1
|
Wu P, Chen H, Chen Y, Zhang Y, Yuan J. Microbial synthesis of branched-chain β,γ-diols from amino acid metabolism. Nat Commun 2025; 16:4568. [PMID: 40379653 PMCID: PMC12084309 DOI: 10.1038/s41467-025-59753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/01/2025] [Indexed: 05/19/2025] Open
Abstract
Microbial synthesis of chemicals using renewable feedstocks has gained interest due to its sustainability. The class of β,γ-diols has unique chemical and physical properties, making them valuable for diverse applications. Here, we report a biosynthetic platform in Escherichia coli for the synthesis of branched-chain β,γ-diols from renewable feedstocks. Firstly, we identify an acetohydroxyacid synthase from Saccharomyces cerevisiae to catalyze the condensation of branched-chain aldehydes with pyruvate, forming α-hydroxyketones. Next, de novo production of branched-chain β,γ-diols (4-methylpentane-2,3-diol, 5-methylhexane-2,3-diol and 4-methylhexane-2,3-diol) is realized from branched-chain amino acids (BCAA) metabolism. After systematic optimization of the BCAA pathway, we have achieved high-specificity production of 4-methylpentane-2,3-diol from glucose, achieving 129.8 mM (15.3 g/L) 4-methylpentane-2,3-diol with 72% of the theoretical yield. In summary, our work demonstrates the synthesis of structurally diverse branched-chain β,γ-diols, highlighting its potential as a versatile carbon elongation system for other β,γ-diol productions.
Collapse
Affiliation(s)
- Peiling Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Haofeng Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yueyang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, China.
| |
Collapse
|
2
|
Wu P, Luo D, Wang Y, Shang X, Wang B, Deng X, Yuan J. Biosynthesis of Diverse Ephedra-Type Alkaloids via a Newly Identified Enzymatic Cascade. BIODESIGN RESEARCH 2024; 6:0048. [PMID: 39228751 PMCID: PMC11371322 DOI: 10.34133/bdr.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/11/2024] [Indexed: 09/05/2024] Open
Abstract
Ephedra-type alkaloids represent a large class of natural and synthetic phenylpropanolamine molecules with great pharmaceutical values. However, the existing methods typically rely on chemical approaches to diversify the N-group modification of Ephedra-type alkaloids. Herein, we report a 2-step enzymatic assembly line for creating structurally diverse Ephedra-type alkaloids to replace the conventional chemical modification steps. We first identified a new carboligase from Bacillus subtilis (BsAlsS, acetolactate synthase) as a robust catalyst to yield different phenylacetylcarbinol (PAC) analogs from diverse aromatic aldehydes with near 100% conversions. Subsequently, we screened imine reductases (IREDs) for the reductive amination of PAC analogs. It was found that IRG02 from Streptomyces albidoflavus had good activities with conversions ranging from 37% to 84% for the reductive alkylamination with diverse amine partners such as allylamine, propargylamine, and cyclopropylamine. Overall, 3 new bio-modifications at the N-group of Ephedra-type alkaloids were established. Taken together, our work lays a foundation for the future implementation of biocatalysis for synthesizing structurally diverse Ephedra-type alkaloids with potential new pharmaceutical applications.
Collapse
Affiliation(s)
- Peiling Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Ding Luo
- College of Chemistry and Chemical Engineering,
Xiamen University, Fujian 361105, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Xiaoxu Shang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Binju Wang
- College of Chemistry and Chemical Engineering,
Xiamen University, Fujian 361105, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
| | - Jifeng Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences,
Faculty of Medicine and Life Sciences, Xiamen University, Fujian 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
3
|
Wang HL, Sun HP, Zheng PR, Cheng RT, Liu ZW, Yuan H, Gao WY, Li H. Re-investigation of in vitro activity of acetohydroxyacid synthase I holoenzyme from Escherichia coli. Arch Biochem Biophys 2024; 754:109962. [PMID: 38499055 DOI: 10.1016/j.abb.2024.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Acetohydroxyacid synthase (AHAS) is one of the key enzymes of the biosynthesis of branched-chain amino acids, it is also an effective target for the screening of herbicides and antibiotics. In this study we present a method for preparing Escherichia coli AHAS I holoenzyme (EcAHAS I) with exceptional stability, which provides a solid ground for us to re-investigate the in vitro catalytic properties of the protein. The results show EcAHAS I synthesized in this way exhibits similar function to Bacillus subtilis acetolactate synthase in its catalysis with pyruvate and 2-ketobutyrate (2-KB) as dual-substrate, producing four 2-hydroxy-3-ketoacids including (S)-2-acetolactate, (S)-2-aceto-2-hydroxybutyrate, (S)-2-propionyllactate, and (S)-2-propionyl-2-hydroxybutyrate. Quantification of the reaction indicates that the two substrates almost totally consume, and compound (S)-2-aceto-2- hydroxybutyrate forms in the highest yield among the four major products. Moreover, the protein also condenses two molecules of 2-KB to furnish (S)-2-propionyl-2-hydroxybutyrate. Further exploration manifests that EcAHAS I ligates pyruvate/2-KB and nitrosobenzene to generate two arylhydroxamic acids N-hydroxy-N-phenylacetamide and N-hydroxy-N-phenyl- propionamide. These findings enhance our comprehension of the catalytic characteristics of EcAHAS I. Furthermore, the application of this enzyme as a catalyst in construction of C-N bonds displays promising potential.
