1
|
Huang Z, Ni G, Dai L, Zhang W, Feng S, Wang F. Biochemical Characterization of Novel GH6 Endoglucanase from Myxococcus sp. B6-1 and Its Effects on Agricultural Straws Saccharification. Foods 2023; 12:2517. [PMID: 37444255 DOI: 10.3390/foods12132517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellulase has been widely used in many industrial fields, such as feed and food industry, because it can hydrolyze cellulose to oligosaccharides with a lower degree of polymerization. Endo-β-1,4-glucanase is a critical speed-limiting cellulase in the saccharification process. In this study, endo-β-1,4-glucanase gene (CelA257) from Myxococcus sp. B6-1 was cloned and expressed in Escherichia coli. CelA257 contained carbohydrate-binding module (CBM) 4-9 and glycosyl hydrolase (GH) family 6 domain that shares 54.7% identity with endoglucanase from Streptomyces halstedii. The recombinant enzyme exhibited optimal activity at pH 6.5 and 50 °C and was stable over a broad pH (6-9.5) range and temperature < 50 °C. CelA257 exhibited broad substrate specificity to barley β-glucan, lichenin, CMC, chitosan, laminarin, avicel, and phosphoric acid swollen cellulose (PASC). CelA257 degraded both cellotetrose (G4) and cellppentaose (G5) to cellobiose (G2) and cellotriose (G3). Adding CelA257 increased the release of reducing sugars in crop straw powers, including wheat straw (0.18 mg/mL), rape straw (0.42 mg/mL), rice straw (0.16 mg/mL), peanut straw (0.16 mg/mL), and corn straw (0.61 mg/mL). This study provides a potential additive in biomass saccharification applications.
Collapse
Affiliation(s)
- Zhen Huang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Guorong Ni
- College of Land Resources and Environment, Jiangxi Agriculture University, Nanchang 330045, China
| | - Longhua Dai
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiqi Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Siting Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
3
|
Alaguprathana M, Poonkothai M. Haematological, biochemical, enzymological and histological responses of Labeo rohita exposed to methyl orange dye solution treated with Oedogonium subplagiostomum AP1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17602-17612. [PMID: 33400116 DOI: 10.1007/s11356-020-12208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The present investigation is an attempt to assess the impact of untreated methyl orange and Oedogonium subplagiostomum AP1 treated methyl orange dye solutions on Labeo rohita. The behavioural response, mortality, haematological (red blood corpuscles (RBC), packed cell volume (PCV), haemoglobin (Hb), white blood corpuscles (WBC), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC)), biochemical (plasma glucose and protein), enzymological (aspartate amino transaminases (AST) and alanine amino transaminases (ALT)) and histological examination (gills, liver and kidney) of Labeo rohita are exposed to untreated and treated methyl orange dye solutions were assessed on 7th day. The fish exposed to tap water and treated dye solution showed normal behavioural response whereas abnormal behaviour was noted in fish exposed to untreated dye solution. Similar trend was recorded in the mortality rate of the fishes. Fish exposed to untreated dye solution showed reduction in RBC, PCV, Hb, MCHC, plasma glucose and plasma protein, increased level of WBC, MCV and MCH and also alteration in AST and ALT thereby indicating the toxicity of the dye. No such reduction and alteration were observed in haematological, biochemical and enzymological levels of fishes exposed to tap water and treated dye solution indicating the non-toxic nature of the degraded metabolites of dye. Histological examination of fishes exposed to methyl orange dye revealed necrosis and haemorrhage in the gills and hepatocytes, congested and shrunken glomeruli in kidney thereby indicating the toxicity of the dye. The histoarchitecture of control and algae-treated fishes showed no structural changes indicating the non-toxic nature of the degraded metabolites of the dye. The results concluded that methyl orange dye solution treated with O. subplagiostomum AP1 can be explored for aquacultural purposes owing to its non-toxic nature.
