 2AZUK
| | | | - Charlie Dean
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Jonas Pollard
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Sandor Balog
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Micael G. Gouveia
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building, 295 Cathedral StreetGlasgowG1 1XLUK
| | - Mohamed Chami
- BioEM labCenter of Cellular Imaging and NanoAnalytics (C-CINA)BiozentrumUniversity of BaselMattenstrasse 264058BaselSwitzerland
| | - Antoine Vian
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-SMALMXC 231 Station 121015LausanneSwitzerland
| | - Esther Amstad
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-SMALMXC 231 Station 121015LausanneSwitzerland
| | - Marco Lattuada
- Department of ChemistryUniversity of FribourgChemin du Musée 91700FribourgSwitzerland
| | - Nico Bruns
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
- Department of Pure and Applied ChemistryUniversity of StrathclydeThomas Graham Building, 295 Cathedral StreetGlasgowG1 1XLUK
| |
Collapse
|
3
|
Rifaie‐Graham O, Galensowske NFB, Dean C, Pollard J, Balog S, Gouveia MG, Chami M, Vian A, Amstad E, Lattuada M, Bruns N. Shear Stress‐Responsive Polymersome Nanoreactors Inspired by the Marine Bioluminescence of Dinoflagellates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Omar Rifaie‐Graham
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
- Current address: Department of Materials and Department of Bioengineering Institute of Biomedical Engineering Imperial College London Exhibition Road London SW7 2AZ UK
| | | | - Charlie Dean
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Jonas Pollard
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Micael G. Gouveia
- Department of Pure and Applied Chemistry University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| | - Mohamed Chami
- BioEM lab Center of Cellular Imaging and NanoAnalytics (C-CINA) Biozentrum University of Basel Mattenstrasse 26 4058 Basel Switzerland
| | - Antoine Vian
- Soft Materials Laboratory Institute of Materials École Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-SMAL MXC 231 Station 12 1015 Lausanne Switzerland
| | - Esther Amstad
- Soft Materials Laboratory Institute of Materials École Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-SMAL MXC 231 Station 12 1015 Lausanne Switzerland
| | - Marco Lattuada
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
- Department of Pure and Applied Chemistry University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
4
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
5
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
6
|
Araujo JV, Rifaie-Graham O, Apebende EA, Bruns N. Self-reporting Polymeric Materials with Mechanochromic Properties. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels–Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.
Collapse
Affiliation(s)
- Jose V. Araujo
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Edward A. Apebende
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
7
|
Deane GB, Stokes MD, Latz MI. Bubble stimulation efficiency of dinoflagellate bioluminescence. LUMINESCENCE 2015; 31:270-80. [PMID: 26061152 DOI: 10.1002/bio.2957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/07/2015] [Accepted: 05/08/2015] [Indexed: 11/10/2022]
Abstract
Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.
Collapse
Affiliation(s)
- Grant B Deane
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - M Dale Stokes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Latz MI, Bovard M, VanDelinder V, Segre E, Rohr J, Groisman A. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. ACTA ACUST UNITED AC 2008; 211:2865-75. [PMID: 18723546 DOI: 10.1242/jeb.011890] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dinoflagellate bioluminescence serves as a model system for examining mechanosensing by suspended motile unicellular organisms. The response latency, i.e. the delay time between the mechanical stimulus and luminescent response, provides information about the mechanotransduction and signaling process, and must be accurately known for dinoflagellate bioluminescence to be used as a flow visualization tool. This study used a novel microfluidic device to measure the response latency of a large number of individual dinoflagellates with a resolution of a few milliseconds. Suspended cells of several dinoflagellate species approximately 35 microm in diameter were directed through a 200 microm deep channel to a barrier with a 15 microm clearance impassable to the cells. Bioluminescence was stimulated when cells encountered the barrier and experienced an abrupt increase in hydrodynamic drag, and was imaged using high numerical aperture optics and a high-speed low-light video system. The average response latency for Lingulodinium polyedrum strain HJ was 15 ms (N>300 cells) at the three highest flow rates tested, with a minimum latency of 12 ms. Cells produced multiple flashes with an interval as short as 5 ms between individual flashes, suggesting that repeat stimulation involved a subset of the entire intracellular signaling pathway. The mean response latency for the dinoflagellates Pyrodinium bahamense, Alexandrium monilatum and older and newer isolates of L. polyedrum ranged from 15 to 22 ms, similar to the latencies previously determined for larger dinoflagellates with different morphologies, possibly reflecting optimization of dinoflagellate bioluminescence as a rapid anti-predation behavior.
Collapse
Affiliation(s)
- Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol Bioeng 2007; 98:772-88. [PMID: 17497730 DOI: 10.1002/bit.21476] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A second generation flow contraction device was developed and modeled which allows cells to be subjected to well-defined hydrodynamic forces. Studies were conducted with this system on wild-type Chinese Hamster Ovary cells (CHO-K1) and a strain of CHO cells which expresses the human Bcl-2 triangle gene (CHO-bcl-2). In this study, the following questions were asked: (1) Does an acute hydrodynamic force induce apoptosis in wild-type CHO and CHO-bcl-2 cells? (2) Does the type of culture media make a difference with respect to the induction of apoptosis or necrosis? and (3) Does culture history affect induction of apoptosis or necrosis? The results obtained with this new flow contraction device and corresponding computer simulations are consistent with previously published studies with respect to the level of energy dissipation rate (EDR) required to create significant cell lysis. Second, while detectable relative to the control in the T-flask experiments, only a small fraction of the cells become apoptotic when exposed to a sub-lysis level of EDR (<10(8) W x m(-3)). Third, cells cultured in suspension with serum free media do not exhibit any higher or lower sensitivity (with respect to apoptosis) to various levels of EDR when compared to control cultures grown in T-flask and serum containing media; on the other hand, necrosis is significantly increased in experiments performed on suspended cells without serum. Fourth, the addition of the Bcl-2 gene product might slightly reduce the occurrence of apoptosis in T-flask culture; however, the baseline response is so low that the difference is insignificant.