Collapse
Affiliation(s)
- Hai-Ling Wang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Hui-Peng Sun
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Pei-Rong Zheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Rui-Tong Cheng
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Zhi-Wen Liu
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Heng Yuan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
4
|
Engineering the 2-Oxoglutarate Dehydrogenase Complex to Understand Catalysis and Alter Substrate Recognition. REACTIONS 2022. [DOI: 10.3390/reactions3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The E. coli 2-oxoglutarate dehydrogenase complex (OGDHc) is a multienzyme complex in the tricarboxylic acid cycle, consisting of multiple copies of three components, 2-oxoglutarate dehydrogenase (E1o), dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3), which catalyze the formation of succinyl-CoA and NADH (+H+) from 2-oxoglutarate. This review summarizes applications of the site saturation mutagenesis (SSM) to engineer E. coli OGDHc with mechanistic and chemoenzymatic synthetic goals. First, E1o was engineered by creating SSM libraries at positions His260 and His298.Variants were identified that: (a) lead to acceptance of substrate analogues lacking the 5-carboxyl group and (b) performed carboligation reactions producing acetoin-like compounds with good enantioselectivity. Engineering the E2o catalytic (core) domain enabled (a) assignment of roles for pivotal residues involved in catalysis, (b) re-construction of the substrate-binding pocket to accept substrates other than succinyllysyldihydrolipoamide and (c) elucidation of the mechanism of trans-thioesterification to involve stabilization of a tetrahedral oxyanionic intermediate with hydrogen bonds by His375 and Asp374, rather than general acid–base catalysis which has been misunderstood for decades. The E. coli OGDHc is the first example of a 2-oxo acid dehydrogenase complex which was evolved to a 2-oxo aliphatic acid dehydrogenase complex by engineering two consecutive E1o and E2o components.
Collapse
|
5
|
Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ. Mechanistic study of the biosynthesis of R-phenylacetylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Arch Biochem Biophys 2021; 707:108849. [PMID: 33832752 DOI: 10.1016/j.abb.2021.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4'-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 17.4 kcal mol-1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP intermediate by the Oβ atom of benzaldehyde to form the intermediate I. The reaction is completed with the cleavage of the bond C2α-C2 to form the product R-PAC and to regenerate the ylide intermediate under the APH+ form, allowing in this way to reinitiate to the catalytic cycle once more. The calculated activation barrier for this last step is 15.9 kcal mol-1 at 27 °C.
Collapse
Affiliation(s)
- Omar Alvarado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile; Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile
| | - Rafael García-Meseguer
- School of Mathematics, University of Bristol, Bristol, UK; Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | | | - Iñaki Tuñon
- Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | - Eduardo J Delgado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
6
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
7
|
Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ. Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Arch Biochem Biophys 2021; 701:108807. [PMID: 33587902 DOI: 10.1016/j.abb.2021.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4'-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 17.4kcal mol-1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP intermediate by the Oβ atom of benzaldehyde to form the intermediate I. The reaction is completed with the cleavage of the bond C2α-C2 to form the product R-PAC and to regenerate the ylide intermediate under the APH+ form, allowing in this way to reinitiate to the catalytic cycle once more. The calculated activation barrier for this last step is 15.9kcal mol-1 at 27 °C.