Collapse
Affiliation(s)
- Maruthanayagam Alaguprathana
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Mani Poonkothai
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India.
| |
Collapse
|
4
|
Nemmaru B, Ramirez N, Farino CJ, Yarbrough JM, Kravchenko N, Chundawat SPS. Reduced type-A carbohydrate-binding module interactions to cellulose I leads to improved endocellulase activity. Biotechnol Bioeng 2020; 118:1141-1151. [PMID: 33245142 DOI: 10.1002/bit.27637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
Dissociation of nonproductively bound cellulolytic enzymes from cellulose is hypothesized to be a key rate-limiting factor impeding cost-effective biomass conversion to fermentable sugars. However, the role of carbohydrate-binding modules (CBMs) in enabling nonproductive enzyme binding is not well understood. Here, we examine the subtle interplay of CBM binding and cellulose hydrolysis activity for three models type-A CBMs (Families 1, 3a, and 64) tethered to multifunctional endoglucanase (CelE) on two distinct cellulose allomorphs (i.e., cellulose I and III). We generated a small library of mutant CBMs with varying cellulose affinity, as determined by equilibrium binding assays, followed by monitoring cellulose hydrolysis activity of CelE-CBM fusion constructs. Finally, kinetic binding assays using quartz crystal microbalance with dissipation were employed to measure CBM adsorption and desorption rate constants k on and k off , respectively, towards nanocrystalline cellulose derived from both allomorphs. Overall, our results indicate that reduced CBM equilibrium binding affinity towards cellulose I alone, resulting from increased desorption rates ( k off ) and reduced effective adsorption rates ( nk on ), is correlated to overall improved endocellulase activity. Future studies could employ similar approaches to unravel the role of CBMs in nonproductive enzyme binding and develop improved cellulolytic enzymes for industrial applications.
Collapse
Affiliation(s)
| | - Nicholas Ramirez
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Cindy J Farino
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - John M Yarbrough
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Nicholas Kravchenko
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Pellegrini VOA, Lei N, Kyasaram M, Olsen JP, Badino SF, Windahl MS, Colussi F, Cruys-Bagger N, Borch K, Westh P. Reversibility of substrate adsorption for the cellulases Cel7A, Cel6A, and Cel7B from Hypocrea jecorina. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12602-12609. [PMID: 25322452 DOI: 10.1021/la5024423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adsorption of cellulases on the cellulose surface is an integral part of the catalytic mechanism, and a detailed description of the adsorption process is therefore required for a fundamental understanding of this industrially important class of enzymes. However, the mode of adsorption has proven intricate, and several key questions remain open. Perhaps most notably it is not clear whether the adsorbed enzyme is in dynamic equilibrium with the free population or irreversibly associated with no or slow dissociation. To address this, we have systematically investigated adsorption reversibility for two cellobiohydrolases (Cel7A and Cel6A) and one endoglucanase (Cel7B) on four types of pure cellulose substrates. Specifically, we monitored dilution-induced release of adsorbed enzyme in samples that had previously been brought to a steady state (constant concentration of free enzyme). In simple dilution experiments (without centrifugation), the results consistently showed full reversibility. In contrast to this, resuspension of enzyme-substrate pellets separated by centrifugation showed extensive irreversibility. We conclude that these enzymes are in a dynamic equilibrium between free and adsorbed states but suggest that changes in the physical properties of cellulose caused by compaction of the pellet hampers subsequent release of adsorbed enzyme. This latter effect may be pertinent to both previous controversies in the literature on adsorption reversibility and the development of enzyme recycling protocols in the biomass industry.
Collapse
Affiliation(s)
- Vanessa O A Pellegrini
- Research Unit for Functional Biomaterials, NSM, Roskilde University , 1 Universitetsvej, Build. 18.1, DK-4000 Roskilde, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Luterbacher JS, Moran-Mirabal JM, Burkholder EW, Walker LP. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: Filter paper cellulose. Biotechnol Bioeng 2014; 112:21-31. [DOI: 10.1002/bit.25329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/08/2014] [Accepted: 06/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Jeremy S. Luterbacher
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Jose M. Moran-Mirabal
- Department of Chemistry and Chemical Biology; Arthur N. Bourns Science Building; McMaster University; Hamilton Ontario, Canada L8S4M1
| | - Eric W. Burkholder
- Department of Chemical and Biomolecular Engineering; Olin Hall; Cornell University; Ithaca New York
| | - Larry P. Walker
- Department of Biological and Environmental Engineering; Riley-Robb Hall; Cornell University; Ithaca New York 14850
| |
Collapse
|
7
|
Wu M, Bu L, Vuong TV, Wilson DB, Crowley MF, Sandgren M, Ståhlberg J, Beckham GT, Hansson H. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase family 6 cellobiohydrolase from structural and computational studies. J Biol Chem 2013; 288:33107-17. [PMID: 24085303 DOI: 10.1074/jbc.m113.502765] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases (CBHs) are typically major components of natural enzyme cocktails for biomass degradation. Their active sites are enclosed in a tunnel, enabling processive hydrolysis of cellulose chains. Glycoside hydrolase Family 6 (GH6) CBHs act from nonreducing ends by an inverting mechanism and are present in many cellulolytic fungi and bacteria. The bacterial Thermobifida fusca Cel6B (TfuCel6B) exhibits a longer and more enclosed active site tunnel than its fungal counterparts. Here, we determine the structures of two TfuCel6B mutants co-crystallized with cellobiose, D274A (catalytic acid), and the double mutant D226A/S232A, which targets the putative catalytic base and a conserved serine that binds the nucleophilic water. The ligand binding and the structure of the active site are retained when compared with the wild type structure, supporting the hypothesis that these residues are directly involved in catalysis. One structure exhibits crystallographic waters that enable construction of a model of the α-anomer product after hydrolysis. Interestingly, the product sites of TfuCel6B are completely enclosed by an "exit loop" not present in fungal GH6 CBHs and by an extended "bottom loop". From the structures, we hypothesize that either of the loops enclosing the product subsites in the TfuCel6B active site tunnel must open substantially for product release. With simulation, we demonstrate that both loops can readily open to allow product release with equal probability in solution or when the enzyme is engaged on cellulose. Overall, this study reveals new structural details of GH6 CBHs likely important for functional differences among enzymes from this important family.
