1
|
Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production. BMC Biotechnol 2018; 18:24. [PMID: 29720159 PMCID: PMC5930690 DOI: 10.1186/s12896-018-0434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. Results In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. Conclusions The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.
Collapse
|
2
|
Engineering mammalian cells in bioprocessing - current achievements and future perspectives. Biotechnol Appl Biochem 2010; 55:175-89. [PMID: 20392202 DOI: 10.1042/ba20090363] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Over the past 20 years, we have seen significant improvements in product titres from 50 mg/l to 5-10 g/l, a more than 100-fold increase. The main methods that have been employed to achieve this increase in product titre have been through the manipulation of culture media and process control strategies, such as the optimization of fed-batch processes. An alternative means to increase productivity has been through the engineering of host cells by altering cellular processes. Recombinant DNA technology has been used to over-express or suppress specific genes to endow particular phenotypes. Cellular processes that have been altered in host cells include metabolism, cell cycle, protein secretion and apoptosis. Cell engineering has also been employed to improve post-translational modifications such as glycosylation. In this article, an overview of the main cell engineering strategies previously employed and the impact of these strategies are presented. Many of these strategies focus on engineering cell lines with more efficient carbon metabolism towards reducing waste metabolites, achieving a biphasic production system by engineering cell cycle control, increasing protein secretion by targeting specific endoplasmic reticulum stress chaperones, delaying cell death by targeting anti-apoptosis genes, and engineering glycosylation by enhancing recombinant protein sialylation and antibody glycosylation. Future perspectives for host cell engineering, and possible areas of research, are also discussed in this review.
Collapse
|
3
|
Hebert CG, Valdes JJ, Bentley WE. In vitro and in vivo RNA interference mediated suppression of Tn-caspase-1 for improved recombinant protein production in High Five cell culture with the baculovirus expression vector system. Biotechnol Bioeng 2009; 104:390-9. [PMID: 19557836 PMCID: PMC10960971 DOI: 10.1002/bit.22411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
While traditional metabolic engineering generally relies on the augmentation of specific genes and pathways in order to increase the yield of target proteins, the advent of RNA interference (RNAi) as a biological tool has given metabolic engineers another tool capable of rationally altering the host cell's biological landscape in order to achieve a specific goal. Given its broad applicability and potent specificity, RNAi has the ability to suppress genes whose function is contrary to the desired phenotype. In this study, RNAi has been used to increase recombinant protein production in a Trichoplusia ni derived cell line (BTI-TN-5B1-4-High Five) using the Baculovirus Expression Vector System. The specific target investigated is Tn-caspase-1, a protease involved in apoptosis that is likely the principal effector caspase present in T. ni cells. Experiments were first conducted using in vitro synthesized dsRNA to verify silencing of Tn-capase-1 and increased protein production as a result. Subsequent experiments were conducted using a cell line stably expressing in vivo RNAi in the form of an inverted repeat that results in a hairpin upon transcription. Using this construct, Tn-caspase-1 transcript levels were decreased by 50% and caspase enzymatic activity was decreased by 90%. This cell line, designated dsTncasp-2, demonstrates superior viability under low nutrient culture conditions and resulted in as much as two times the protein yield when compared to standard High Five cells.
Collapse
Affiliation(s)
- Colin G. Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, Maryland 20742; telephone: 301-405-4321; fax: 301-314-9075; e-mail:
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
| | - James J. Valdes
- U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland
| | - William E. Bentley
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, Maryland 20742; telephone: 301-405-4321; fax: 301-314-9075; e-mail:
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
- Department of Chemical and Biomolecular Engineering, University of Maryland College Park, College Park, Maryland
| |
Collapse
|
4
|
Dumstorf CA, Mukhopadhyay S, Krishnan E, Haribabu B, McGregor WG. REV1 is implicated in the development of carcinogen-induced lung cancer. Mol Cancer Res 2009; 7:247-54. [PMID: 19176310 DOI: 10.1158/1541-7786.mcr-08-0399] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The somatic mutation hypothesis of cancer predicts that reducing the frequency of mutations induced by carcinogens will reduce the incidence of cancer. To examine this, we developed an antimutator strategy based on the manipulation of the level of a protein required for mutagenic bypass of DNA damage induced by the ubiquitous carcinogen benzo[a]pyrene. The expression of this protein, REV1, was reduced in mouse cells using a vector encoding a gene-specific targeting ribozyme. In the latter cells, mutagenesis induced by the activated form of benzo[a]pyrene was reduced by >90%. To examine if REV1 transcripts could be lowered in vivo, the plasmid was complexed with polyethyleneimine, a nonviral cationic polymer, and delivered to the lung via aerosol. The endogenous REV1 transcript in the bronchial epithelium as determined by quantitative real-time PCR in laser capture microdissected cells was reduced by 60%. There was a significant decrease in the multiplicity of carcinogen-induced lung tumors from 6.4 to 3.7 tumors per mouse. Additionally, REV1 inhibition completely abolished tumor formation in 27% of the carcinogen-exposed mice. These data support the central role of the translesion synthesis pathway in the development of lung cancer. Further, the selective modulation of members of this pathway presents novel potential targets for cancer prevention. The somatic mutation hypothesis of cancer predicts that the frequency of cancers will also be reduced.