Collapse
Affiliation(s)
- Omar Alvarado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile; Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile
| | - Rafael García-Meseguer
- School of Mathematics, University of Bristol, Bristol, United Kingdom; Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | | | - Iñaki Tuñon
- Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | - Eduardo J Delgado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
8
|
Liang YF, Yan LT, Yue Q, Zhao JK, Luo CY, Gao F, Li H, Gao WY. Preparation of a whole cell catalyst overexpressing acetohydroxyacid synthase of Thermotoga maritima and its application in the syntheses of α-hydroxyketones. Sci Rep 2020; 10:15404. [PMID: 32958806 PMCID: PMC7505981 DOI: 10.1038/s41598-020-72416-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022] Open
Abstract
The large catalytic subunit of acetohydroxyacid synthase (AHAS, EC 2.2.1.6) of Thermotoga maritima (TmcAHAS) was prepared in this study. It possesses high specific activity and excellent stability. The protein and a whole cell catalyst overexpressing the protein were applied to the preparation of α-hydroxyketones including acetoin (AC), 3-hydroxy-2-pentanone (HP), and (R)-phenylacetylcarbinol (R-PAC). The results show that AC and HP could be produced in high yields (84% and 62%, respectively), while R-PAC could be synthesized in a high yield (about 78%) with an R/S ratio of 9:1. Therefore, TmcAHAS and the whole cell catalyst overexpressing the protein could be practically useful bio-catalysts in the preparation of α-hydroxyketones including AC, HP, and R-PAC. To the best of our knowledge, this is the first time that bacterial AHAS was used as a catalyst to prepare HP with a good yield, and also the first time that TmcAHAS was employed to synthesize AC and R-PAC.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Le-Tian Yan
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Qiao Yue
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Ji-Kui Zhao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Cai-Yun Luo
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Feng Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Heng Li
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| | - Wen-Yun Gao
- College of Life Sciences, Northwest University, 229 North Taibai Road, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Iranmanesh E, Asadollahi MA, Biria D. Improving l-phenylacetylcarbinol production in Saccharomyces cerevisiae by in silico aided metabolic engineering. J Biotechnol 2020; 308:27-34. [DOI: 10.1016/j.jbiotec.2019.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/13/2019] [Accepted: 11/11/2019] [Indexed: 01/05/2023]
|
10
|
Mendoza F, Medina FE, Jiménez VA, Jaña GA. Catalytic Role of Gln202 in the Carboligation Reaction Mechanism of Yeast AHAS: A QM/MM Study. J Chem Inf Model 2019; 60:915-922. [DOI: 10.1021/acs.jcim.9b00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Fabiola E. Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
11
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
12
|
Erdmann V, Sehl T, Frindi-Wosch I, Simon RC, Kroutil W, Rother D. Methoxamine Synthesis in a Biocatalytic 1-Pot 2-Step Cascade Approach. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01081] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Vanessa Erdmann
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Torsten Sehl
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- HERBRAND PharmaChemicals GmbH, 77723 Gengenbach, Germany
| | - Ilona Frindi-Wosch
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Robert C. Simon
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
- Roche-Diagnostics GmbH, 82377 Penzberg, Germany
| | - Wolfgang Kroutil
- Department of Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Dörte Rother
- IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
13
|
Alvarado O, García-Meseguer R, Javier Ruiz-Pernía J, Tuñon I, Delgado EJ. A molecular dynamics study on the role of the protonation state in the biosynthesis of R-PAC by AHAS. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2018.12.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Lee YC, Chen YY, Lin JS, Chen YW, Li CC, Liang KX, Chan HH, Lin WD, Kao CH. Stereoselective synthesis of (1R, 2S)-norephedrine by recombinant whole-cell biocatalysts coupling acetohydroxyacid synthase I and ω-transaminase. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Gupta P, Mahajan N. Biocatalytic approaches towards the stereoselective synthesis of vicinal amino alcohols. NEW J CHEM 2018. [DOI: 10.1039/c8nj00485d] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The global need for clean manufacturing technologies and the management of hazardous chemicals and waste present new research challenges to both chemistry and biotechnology.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Chemistry
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| | - Neha Mahajan
- Department of Biotechnology
- Govt. Degree College Kathua
- University of Jammu
- Higher Education Department
- India
| |
Collapse
|
16
|
Alvarado O, Lizana I, Jaña G, Tuñon I, Delgado E. A DFT study on the chiral synthesis of R-phenylacetyl carbinol within the quantum chemical cluster approach. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.03.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Li H, Liu N, Hui X, Gao WY. An improved enzymatic method for the preparation of (R)-phenylacetyl carbinol. RSC Adv 2017. [DOI: 10.1039/c7ra04641c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
(R)-Phenylacetyl carbinol (R-PAC) is one of the key chiral α-hydroxyketones utilized as a synthon in the synthesis of a number of pharmaceuticals having α- and β-adrenergic properties.