Collapse
Affiliation(s)
- Miao Wu
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Draft Genome Sequence of the Lignocellulose Decomposer Thermobifida fusca Strain TM51. GENOME ANNOUNCEMENTS 2013; 1:1/4/e00482-13. [PMID: 23846276 PMCID: PMC3709153 DOI: 10.1128/genomea.00482-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we present the complete genome sequence of Thermobifida fusca strain TM51, which was isolated from the hot upper layer of a compost pile in Hungary. T. fusca TM51 is a thermotolerant, aerobic actinomycete with outstanding lignocellulose-decomposing activity.
Collapse
|
9
|
Hansen MAT, Hidayat BJ, Mogensen KK, Jeppesen MD, Jørgensen B, Johansen KS, Thygesen LG. Enzyme affinity to cell types in wheat straw (Triticum aestivum L.) before and after hydrothermal pretreatment. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:54. [PMID: 23590820 PMCID: PMC3650653 DOI: 10.1186/1754-6834-6-54] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 04/10/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Wheat straw used for bioethanol production varies in enzymatic digestibility according to chemical structure and composition of cell walls and tissues. In this work, the two biologically different wheat straw organs, leaves and stems, are described together with the effects of hydrothermal pretreatment on chemical composition, tissue structure, enzyme adhesion and digestion. To highlight the importance of inherent cell wall characteristics and the diverse effects of mechanical disruption and biochemical degradation, separate leaves and stems were pretreated on lab-scale and their tissue structures maintained mostly intact for image analysis. Finally, samples were enzymatically hydrolysed to correlate digestibility to chemical composition, removal of polymers, tissue composition and disruption, particle size and enzyme adhesion as a result of pretreatment and wax removal. For comparison, industrially pretreated wheat straw from Inbicon A/S was included in all the experiments. RESULTS Within the same range of pretreatment severities, industrial pretreatment resulted in most hemicellulose and epicuticular wax/cutin removal compared to lab-scale pretreated leaves and stems but also in most re-deposition of lignin on the surface. Tissues were furthermore degraded from tissues into individual cells while lab-scale pretreated samples were structurally almost intact. In both raw leaves and stems, endoglucanase and exoglucanase adhered most to parenchyma cells; after pretreatment, to epidermal cells in all the samples. Despite heavy tissue disruption, industrially pretreated samples were not as susceptible to enzymatic digestion as lab-scale pretreated leaves while lab-scale pretreated stems were the least digestible. CONCLUSIONS Despite preferential enzyme adhesion to epidermal cells after hydrothermal pretreatment, our results suggest that the single most important factor determining wheat straw digestibility is the fraction of parenchyma cells rather than effective tissue disruption.