Collapse
Affiliation(s)
- Mike Mollet
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Ave., Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
10
|
Chen AK, Latz MI, Sobolewski P, Frangos JA. Evidence for the role of G-proteins in flow stimulation of dinoflagellate bioluminescence. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2020-7. [PMID: 17322118 DOI: 10.1152/ajpregu.00649.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Luminescent dinoflagellates respond to flow by the production of light. The primary mechanotransduction event is unknown, although downstream events include a calcium flux in the cytoplasm, a self-propagating action potential across the vacuole membrane, and a proton flux into the cytoplasm that activates the luminescent chemistry. Given the role of GTP-binding (G) proteins in the mechanotransduction of flow by nonmarine cells and the presence of G-proteins in dinoflagellates, it was hypothesized that flow-stimulated dinoflagellate bioluminescence involves mechanotransduction by G-proteins. In the present study, osmotic swelling of cells of the dinoflagellate Lingulodinium polyedrum was used as a drug delivery system to introduce GDPbetaS, an inhibitor of G-protein activation. Osmotically swollen cells produced higher levels of flow-stimulated bioluminescence at a lower threshold of shear stress, indicating they were more flow sensitive. GDPbetaS inhibited flow-stimulated bioluminescence in osmotically swollen cells and in cells that were restored to the isosmotic condition following hypoosmotic treatment with GDPbetaS. These results provide evidence that G-proteins are involved in the mechanotransduction of flow in dinoflagellates and suggest that G-protein involvement in mechanotransduction may be a fundamental evolutionary adaptation.
Collapse
Affiliation(s)
- Antony K Chen
- La Jolla Bioengineering Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
11
|
Camacho FG, Rodríguez JG, Mirón AS, García MCC, Belarbi EH, Chisti Y, Grima EM. Biotechnological significance of toxic marine dinoflagellates. Biotechnol Adv 2006; 25:176-94. [PMID: 17208406 DOI: 10.1016/j.biotechadv.2006.11.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.
Collapse
Affiliation(s)
- F Garcia Camacho
- Department of Chemical Engineering, University of Almería, 04120 Almería, Spain.
| | | | | | | | | | | | | |
Collapse
|
12
|
Deane GB, Stokes MD. A quantitative model for flow-induced bioluminescence in dinoflagellates. J Theor Biol 2005; 237:147-69. [PMID: 15975605 DOI: 10.1016/j.jtbi.2005.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 03/23/2005] [Accepted: 04/01/2005] [Indexed: 11/19/2022]
Abstract
A model is presented for the flash response of bioluminescent dinoflagellates stimulated by fluid shear. The model is based on the idea that the response of an individual cell to stimulation is inherently probabilistic, and can be modeled as a Poisson process over short time scales. A new cell parameter, the cell anxiety, is introduced to parameterize the probability of flashing. The statistical model is incorporated into a description of fully developed fluid flow in pipes and a cylindrical Couette chamber, and found to compare favorably with previously published data from experiments.
Collapse
Affiliation(s)
- G B Deane
- Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0238, USA.
| | | |
Collapse
|
13
|
Latz MI, Juhl AR, Ahmed AM, Elghobashi SE, Rohr J. Hydrodynamic stimulation of dinoflagellate bioluminescence: a computational and experimental study. J Exp Biol 2004; 207:1941-51. [PMID: 15107447 DOI: 10.1242/jeb.00973] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYDinoflagellate bioluminescence provides a near-instantaneous reporter of cell response to flow. Although both fluid shear stress and acceleration are thought to be stimulatory, previous studies have used flow fields dominated by shear. In the present study, computational and experimental approaches were used to assess the relative contributions to bioluminescence stimulation of shear stress and acceleration in a laminar converging nozzle. This flow field is characterized by separate regions of pronounced acceleration away from the walls, and shear along the wall. Bioluminescence of the dinoflagellates Lingulodinium polyedrum and Ceratocorys horrida, chosen because of their previously characterized different flow sensitivities, was imaged with a low-light video system. Numerical simulations were used to calculate the position of stimulated cells and the levels of acceleration and shear stress at these positions. Cells were stimulated at the nozzle throat within the wall boundary layer where, for that downstream position, shear stress was relatively high and acceleration relatively low. Cells of C. horrida were always stimulated significantly higher in the flow field than cells of L. polyedrum and at lower flow rates, consistent with their greater flow sensitivity. For both species, shear stress levels at the position of stimulated cells were similar to but slightly greater than previously determined response thresholds using independent flow fields. L. polyedrum did not respond in conditions where acceleration was as high as 20 g. These results indicate that shear stress, rather than acceleration, was the stimulatory component of flow. Thus, even in conditions of high acceleration, dinoflagellate bioluminescence is an effective marker of shear stress.
Collapse
Affiliation(s)
- Michael I Latz
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA.
| | | | | | | | | |
Collapse
|
14
|
|