Collapse
Affiliation(s)
- Heng Li
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Nan Liu
- Department of Experimental Surgery
- Tangdu Hospital
- Fourth Military Medical University
- Xi'an
- China
| | - Xian Hui
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| | - Wen-Yun Gao
- National Engineering Research Center for Miniaturized Detection Systems
- College of Life Sciences
- Northwest University
- Xi'an
- China
| |
Collapse
|
18
|
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 2016; 100:8633-49. [DOI: 10.1007/s00253-016-7809-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
19
|
Eram MS, Ma K. Pyruvate decarboxylase activity of the acetohydroxyacid synthase of Thermotoga maritima. Biochem Biophys Rep 2016; 7:394-399. [PMID: 28955930 PMCID: PMC5613635 DOI: 10.1016/j.bbrep.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s−1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms. The acetohydroxyacid synthase of T. maritima has pyruvate decarboxylase activity The AHAS and PDC activities share the same temperature and pH optima Reconstitution of the catalytic and regulatory subunits increases both PDC and AHAS activities
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Giovannini PP, Bortolini O, Massi A. Thiamine-Diphosphate-Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoin-Type Reaction. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600228] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pier Paolo Giovannini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Olga Bortolini
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| | - Alessandro Massi
- Department of Chemical and Pharmaceutical Sciences; University of Ferrara; 17, Via Fossato di Mortara 44121 Ferrara Italy
| |
Collapse
|
21
|
Doostmohammadi M, Asadollahi MA, Nahvi I, Biria D, Ghezelbash GR, Kheyrandish M. L-phenylacetylcarbinol production by yeast petite mutants. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-015-1190-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Li H, Liu N, Wang WT, Wang JY, Gao WY. Cloning and characterization of GST fusion tag stabilized large subunit of Escherichia coli acetohydroxyacid synthase I. J Biosci Bioeng 2016; 121:21-26. [DOI: 10.1016/j.jbiosc.2015.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 10/22/2022]
|
23
|
Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. PLoS One 2015; 10:e0119701. [PMID: 25806807 PMCID: PMC4373857 DOI: 10.1371/journal.pone.0119701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 12/25/2022] Open
Abstract
Amphetamine analogues are produced by plants in the genus Ephedra and by khat (Catha edulis), and include the widely used decongestants and appetite suppressants (1S,2S)-pseudoephedrine and (1R,2S)-ephedrine. The production of these metabolites, which derive from L-phenylalanine, involves a multi-step pathway partially mapped out at the biochemical level using knowledge of benzoic acid metabolism established in other plants, and direct evidence using khat and Ephedra species as model systems. Despite the commercial importance of amphetamine-type alkaloids, only a single step in their biosynthesis has been elucidated at the molecular level. We have employed Illumina next-generation sequencing technology, paired with Trinity and Velvet-Oases assembly platforms, to establish data-mining frameworks for Ephedra sinica and khat plants. Sequence libraries representing a combined 200,000 unigenes were subjected to an annotation pipeline involving direct searches against public databases. Annotations included the assignment of Gene Ontology (GO) terms used to allocate unigenes to functional categories. As part of our functional genomics program aimed at novel gene discovery, the databases were mined for enzyme candidates putatively involved in alkaloid biosynthesis. Queries used for mining included enzymes with established roles in benzoic acid metabolism, as well as enzymes catalyzing reactions similar to those predicted for amphetamine alkaloid metabolism. Gene candidates were evaluated based on phylogenetic relationships, FPKM-based expression data, and mechanistic considerations. Establishment of expansive sequence resources is a critical step toward pathway characterization, a goal with both academic and industrial implications.
Collapse
|
24
|
Köhler V, Turner NJ. Artificial concurrent catalytic processes involving enzymes. Chem Commun (Camb) 2014; 51:450-64. [PMID: 25350691 DOI: 10.1039/c4cc07277d] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concurrent operation of multiple catalysts can lead to enhanced reaction features including (i) simultaneous linear multi-step transformations in a single reaction flask (ii) the control of intermediate equilibria (iii) stereoconvergent transformations (iv) rapid processing of labile reaction products. Enzymes occupy a prominent position for the development of such processes, due to their high potential compatibility with other biocatalysts. Genes for different enzymes can be co-expressed to reconstruct natural or construct artificial pathways and applied in the form of engineered whole cell biocatalysts to carry out complex transformations or, alternatively, the enzymes can be combined in vitro after isolation. Moreover, enzyme variants provide a wider substrate scope for a given reaction and often display altered selectivities and specificities. Man-made transition metal catalysts and engineered or artificial metalloenzymes also widen the range of reactivities and catalysed reactions that are potentially employable. Cascades for simultaneous cofactor or co-substrate regeneration or co-product removal are now firmly established. Many applications of more ambitious concurrent cascade catalysis are only just beginning to appear in the literature. The current review presents some of the most recent examples, with an emphasis on the combination of transition metal with enzymatic catalysis and aims to encourage researchers to contribute to this emerging field.