Collapse
Affiliation(s)
- Mads AT Hansen
- Forest and Landscape, University of Copenhagen, Rolighedsvej 23, Frederiksberg C DK-1958, Denmark
| | - Budi J Hidayat
- Forest and Landscape, University of Copenhagen, Rolighedsvej 23, Frederiksberg C DK-1958, Denmark
| | - Kit K Mogensen
- Inbicon A/S, Kraftværksvej 5, Skærbæk, Fredericia DK-7000, Denmark
| | | | - Bodil Jørgensen
- Department of Agriculture and Ecology/Department of Plant and Environment Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | | | - Lisbeth G Thygesen
- Forest and Landscape, University of Copenhagen, Rolighedsvej 23, Frederiksberg C DK-1958, Denmark
| |
Collapse
|
10
|
Moraïs S, Barak Y, Lamed R, Wilson DB, Xu Q, Himmel ME, Bayer EA. Paradigmatic status of an endo- and exoglucanase and its effect on crystalline cellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:78. [PMID: 23095278 PMCID: PMC3502487 DOI: 10.1186/1754-6834-5-78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/19/2012] [Indexed: 05/07/2023]
Abstract
BACKGROUND Microorganisms employ a multiplicity of enzymes to efficiently degrade the composite structure of plant cell wall cellulosic polysaccharides. These remarkable enzyme systems include glycoside hydrolases (cellulases, hemicellulases), polysaccharide lyases, and the carbohydrate esterases. To accomplish this challenging task, several strategies are commonly observed either separately or in combination. These include free enzyme systems, multifunctional enzymes, and multi-enzyme self-assembled designer cellulosome complexes. RESULTS In order to compare these different paradigms, we employed a synthetic biology approach to convert two different cellulases from the free enzymatic system of the well-studied bacterium, Thermobifida fusca, into bifunctional enzymes with different modular architectures. We then examined their performance compared to those of the combined parental free-enzyme and equivalent designer-cellulosome systems. The results showed that the cellulolytic activity displayed by the different architectures of the bifunctional enzymes was somewhat inferior to that of the wild-type free enzyme system. CONCLUSIONS The activity exhibited by the designer cellulosome system was equal or superior to that of the free system, presumably reflecting the combined proximity of the enzymes and high flexibility of the designer cellulosome components, thus enabling efficient enzymatic activity of the catalytic modules.
Collapse
Affiliation(s)
- Sarah Moraïs
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot, 76100, Israel
| | - Yoav Barak
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
- Chemical Research Support, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - David B Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory (NREL) and BioEnergy Science Center (BESC), Golden, CO, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory (NREL) and BioEnergy Science Center (BESC), Golden, CO, USA
| | - Edward A Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Maurer SA, Bedbrook CN, Radke CJ. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14598-608. [PMID: 22966968 DOI: 10.1021/la3024524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
For the first time, the competitive adsorption of inhibited cellobiohydrolase I (Cel7A, an exoglucanase) and endoglucanase I (Cel7B) from T. longibrachiatum is studied on cellulose. Using quartz crystal microgravimetry (QCM), sorption histories are measured for individual types of cellulases and their mixtures adsorbing to and desorbing from a model cellulose surface. We find that Cel7A has a higher adsorptive affinity for cellulose than does Cel7B. The adsorption of both cellulases becomes irreversible on time scales of 30-60 min, which are much shorter than those typically used for industrial cellulose hydrolysis. A multicomponent Langmuir kinetic model including first-order irreversible binding is proposed. Although adsorption and desorption rate constants differ between the two enzymes, the rate at which each surface enzyme irreversibly binds is identical. Because of the higher affinity of Cel7A for the cellulose surface, when Cel7A and Cel7B compete for surface sites, a significantly higher bulk concentration of Cel7B is required to achieve comparable surface enzyme concentrations. Because cellulose deconstruction benefits significantly from the cooperative activity of endoglucanases and cellobiohydrolases on the cellulose surface, accounting for competitive adsorption is crucial to developing effective cellulase mixtures.