Collapse
Affiliation(s)
- Chad A Dumstorf
- Department of Pharmacology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Hebert CG, Valdes JJ, Bentley WE. Beyond silencing--engineering applications of RNA interference and antisense technology for altering cellular phenotype. Curr Opin Biotechnol 2008; 19:500-5. [PMID: 18760358 DOI: 10.1016/j.copbio.2008.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/25/2008] [Accepted: 08/01/2008] [Indexed: 01/02/2023]
Abstract
Since its discovery 10 years ago, RNA interference (RNAi) has evolved from a research tool into a powerful method for altering the phenotype of cells and whole organisms. Its near universal applicability coupled with its pinpoint accuracy for suppressing target proteins has altered the landscape of many fields. While there is considerable intellectual investment in therapeutics, its potential extends far beyond. In this review, we explore some of these emerging applications--metabolic engineering for enhancing recombinant protein production in both insect and mammalian cell systems, antisense technologies in bacteria as next generation antibiotics, and RNAi in plant biotechnology for improving productivity and nutritional value.
Collapse
Affiliation(s)
- Colin G Hebert
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Science Building, College Park, MD 20742, USA
| | | | | |
Collapse
|
7
|
Sung YH, Lee JS, Park SH, Koo J, Lee GM. Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 2007; 9:452-64. [PMID: 17892962 DOI: 10.1016/j.ymben.2007.08.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/07/2007] [Accepted: 08/10/2007] [Indexed: 11/28/2022]
Abstract
Previously, the expression of caspase-3 siRNA could not effectively inhibit sodium butyrate (NaBu)-induced apoptotic cell death of recombinant Chinese hamster ovary (rCHO) cells producing human thrombopoietin (hTPO). Caspase-3 siRNA expressing cells appeared to compensate for the lack of caspase-3 by increasing active caspase-7 levels. For the successful inhibition of NaBu-induced apoptosis of rCHO cells, both caspase-3 and caspase-7 were down-regulated using the siRNA expression vector system. Co-down-regulation of caspase-3 and caspase-7 increased cell viability and extended culture longevity in serum-free culture in the presence or absence of 1mM NaBu addition. In the cultures with 1mM NaBu addition, the maximum hTPO concentration in rCHO cells with down-regulation of both caspases was approximately 55% higher than that in rCHO cells without down-regulation of caspases and approximately 16% higher than rCHO cells with down-regulation of only caspase-3. However, in the culture with 3mM NaBu, this strategy could not dramatically enhance the culture longevity and hTPO production, compared to Bcl-2 overexpression. The different result in hTPO production between down-regulation of caspases and Bcl-2 overexpression may be because the down-regulation of caspase-3 and caspase-7, unlike Bcl-2 overexpression, could not maintain mitochondrial membrane potential in the presence of 3mM NaBu. Taken together, co-down-regulation of caspase-3 and caspase-7 is effective in regard to extension of culture longevity and enhancement of hTPO production in a serum-free culture in the presence or absence of 1mM NaBu addition.
Collapse
Affiliation(s)
- Yun Hee Sung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Daejon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
8
|
Griffin TJ, Seth G, Xie H, Bandhakavi S, Hu WS. Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 2007; 25:401-8. [PMID: 17681628 DOI: 10.1016/j.tibtech.2007.07.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 11/23/2022]
Abstract
Mammalian cell-derived protein therapeutic production has changed the landscape of human healthcare in the past two decades. The importance of protein therapeutics has motivated the search for more cost-effective and efficient cell lines capable of producing high quality protein products. The factors contributing to optimal producer cell lines are often complex, and not simply conferred by one gene or gene product, which makes an understanding of system-wide properties for better engineering of optimized cell lines essential. Genome-scale technologies (genomics, transcriptomics and proteomics) enable such engineering studies. However, the use of these technologies in cell culture engineering is still in its infancy. Here, we summarize current knowledge of cell properties important for the design of efficient protein-producing mammalian cell lines, and highlight relevant studies to-date that use genome-scale technologies in these cell systems. We also provide a focused review of relevant alternative and emerging technologies, which have seen limited use in cell culture engineering, but hold great potential for significant advancements in protein therapeutic production.