Collapse
Affiliation(s)
- Valentin Köhler
- Department of Chemistry, University of Basel, Spitalststrasse 51, CH-4056 Basel, Switzerland.
| | | |
Collapse
|
25
|
Pleiss J. Systematic Analysis of Large Enzyme Families: Identification of Specificity- and Selectivity-Determining Hotspots. ChemCatChem 2014. [DOI: 10.1002/cctc.201300950] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Jaña GA, Delgado EJ, Medina FE. How Important Is the Synclinal Conformation of Sulfonylureas To Explain the Inhibition of AHAS: A Theoretical Study. J Chem Inf Model 2014; 54:926-32. [DOI: 10.1021/ci400721y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gonzalo A. Jaña
- Departamento
de CienciasQuímicas, Facultad de Ciencias
Exactas, Sede Concepción, Universidad Andres Bello, Concepción, Chile
| | - Eduardo J. Delgado
- Computational
Biological Chemistry Group, Faculty of Chemical
Sciencies, Universidad de Concepción, Concepción, Chile
| | - Fabiola E. Medina
- Departamento
de CienciasQuímicas, Facultad de Ciencias
Exactas, Sede Concepción, Universidad Andres Bello, Concepción, Chile
| |
Collapse
|
27
|
Sánchez L, Jaña GA, Delgado EJ. A QM/MM study on the reaction pathway leading to 2-Aceto-2-hydroxybutyrate in the catalytic cycle of AHAS. J Comput Chem 2014; 35:488-94. [DOI: 10.1002/jcc.23523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/30/2013] [Accepted: 12/15/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Leslie Sánchez
- Computational Biological Chemistry Group, Faculty of Chemical Sciences; Universidad de Concepción; Concepción
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Sede Concepción; Universidad Andrés Bello; Concepcion
| | - Eduardo J. Delgado
- Computational Biological Chemistry Group, Faculty of Chemical Sciences; Universidad de Concepción; Concepción
| |
Collapse
|
28
|
|
29
|
Hailes HC, Rother D, Müller M, Westphal R, Ward JM, Pleiss J, Vogel C, Pohl M. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J 2013; 280:6374-94. [DOI: 10.1111/febs.12496] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/16/2013] [Accepted: 08/21/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Helen C. Hailes
- Department of Chemistry; Christopher Ingold Laboratories; University College London; UK
| | - Dörte Rother
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| | - Michael Müller
- Institute of Pharmaceutical Sciences; University of Freiburg; Germany
| | | | - John M. Ward
- Department of Biochemical Engineering; University College London; UK
| | - Jürgen Pleiss
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Constantin Vogel
- Institute of Technical Biochemistry; University of Stuttgart; Germany
| | - Martina Pohl
- IBG-1: Biotechnology; Forschungszentrum Jülich Germany
| |
Collapse
|
30
|
Sehl T, Hailes HC, Ward JM, Wardenga R, von Lieres E, Offermann H, Westphal R, Pohl M, Rother D. Zwei Schritte in einem Reaktionsgefäß: Enzymkaskaden zur selektiven Synthese von Nor(pseudo)ephedrin aus kostengünstigen Ausgangsmaterialien. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300718] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Sehl T, Hailes HC, Ward JM, Wardenga R, von Lieres E, Offermann H, Westphal R, Pohl M, Rother D. Two Steps in One Pot: Enzyme Cascade for the Synthesis of Nor(pseudo)ephedrine from Inexpensive Starting Materials. Angew Chem Int Ed Engl 2013; 52:6772-5. [DOI: 10.1002/anie.201300718] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Indexed: 11/08/2022]
|
32
|
Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, Barak Z, Chipman D, Jordan F. Glyoxylate carboligase: a unique thiamin diphosphate-dependent enzyme that can cycle between the 4'-aminopyrimidinium and 1',4'-iminopyrimidine tautomeric forms in the absence of the conserved glutamate. Biochemistry 2012; 51:7940-52. [PMID: 22970650 DOI: 10.1021/bi300893v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxylate carboligase (GCL) is a thiamin diphosphate (ThDP)-dependent enzyme, which catalyzes the decarboxylation of glyoxylate and ligation to a second molecule of glyoxylate to form tartronate semialdehyde (TSA). This enzyme is unique among ThDP enzymes in that it lacks a conserved glutamate near the N1' atom of ThDP (replaced by Val51) or any other potential acid-base side chains near ThDP. The V51D substitution shifts the pH optimum to 6.0-6.2 (pK(a) of 6.2) for TSA formation from pH 7.0-7.7 in wild-type GCL. This pK(a) is similar to the pK(a) of 6.1 for the 1',4'-iminopyrimidine (IP)-4'-aminopyrimidinium (APH(+)) protonic equilibrium, suggesting that the same groups control both ThDP protonation and TSA formation. The key covalent ThDP-bound intermediates were identified on V51D GCL by a combination of steady-state and stopped-flow circular dichroism methods, yielding rate constants for their formation and decomposition. It was demonstrated that active center variants with substitution at I393 could synthesize (S)-acetolactate from pyruvate solely, and acetylglycolate derived from pyruvate as the acetyl donor and glyoxylate as the acceptor, implying that this substitutent favored pyruvate as the donor in carboligase reactions. Consistent with these observations, the I393A GLC variants could stabilize the predecarboxylation intermediate analogues derived from acetylphosphinate, propionylphosphinate, and methyl acetylphosphonate in their IP tautomeric forms notwithstanding the absence of the conserved glutamate. The role of the residue at the position occupied typically by the conserved Glu controls the pH dependence of kinetic parameters, while the entire reaction sequence could be catalyzed by ThDP itself, once the APH(+) form is accessible.
Collapse
Affiliation(s)
- Natalia Nemeria
- Department of Life Sciences, Ben-Gurion University , P.O. Box 653, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Krizevski R, Bar E, Shalit OR, Levy A, Hagel JM, Kilpatrick K, Marsolais F, Facchini PJ, Ben-Shabat S, Sitrit Y, Lewinsohn E. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp. PHYTOCHEMISTRY 2012; 81:71-9. [PMID: 22727117 DOI: 10.1016/j.phytochem.2012.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/13/2012] [Accepted: 05/14/2012] [Indexed: 05/13/2023]
Abstract
Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.
Collapse
Affiliation(s)
- Raz Krizevski
- Department of Aromatic, Medicinal and Spice Crops, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. FEBS J 2012; 279:1967-79. [DOI: 10.1111/j.1742-4658.2012.08577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Hagel JM, Krizevski R, Kilpatrick K, Sitrit Y, Marsolais F, Lewinsohn E, Facchini PJ. Expressed sequence tag analysis of khat (Catha edulis) provides a putative molecular biochemical basis for the biosynthesis of phenylpropylamino alkaloids. Genet Mol Biol 2011; 34:640-6. [PMID: 22215969 PMCID: PMC3229120 DOI: 10.1590/s1415-47572011000400017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 08/17/2011] [Indexed: 11/21/2022] Open
Abstract
Khat (Catha edulis Forsk.) is a flowering perennial shrub cultivated for its neurostimulant properties resulting mainly from the occurrence of (S)-cathinone in young leaves. The biosynthesis of (S)-cathinone and the related phenylpropylamino alkaloids (1S,2S)-cathine and (1R,2S)-norephedrine is not well characterized in plants. We prepared a cDNA library from young khat leaves and sequenced 4,896 random clones, generating an expressed sequence tag (EST) library of 3,293 unigenes. Putative functions were assigned to > 98% of the ESTs, providing a key resource for gene discovery. Candidates potentially involved at various stages of phenylpropylamino alkaloid biosynthesis from L-phenylalanine to (1S,2S)-cathine were identified.