Collapse
Affiliation(s)
- Samuel A Maurer
- Department of Chemical and Biomolecular Engineering, University of California-Berkeley, Berkeley, California 94720-1462, USA
| | | | | |
Collapse
|
12
|
Moran-Mirabal JM, Bolewski JC, Walker LP. Thermobifida fuscacellulases exhibit limited surface diffusion on bacterial micro-crystalline cellulose. Biotechnol Bioeng 2012; 110:47-56. [DOI: 10.1002/bit.24604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/02/2012] [Accepted: 07/02/2012] [Indexed: 11/08/2022]
|
13
|
Wang Q, Zhu J, Hunt C, Zhan H. Kinetics of adsorption, desorption, and re-adsorption of a commercial endoglucanase in lignocellulosic suspensions. Biotechnol Bioeng 2012; 109:1965-75. [DOI: 10.1002/bit.24483] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/02/2012] [Accepted: 02/13/2012] [Indexed: 11/06/2022]
|
14
|
Deng Y, Fong SS. Laboratory evolution and multi-platform genome re-sequencing of the cellulolytic actinobacterium Thermobifida fusca. J Biol Chem 2011; 286:39958-66. [PMID: 21914801 DOI: 10.1074/jbc.m111.239616] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biological utilization of cellulose is a complex process involving the coordinated expression of different cellulases, often in a synergistic manner. One possible means of inducing an organism-level change in cellulase activity is to use laboratory adaptive evolution. In this study, evolved strains of the cellulolytic actinobacterium, Thermobifida fusca, were generated for two different scenarios: continuous exposure to cellobiose (strain muC) or alternating exposure to cellobiose and glucose (strain muS). These environmental conditions produced a phenotype specialized for growth on cellobiose (muC) and an adaptable, generalist phenotype (muS). Characterization of cellular phenotypes and whole genome re-sequencing were conducted for both the muC and muS strains. Phenotypically, the muC strain showed decreased cell yield over the course of evolution concurrent with decreased cellulase activity, increased intracellular ATP concentrations, and higher end-product secretions. The muS strain increased its cell yield for growth on glucose and exhibited a more generalist phenotype with higher cellulase activity and growth capabilities on different substrates. Whole genome re-sequencing identified 48 errors in the reference genome and 18 and 14 point mutations in the muC and muS strains, respectively. Among these mutations, the site mutation of Tfu_1867 was found to contribute the specialist phenotype and the site mutation of Tfu_0423 was found to contribute the generalist phenotype. By conducting and characterizing evolution experiments on Thermobifida fusca, we were able to show that evolutionary changes balance ATP energetic considerations with cellulase activity. Increased cellulase activity is achieved in stress environments (switching carbon sources), otherwise cellulase activity is minimized to conserve ATP.
Collapse
Affiliation(s)
- Yu Deng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | | |
Collapse
|
15
|
Moran-Mirabal JM, Bolewski JC, Walker LP. Reversibility and binding kinetics of Thermobifida fusca cellulases studied through fluorescence recovery after photobleaching microscopy. Biophys Chem 2011; 155:20-8. [PMID: 21396764 DOI: 10.1016/j.bpc.2011.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 11/26/2022]
Abstract
Cellulases are enzymes capable of depolymerizing cellulose. Understanding their interactions with cellulose can improve biomass saccharification and enzyme recycling in biofuel production. This paper presents a study on binding and binding reversibility of Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A bound onto Bacterial Microcrystalline Cellulose. Cellulase binding was assessed through fluorescence recovery after photobleaching (FRAP) at 23, 34, and 45 °C. It was found that cellulase binding is only partially reversible. For processive cellulases Cel6B and Cel9A, an increase in temperature resulted in a decrease of the fraction of cellulases reversibly bound, while for endocellulase Cel5A this fraction remained constant. Kinetic parameters were obtained by fitting the FRAP curves to a binding-dominated model. The unbinding rate constants obtained for all temperatures were highest for Cel5A and lowest for Cel9A. The results presented demonstrate the usefulness of FRAP to access the fast binding kinetics characteristic of cellulases operating at their optimal temperature.
Collapse
Affiliation(s)
- Jose M Moran-Mirabal
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
16
|
The unique binding mode of cellulosomal CBM4 from Clostridium thermocellum cellobiohydrolase A. J Mol Biol 2010; 402:374-87. [PMID: 20654622 DOI: 10.1016/j.jmb.2010.07.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 11/21/2022]
Abstract
The crystal structure of the carbohydrate-binding module (CBM) 4 Ig fused domain from the cellulosomal cellulase cellobiohydrolase A (CbhA) of Clostridium thermocellum was solved in complex with cellobiose at 2.11 A resolution. This is the first cellulosomal CBM4 crystal structure reported to date. It is similar to the previously solved noncellulosomal soluble oligosaccharide-binding CBM4 structures. However, this new structure possesses a significant feature-a binding site peptide loop with a tryptophan (Trp118) residing midway in the loop. Based on sequence alignment, this structural feature might be common to all cellulosomal clostridial CBM4 modules. Our results indicate that C. thermocellum CbhA CBM4 also has an extended binding pocket that can optimally bind to cellodextrins containing five or more sugar units. Molecular dynamics simulations and experimental binding studies with the Trp118Ala mutant suggest that Trp118 contributes to the binding and, possibly, the orientation of the module to soluble cellodextrins. Furthermore, the binding cleft aromatic residues Trp68 and Tyr110 play a crucial role in binding to bacterial microcrystalline cellulose (BMCC), amorphous cellulose, and soluble oligodextrins. Binding to BMCC is in disagreement with the structural features of the binding pocket, which does not support binding to the flat surface of crystalline cellulose, suggesting that CBM4 binds the amorphous part or the cellulose "whiskers" of BMCC. We propose that clostridial CBM4s have possibly evolved to bind the free-chain ends of crystalline cellulose in addition to their ability to bind soluble cellodextrins.
