1
|
Zafar A, Arshad R, Ur.Rehman A, Ahmed N, Akhtar H. Recent Developments in Oral Delivery of Vaccines Using Nanocarriers. Vaccines (Basel) 2023; 11:490. [PMID: 36851367 PMCID: PMC9964829 DOI: 10.3390/vaccines11020490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
As oral administration of vaccines is the preferred route due to its high patient compliance and ability to stimulate both cellular and humoral immune responses, it is also associated with several challenges that include denaturation of vaccine components in the acidic environment of the stomach, degradation from proteolytic enzymes, and poor absorption through the intestinal membrane. To achieve effective delivery of such biomolecules, there is a need to investigate novel strategies of formulation development that can overcome the barriers associated with conventional vaccine delivery systems. Nanoparticles are advanced drug delivery carriers that provide target-oriented delivery by encapsulating vaccine components within them, thus making them stable against unfavorable conditions. This review provides a detailed overview of the different types of nanocarriers and various approaches that can enhance oral vaccine delivery.
Collapse
Affiliation(s)
- Amna Zafar
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raffia Arshad
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| | - Asim Ur.Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Hashaam Akhtar
- Yusra Institute of Pharmaceutical Sciences, Yusra Medical and Dental College, Islamabad 45730, Pakistan
| |
Collapse
|
2
|
Abstract
Introduction: The oral route of vaccination is pain- and needle-free and can induce systemic and mucosal immunity. However, gastrointestinal barriers and antigen degradation impose significant hurdles in the development of oral vaccines. Live attenuated viruses and bacteria can overcome these barriers but at the risk of introducing safety concerns. As an alternative, particles have been investigated for antigen protection and delivery, yet there are no FDA-approved oral vaccines based on particle-based delivery systems. Our objective was to discover underlying determinants that can explain the current inadequacies and identify paradigms that can be implemented in future for successful development of oral vaccines relying on particle-based delivery systems.Areas covered: We reviewed literature related to the use of particles for oral vaccination and placed special emphasis on formulation characteristics and administration schedules to gain an insight into how these parameters impact production of antigen-specific antibodies in systemic and mucosal compartments.Expert opinion: Despite the long history of vaccines, particle-based oral vaccination is a relative new field with the first study published in 1989. Substantial variability exists between different studies with respect to dosing schedules, number of doses, and the amount of vaccine per dose. Most studies have not used adjuvants in the formulations. Better standardization in vaccination parameters is required to improve comparison between experiments, and adjuvants should be used to enhance the systemic and mucosal immune responses and to reduce the number of doses, which will make oral vaccines more attractive.
Collapse
Affiliation(s)
- Pedro Gonzalez-Cruz
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas, USA
| | | |
Collapse
|
3
|
Wu C, Böttcher C, Haag R. Enzymatically crosslinked dendritic polyglycerol nanogels for encapsulation of catalytically active proteins. SOFT MATTER 2015; 11:972-80. [PMID: 25519490 DOI: 10.1039/c4sm01746c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The enormous potential of nanogel scaffolds for protein encapsulation has been widely recognized. However, constructing stable polymeric nanoscale networks in a facile, mild, and controllable fashion still remains a technical challenge. Here, we present a novel nanogel formation strategy using horseradish peroxidase (HRP) catalyzed crosslinking on phenolic derivatized dendritic polyglycerol (dPG) in the presence of H2O2 in an inverse miniemulsion. This "enzymatic nanogelation" approach was efficient to produce stable 200 nm dPG nanogel particles, and was performed under physiological conditions, thus making it particularly beneficial for encapsulating biological proteins. Purification of the nanogels was easy to handle and practical because there was no need for a post-quenching step. Interestingly, the use of dPG resulted in higher HRP laden nanogels than for linear polyethylene glycol (PEG) analogs, which illustrates the benefits of dendritic backbones in nanogels for protein encapsulation. In addition, the mild immobilization contributed to the enhanced thermal stability and reusability of HRP. The nanogel preparation could be easily optimized to achieve the best HRP activity. Furthermore, a second enzyme, Candida antarctica lipase B (CalB), was successfully encapsulated and optimized for activity in dPG nanogels by the same enzymatic methodology, which shows the perspective applications of such techniques for encapsulation of diverse proteins.