Collapse
Affiliation(s)
- Jillian M Hagel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Vyazmensky M, Steinmetz A, Meyer D, Golbik R, Barak Z, Tittmann K, Chipman DM. Significant Catalytic Roles for Glu47 and Gln 110 in All Four of the C−C Bond-Making and -Breaking Steps of the Reactions of Acetohydroxyacid Synthase II. Biochemistry 2011; 50:3250-60. [DOI: 10.1021/bi102051h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Vyazmensky
- Ben-Gurion University of the Negev, Department of Life Sciences, Beer-Sheva 84105, Israel
| | - Andrea Steinmetz
- Georg-August University Göttingen, Albrecht-von-Haller-Institute and Göttingen Centre for Molecular Biosciences, Ernst-Caspari-Haus, Department of Bioanalytics, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
- Martin-Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Danilo Meyer
- Georg-August University Göttingen, Albrecht-von-Haller-Institute and Göttingen Centre for Molecular Biosciences, Ernst-Caspari-Haus, Department of Bioanalytics, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
- Martin-Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Ralph Golbik
- Martin-Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - Ze'ev Barak
- Ben-Gurion University of the Negev, Department of Life Sciences, Beer-Sheva 84105, Israel
| | - Kai Tittmann
- Georg-August University Göttingen, Albrecht-von-Haller-Institute and Göttingen Centre for Molecular Biosciences, Ernst-Caspari-Haus, Department of Bioanalytics, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
- Martin-Luther University Halle-Wittenberg, Institute for Biochemistry and Biotechnology, Kurt-Mothes-Strasse 3, 06120 Halle/Saale, Germany
| | - David M. Chipman
- Ben-Gurion University of the Negev, Department of Life Sciences, Beer-Sheva 84105, Israel
| |
Collapse
|
38
|
Jaña G, Jiménez V, Villà-Freixa J, Prat-Resina X, Delgado E, Alderete J. Computational study on the carboligation reaction of acetohidroxyacid synthase: new approach on the role of the HEThDP- intermediate. Proteins 2010; 78:1774-88. [PMID: 20225259 DOI: 10.1002/prot.22693] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate dependent enzyme that catalyses the decarboxylation of pyruvate to yield the hydroxyethyl-thiamin diphosphate (ThDP) anion/enamine intermediate (HEThDP(-)). This intermediate reacts with a second ketoacid to form acetolactate or acetohydroxybutyrate as products. Whereas the mechanism involved in the formation of HEThDP(-) from pyruvate is well understood, the role of the enzyme in controlling the carboligation reaction of HEThDP(-) has not been determined yet. In this work, molecular dynamics (MD) simulations were employed to identify the aminoacids involved in the carboligation stage. These MD studies were carried out over the catalytic subunit of yeast AHAS containing the reaction intermediate (HEThDP(-)) and a second pyruvate molecule. Our results suggest that additional acid-base ionizable groups are not required to promote the catalytic cycle, in contrast with earlier proposals. This finding leads us to postulate that the formation of acetolactate relies on the acid-base properties of the HEThDP(-) intermediate itself. PM3 semiempirical calculations were employed to obtain the energy profile of the proposed mechanism on a reduced model of the active site. These calculations confirm the role of HEThDP(-) intermediate as the ionizable group that promotes the carboligation and product formation steps of the catalytic cycle.
Collapse
Affiliation(s)
- Gonzalo Jaña
- Grupo de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | | | | | | | | | | |
Collapse
|
39
|
Lehwald P, Richter M, Röhr C, Liu HW, Müller M. Enantioselective intermolecular aldehyde-ketone cross-coupling through an enzymatic carboligation reaction. Angew Chem Int Ed Engl 2010; 49:2389-92. [PMID: 20191639 DOI: 10.1002/anie.200906181] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Patrizia Lehwald
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Lehwald P, Richter M, Röhr C, Liu HW, Müller M. Enantioselective Intermolecular Aldehyde-Ketone Cross-Coupling through an Enzymatic Carboligation Reaction. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906181] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Chipman DM, Barak Z, Shaanan B, Vyazmensky M, Binshtein E, Belenky I, Temam V, Steinmetz A, Golbik R, Tittmann K. Origin of the specificities of acetohydroxyacid synthases and glyoxylate carboligase. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Xiong Y, Liu J, Yang GF, Zhan CG. Computational determination of fundamental pathway and activation barriers for acetohydroxyacid synthase-catalyzed condensation reactions of α-keto acids. J Comput Chem 2009; 31:1592-602. [DOI: 10.1002/jcc.21356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Nestl BM, Voss CV, Bodlenner A, Ellmer-Schaumberger U, Kroutil W, Faber K. Biocatalytic racemization of sec-alcohols and α-hydroxyketones using lyophilized microbial cells. Appl Microbiol Biotechnol 2007; 76:1001-8. [PMID: 17628797 DOI: 10.1007/s00253-007-1071-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 05/31/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Biocatalytic racemization of aliphatic and aryl-aliphatic sec-alcohols and alpha-hydroxyketones (acyloins) was accomplished using whole resting cells of bacteria, fungi, and one yeast. The mild (physiological) reaction conditions ensured the suppression of undesired side reactions, such as elimination or condensation. Cofactor and inhibitor studies suggest that the racemization proceeds through an equilibrium-controlled enzymatic oxidation-reduction sequence via the corresponding ketones or alpha-diketones, respectively, which were detected in various amounts. Ketone formation could be completely suppressed by exclusion of molecular oxygen. Figure Biocatalytic racemization whole microbial cells.