Collapse
|
17
|
Development and application of a PCR-targeted gene disruption method for studying CelR function in Thermobifida fusca. Appl Environ Microbiol 2010; 76:2098-106. [PMID: 20097808 DOI: 10.1128/aem.02626-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thermobifida fusca is a high-G+C-content, thermophilic, Gram-positive soil actinobacterium with high cellulolytic activity. In T. fusca, CelR is thought to act as the primary regulator of cellulase gene expression by binding to a 14-bp inverted repeat [5'-(T)GGGAGCGCTCCC(A)] that is upstream of many known cellulase genes. Previously, the ability to study the roles and regulation of cellulase genes in T. fusca has been limited largely by a lack of established genetic engineering methods for T. fusca. In this study, we developed an efficient procedure for creating precise chromosomal gene disruptions and demonstrated this procedure by generating a celR deletion strain. The celR deletion strain was then characterized using measurements for growth behavior, cellulase activity, and gene expression. The celR deletion strain of T. fusca exhibited a severely crippled growth phenotype with a prolonged lag phase and decreased cell yields for growth on both glucose and cellobiose. While the maximum endoglucanase activity and cellulase activity were not significantly changed, the endoglucanase activity and cellulase activity per cell were highly elevated. Measurements of mRNA transcript levels in both the celR deletion strain and the wild-type strain indicated that the CelR protein potentially acts as a repressor for some genes and as an activator for other genes. Overall, we established and demonstrated a method for manipulating chromosomal DNA in T. fusca that can be used to study the cellulolytic capabilities of this organism. Components of this method may be useful in developing genetic engineering methods for other currently intractable organisms.
Collapse
|
18
|
Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 2009; 75:7335-42. [PMID: 19820154 DOI: 10.1128/aem.01241-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant "cellulosomized" enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equivalent mixture of wild-type enzymes. In the present work, a fourth T. fusca cellulase, Cel5A, was equipped with a dockerin and intervening linker segments of different lengths to assess their contribution to the overall activity of simple one- and two-enzyme designer cellulosome complexes. The results demonstrated that cellulose binding played a major role in the degradation of crystalline cellulosic substrates. The combination of the converted Cel5A endoglucanase with the converted Cel48A exoglucanase also exhibited a measurable proximity effect for the most recalcitrant cellulosic substrate (Avicel). The length of the linker between the catalytic module and the dockerin had little, if any, effect on the activity. However, positioning of the dockerin on the opposite (C-terminal) side of the enzyme, consistent with the usual position of dockerins on most cellulosomal enzymes, resulted in an enhanced synergistic response. These results promote the development of more complex multienzyme designer cellulosomes, which may eventually be applied for improved degradation of plant cell wall biomass.
Collapse
|
19
|
Influence of culture aeration on the cellulase activity of Thermobifida fusca. Appl Microbiol Biotechnol 2009; 85:965-74. [PMID: 19697023 DOI: 10.1007/s00253-009-2155-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/10/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Currently, one of the hurdles hindering efficient production of cellulosic biofuel is the recalcitrant nature of cellulose to hydrolysis. A wide variety of cellulase enzymes are found natively in microorganisms that can potentially be used to effectively hydrolyze cellulose to fermentable sugars. In this study, phenomenological and mechanistic parameters affecting cellulase activity were studied using the moderately thermophilic, aerobic, and cellulolytic microorganism Thermobifida fusca. Two major sets of experiments were conducted to (1) study the mechanistic differences in growth in a flask compared to a bioreactor and (2) study the cell culture parameters influencing cellulase activity using a series of bioreactor experiments. Specific cellulase and specific endoglucanase activities were found to be higher in the bioreactor as compared to flask growth. Measurements of messenger RNA transcript levels of 18 cellulase-related genes and intracellular ATP levels indicated that measured enzyme activity was likely more influenced by post-transcriptional energetics rather than transcriptional regulation. By delineating the effects of culture aeration and stir speed using a bioreactor, it was found that cellulase activity increased with increasing aeration and increasing stir speeds (highest K(l)a) with a tradeoff of decreased cellular growth at the highest stir speeds tested (400 rpm). Overall, these results allude to a connection between aeration and oxidative respiration that lead to increased ATP allowing for increased cellulase synthesis as the primary constraint on overall cellulase activity.