Collapse
Affiliation(s)
- Timothy J Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
9
|
Seth G, Hossler P, Yee JC, Hu WS. Engineering cells for cell culture bioprocessing--physiological fundamentals. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2006; 101:119-64. [PMID: 16989260 DOI: 10.1007/10_017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, we have witnessed a tremendous increase in the number of mammalian cell-derived therapeutic proteins with clinical applications. The success of making these life-saving biologics available to the public is partly due to engineering efforts to enhance process efficiency. To further improve productivity, much effort has been devoted to developing metabolically engineered producing cells, which possess characteristics favorable for large-scale bioprocessing. In this article we discuss the fundamental physiological basis for cell engineering. Different facets of cellular mechanisms, including metabolism, protein processing, and the balancing pathways of cell growth and apoptosis, contribute to the complex traits of favorable growth and production characteristics. We present our assessment of the current state of the art by surveying efforts that have already been undertaken in engineering cells for a more robust process. The concept of physiological homeostasis as a key determinant and its implications on cell engineering is emphasized. Integrating the physiological perspective with cell culture engineering will facilitate attainment of dream cells with superlative characteristics.
Collapse
Affiliation(s)
- Gargi Seth
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | | | |
Collapse
|
10
|
Park KS, Seol W, Yang HY, Lee SI, Kim SK, Kwon RJ, Kim EJ, Roh YH, Seong BL, Kim JS. Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells. Biotechnol Prog 2005; 21:664-70. [PMID: 15932240 DOI: 10.1021/bp049658x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Randomized ZFP-TF libraries could induce a specific phenotype without detailed knowledge about the phenotype of interest because, theoretically, the libraries could modulate any gene in the target organism. We have developed a novel method for enhancing the efficiency of recombinant protein production in mammalian and microbial cells using combinatorial libraries of zinc finger protein transcription factors. To this end, we constructed tens of thousands of zinc finger proteins (ZFPs) with distinct DNA-binding specificities and fused these ZFPs to either a transcriptional activation or repression domain to make transcriptional activators or repressors, respectively. Expression vectors that encode these artificial transcription factors were delivered into Saccharomyces cerevisiae or HEK 293 cells along with reporter plasmids that code for human growth hormone (hGH) or SEAP (secreted alkaline phosphatase) (for yeast or HEK, respectively). Expression of the reporter genes was driven by either the cytomegalovirus (CMV) or SV40 virus promoters. After transfection, we screened the cells for increased synthesis of the reporter proteins. From these cells, we then isolated several ZFP-transcription factors (ZFP-TFs) that significantly increased hGH or SEAP synthesis and subjected these regulatory proteins to further characterization. Our results show that randomized ZFP-TF libraries are useful tools for improving the yield of heterologous recombinant protein both in yeast and mammalian cells.
Collapse
Affiliation(s)
- Kyung-Soon Park
- ToolGen, Inc., Daedeok Biocommunity, 461-71, Jeonmin-dong, Yuseong-gu, Daejeon, 305-390, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sung YH, Hwang SJ, Lee GM. Influence of down-regulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng 2005; 7:457-66. [PMID: 16169764 DOI: 10.1016/j.ymben.2005.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 08/04/2005] [Accepted: 08/09/2005] [Indexed: 10/25/2022]
Abstract
Sodium butyrate (NaBu) can enhance the expression of foreign protein of recombinant Chinese hamster ovary (rCHO) cells, but it can also inhibit cell growth and induce cellular apoptosis. Thus, the beneficial effect of using a higher concentration of NaBu on foreign protein expression in rCHO cells is compromised by its growth inhibitory and cytotoxic effects. To overcome this cytotoxic effect of NaBu, an expression vector of small interfering RNAs (siRNAs) targeting against caspase-3, a key effector component in apoptosis, was constructed and transfected into rCHO cells producing human thrombopoietin (hTPO). Using this siRNA strategy, rCHO cells (F21 cells) expressing a low level of caspase-3 proenzyme determined by RT-PCR and Western blot analysis were established. Under the condition of 1-5 mM NaBu addition at the exponential growth phase, down-regulation of caspase-3 in F21 cells could not effectively inhibit NaBu-induced apoptotic cell death. This NaBu-induced apoptotic cell death occurred because F21 cells appeared to compensate for the lack of caspase-3 by increasing the active caspase-7 level. These results suggest that the intracellular caspase's interconnectivity should be taken into consideration for the successful inhibition of apoptosis of rCHO cells.
Collapse
Affiliation(s)
- Yun Hee Sung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-Dong, Yusong-Gu, Daejon 305-701, Korea
| | | | | |
Collapse
|