Collapse
Affiliation(s)
- Bettina M Nestl
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
44
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
45
|
Nestl B, Kroutil W, Faber K. Biocatalytic Racemization of α-Hydroxy Ketones (Acyloins) at Physiological Conditions usingLactobacillus paracasei DSM 20207. Adv Synth Catal 2006. [DOI: 10.1002/adsc.200606055] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Vyazmensky M, Engel S, Kryukov O, Berkovich-Berger D, Kaplun L. Construction of an active acetohydroxyacid synthase I with a flexible linker connecting the catalytic and the regulatory subunits. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:955-960. [PMID: 16795146 DOI: 10.1016/j.bbapap.2006.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acetohydroxyacid synthase I (AHAS I), one of three isozymes in Escherichia coli catalyzing the first common step in the biosynthesis of branched amino acids, is composed of two kinds of subunits. The large catalytic (B) and small regulatory (N) subunits of the holoenzyme dissociate and associate freely and rapidly and are quite different in size, charge and hydrophobicity, so that high resolution purification methods lead to partial separation of subunits and to heterogeneity. We have prepared several linked AHAS I proteins, in which the large subunit B with a hexahistidine-tag at the N-terminus, was covalently joined by a flexible linker, containing several (X) amino acids, to the small subunit N to form His6-BuXN polypeptides. All linked BuXN polypeptides have similar specific activity, sensitivity to valine and substrate specificity as the wild type holoenzyme. The most successful BuXN linked protein (Bu30N-r) was inserted into and expressed in yeast and its catalytic properties were tested.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | | | | | | | | |
Collapse
|
47
|
Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM. Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta Gen Subj 2006; 1760:356-63. [PMID: 16326011 DOI: 10.1016/j.bbagen.2005.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/20/2005] [Indexed: 11/30/2022]
Abstract
AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.
Collapse
Affiliation(s)
- Valerie Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 657, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chipman DM, Duggleby RG, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 2006; 9:475-81. [PMID: 16055369 DOI: 10.1016/j.cbpa.2005.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/18/2005] [Indexed: 11/17/2022]
Abstract
Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.
Collapse
Affiliation(s)
- David M Chipman
- Department of Life Sciences, Ben-Gurion University POB 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
49
|
Vinogradov M, Kaplun A, Vyazmensky M, Engel S, Golbik R, Tittmann K, Uhlemann K, Meshalkina L, Barak Z, Hübner G, Chipman DM. Monitoring the acetohydroxy acid synthase reaction and related carboligations by circular dichroism spectroscopy. Anal Biochem 2005; 342:126-33. [PMID: 15958189 DOI: 10.1016/j.ab.2005.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/27/2005] [Accepted: 03/28/2005] [Indexed: 11/22/2022]
Abstract
Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements. The continuous assay for consumption of pyruvate based on its absorbance at 333 nm, though convenient, is limited by the extremely small extinction coefficient of pyruvate, which results in a low signal-to-noise ratio and sensitivity to interfering absorbing compounds. Here, we report the use of circular dichroism spectroscopy for monitoring AHAS activity. This method, which exploits the optical activity of reaction products, displays a high signal-to-noise ratio and is easy to perform both in time-resolved and in commercial modes. In addition to AHAS, we examined the determination of activity of glyoxylate carboligase. This enzyme catalyzes the condensation of two molecules of glyoxylate to chiral tartronic acid semialdehyde. The use of circular dichroism also identifies the product of glyoxylate carboligase as being in the (R) configuration.
Collapse
Affiliation(s)
- Michael Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Acetohydroxyacid synthase (AHAS) is the first common enzyme in the pathway for the biosynthesis of branched-chain amino acids. Interest in the enzyme has escalated over the past 20 years since it was discovered that AHAS is the target of the sulfonylurea and imidazolinone herbicides. However, several questions regarding the reaction mechanism have remained unanswered, particularly the way in which AHAS "chooses" its second substrate. A new method for the detection of reaction intermediates enables calculation of the microscopic rate constants required to explain this phenomenon.
Collapse
Affiliation(s)
- Jennifer A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | | |
Collapse
|