Collapse
|
20
|
Zhu Z, Sathitsuksanoh N, Percival Zhang YH. Direct quantitative determination of adsorbed cellulase on lignocellulosic biomass with its application to study cellulase desorption for potential recycling. Analyst 2009; 134:2267-72. [DOI: 10.1039/b906065k] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Moran-Mirabal JM, Santhanam N, Corgie SC, Craighead HG, Walker LP. Immobilization of cellulose fibrils on solid substrates for cellulase-binding studies through quantitative fluorescence microscopy. Biotechnol Bioeng 2008; 101:1129-41. [PMID: 18563846 DOI: 10.1002/bit.21990] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellulases, enzymes capable of depolymerizing cellulose polymers into fermentable sugars, are essential components in the production of bioethanol from lignocellulosic materials. Given the importance of these enzymes to the evolving biofuel industry considerable research effort is focused on understanding the interaction between cellulases and cellulose fibrils. This manuscript presents a method that addresses challenges that must be overcome in order to study such interactions through high-resolution fluorescence microscopy. First, it is shown that cellulose can be immobilized on solid substrates through a polymer lift-off technique. The immobilized cellulose aggregates present characteristic morphologies influenced by the patterned feature size used to immobilize it. Thus, through a variety of pattern sizes, cellulose can be immobilized in the form of cellulose particles, cellulose mats or individual cellulose fibrils. Second, it is shown that both cellulose and Thermobifida fusca cellulases Cel5A, Cel6B, and Cel9A can be fluorescently tagged and that the labeling does not inhibit the capability of these cellulases to depolymerize cellulose. The combination of the immobilization technique together with fluorescence labeling yields a system that can be used to study cellulose-cellulase interactions with spatial and temporal resolution not available through more conventional techniques which measure ensemble averages. It is shown that with such a system, the kinetics of cellulase binding onto cellulose fibrils and mats can be followed through sequences of fluorescence images. The intensity from the images can then be used to reconstruct binding curves for the cellulases studied. It was found that the complexity of cellulose morphology has a large impact on the binding curve characteristics, with binding curves for individual cellulose fibrils closely following a binding saturation model and binding curves for cellulose mats and particles deviating from it. The behavior observed is interpreted as the effect pore and interstice penetration play in cellulase binding to the accessible surface of cellulose aggregates. These results validate our method for immobilizing nanoscale cellulose fibrils and fibril aggregates on solid supports and lay the foundation for future studies on cellulase-cellulose interactions.
Collapse
Affiliation(s)
- Jose M Moran-Mirabal
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Li Y, Wilson DB. Chitin binding by Thermobifida fusca cellulase catalytic domains. Biotechnol Bioeng 2008; 100:644-52. [PMID: 18306418 DOI: 10.1002/bit.21808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cellulose is a linear homopolymer of beta 1-4 linked glucose residues. Chitin is similar to cellulose in structure, and can be described as cellulose with the hydroxyl group on the C2 carbon replaced by an acetylamine group. Both cellulose and chitin form tightly packed, extensively hydrogen-bonded micro-fibrils. Up to now, binding of cellulase catalytic domains (CDs) to chitin has not been reported. In this article, binding of the CDs of Thermobifida fusca Cel6A, Cel6B, Cel48A, Cel5A, and Cel9A to alpha-chitin was investigated. The CDs of endocellulases, Cel6A and Cel5A did not bind to alpha-chitin; one exocellulase, Cel48A CD bound alpha-chitin moderately well; and the exocellulase Cel6B CD and the processive endocellulase Cel9A CD bound extremely tightly to alpha-chitin. Only mutations of Cel6B W329C, W332A and G234S and Cel9A Y206F, Y206S and D261A/R378K caused weaker binding to alpha-chitin than wild-type, and all these mutations were of residues near the catalytic center. One mutant enzyme, Cel9A D261A/R378K had weak chitinase activity, but no soluble products were detected. Chitotriose and chitotetraose were docked successfully to the catalytic cleft of Cel9A. In general, the positioning of the sugar residues in the model structures matched the cellooligosaccharides in the X-ray structure. Our results show that the binding of chitin by a cellulase can provide additional information about its binding to cellulose.
Collapse
Affiliation(s)
- Yongchao Li
- Field of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
23
|
Urbanowicz BR, Catalá C, Irwin D, Wilson DB, Ripoll DR, Rose JKC. A Tomato Endo-β-1,4-glucanase, SlCel9C1, Represents a Distinct Subclass with a New Family of Carbohydrate Binding Modules (CBM49). J Biol Chem 2007; 282:12066-74. [PMID: 17322304 DOI: 10.1074/jbc.m607925200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A critical structural feature of many microbial endo-beta-1,4-glucanases (EGases, or cellulases) is a carbohydrate binding module (CBM), which is required for effective crystalline cellulose degradation. However, CBMs are absent from plant EGases that have been biochemically characterized to date, and accordingly, plant EGases are not generally thought to have the capacity to degrade crystalline cellulose. We report the biochemical characterization of a tomato EGase, Solanum lycopersicum Cel8 (SlCel9C1), with a distinct C-terminal noncatalytic module that represents a previously uncharacterized family of CBMs. In vitro binding studies demonstrated that this module indeed binds to crystalline cellulose and can similarly bind as part of a recombinant chimeric fusion protein containing an EGase catalytic domain from the bacterium Thermobifida fusca. Site-directed mutagenesis studies show that tryptophans 559 and 573 play a role in crystalline cellulose binding. The SlCel9C1 CBM, which represents a new CBM family (CBM49), is a defining feature of a new structural subclass (Class C) of plant EGases, with members present throughout the plant kingdom. In addition, the SlCel9C1 catalytic domain was shown to hydrolyze artificial cellulosic polymers, cellulose oligosaccharides, and a variety of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Breeanna R Urbanowicz
- Department of Plant Biology, Cornell Theory Center, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ai X, Xu Q, Jones M, Song Q, Ding SY, Ellingson RJ, Himmel M, Rumbles G. Photophysics of (CdSe)ZnS colloidal quantum dots in an aqueous environment stabilized with amino acids and genetically-modified proteins. Photochem Photobiol Sci 2007; 6:1027-33. [PMID: 17721603 DOI: 10.1039/b706471c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a combination of two amino acids, histidine and N-acetyl-cysteine, to replace the original organic capping groups of (CdSe)ZnS quantum dots, water-soluble and highly luminescent (CdSe)ZnS quantum dots have been successfully prepared at pH 8. Characterization by steady-state and time-resolved photoluminescence spectroscopy, and transient absorption spectroscopy, demonstrate that the electronic properties of these quantum dots exceed those of the original as-synthesized samples dissolved in a more-conventional organic solvent. Furthermore, these amino acid-stabilized quantum dots have been assembled onto a cellulose substrate via cellulose binding proteins that specifically bind to cellulose and was genetically engineered to harbor dual hexahistidine tags at the N- and C-termini to confer binding with the zinc(II) on the quantum dot surface. The spectroscopic measurements show that the protein-bound quantum dots continue to retain their desirable electronic properties when bound on the substrate. Meanwhile, the specific and very selective binding properties of the proteins have remained effective.
Collapse
Affiliation(s)
- Xin Ai
- National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, CO 80401-3393, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hildén L, Johansson G. Recent developments on cellulases and carbohydrate-binding modules with cellulose affinity. Biotechnol Lett 2005; 26:1683-93. [PMID: 15604820 DOI: 10.1007/s10529-004-4579-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review concerns basic research on cellulases and cellulose-specific carbohydrate-binding modules (CBMs). As a background, glycosyl hydrolases are also briefly reviewed. The nomenclature of cellulases and CBMs is discussed. The main cellulase-producing organisms and their cellulases are described. Synergy, enantioseparation, cellulases in plants, cellulosomes, cellulases and CBMs as analytical tools and cellulase-like enzymes are also briefly reviewed.
Collapse
Affiliation(s)
- Lars Hildén
- WURC, Department of Wood Science, Swedish University of Agricultural Sciences, Box 7008, Uppsala, 750 07, Sweden.
| | | |
Collapse
|
26
|
Kiiskinen LL, Palonen H, Linder M, Viikari L, Kruus K. Laccase fromMelanocarpus albomycesbinds effectively to cellulose. FEBS Lett 2004; 576:251-5. [PMID: 15474046 DOI: 10.1016/j.febslet.2004.08.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 08/18/2004] [Accepted: 08/19/2004] [Indexed: 11/29/2022]
Abstract
A laccase from the thermophilic fungus Melanocarpus albomyces was shown to bind to softwood and pure microcrystalline cellulose. The binding isotherm fitted well the Langmuir type one-site binding model. The adsorption parameters indicated that M. albomyces laccase binds with high affinity to cellulose with a relatively low maximum binding capacity, as compared to the values for various cellulases. The binding was shown to be reversible and not influenced by non-specific protein or 0.1-0.5 M Na2SO4. No binding was detected with laccases from Trametes hirsuta or Mauginiella sp., which suggests that binding to cellulose is typical for only some laccases.
Collapse
|