Collapse
Affiliation(s)
- Changzhu Wu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | | | | |
Collapse
|
4
|
Abstract
Most infectious diseases are caused by pathogenic infiltrations from the mucosal tract. Therefore, vaccines delivered to the mucosal tissues can mimic natural infections and provide protection at the first site of infection. Thus, mucosal, especially, oral delivery is becoming the most preferred mode of vaccination. However, oral vaccines have to overcome several barriers such as the extremely low pH of the stomach, the presence of proteolytic enzymes and bile salts as well as low permeability in the intestine. Several formulations based on nanoparticle strategies are currently being explored to prepare stable oral vaccine formulations. This review briefly discusses several molecular mechanisms involved in intestinal immune cell activation and various aspects of oral nanoparticle-based vaccine design that should be considered for improved mucosal and systemic immune responses.
Collapse
Affiliation(s)
- Nirmal Marasini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | | |
Collapse
|
5
|
Recombinant spider silk particles for controlled delivery of protein drugs. Biomaterials 2012; 33:1554-62. [DOI: 10.1016/j.biomaterials.2011.10.053] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022]
|
6
|
Klyachko NL, Manickam DS, Brynskikh AM, Uglanova SV, Li S, Higginbotham SM, Bronich TK, Batrakova EV, Kabanov AV. Cross-linked antioxidant nanozymes for improved delivery to CNS. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 8:119-29. [PMID: 21703990 DOI: 10.1016/j.nano.2011.05.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 04/10/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles (NPs). Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked NPs, termed "nanozymes." Bienzyme NPs, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting; physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of (125)I-labeled SOD1-containing nanozymes in mice demonstrated their increased stability in both blood and brain and increased accumulation in brain tissues, in comparison with non-cross-linked complexes and native SOD1. Future studies will evaluate the potential of these formulations for delivery of antioxidant enzymes to the central nervous system to attenuate oxidative stress associated with neurological diseases. FROM THE CLINICAL EDITOR Formulations of antioxidant enzyme complexes were demonstrated along with their increased stability in both blood and brain and increased accumulation in CNS tissue. Future studies will evaluate the potential of these formulations for antioxidant enzyme deliver to the CNS to attenuate oxidative stress in neurodegenerative diseases.
Collapse
Affiliation(s)
- Natalia L Klyachko
- Department of Chemical Enzymology, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kanwar JR, Mahidhara G, Kanwar RK. Antiangiogenic therapy using nanotechnological-based delivery system. Drug Discov Today 2011; 16:188-202. [DOI: 10.1016/j.drudis.2011.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/19/2010] [Accepted: 01/14/2011] [Indexed: 10/18/2022]
|
8
|
Rawat M, Singh D, Saraf S, Saraf S. Development and In Vitro Evaluation of Alginate Gel–Encapsulated, Chitosan-Coated Ceramic Nanocores for Oral Delivery of Enzyme. Drug Dev Ind Pharm 2009; 34:181-8. [DOI: 10.1080/03639040701539479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 2008; 363:139-48. [DOI: 10.1016/j.ijpharm.2008.06.029] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/24/2008] [Accepted: 06/28/2008] [Indexed: 11/17/2022]
|
10
|
Abstract
This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach.
Collapse
Affiliation(s)
- Ales Prokop
- Department of Chemical Engineering, 24th Avenue & Garland Avenues, 107 Olin Hall, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
11
|
Hartig SM, Carlesso G, Davidson JM, Prokop A. Development of Improved Nanoparticulate Polyelectrolyte Complex Physicochemistry by Nonstoichiometric Mixing of Polyions with Similar Molecular Weights. Biomacromolecules 2007; 8:265-72. [PMID: 17206816 DOI: 10.1021/bm0604754] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-based, biodegradable polyelectrolyte complex dispersions (PECs) prepared by mixing oppositely charged polyions are advantageous drug delivery systems due to constituent biocompatibility and nanoparticulate architectures. Reaction phase environmental parameters dictate PEC physicochemical properties, and specifically, complexation between polyelectrolytes having significantly different molecular weights leads to formation of water-insoluble aggregates. Starting with this fact, four-component similar and dissimilar molecular weight PEC chemistries were applied and compared with and without frequency-induced dispergation. The goal was to define nanoparticulate PEC systems with desirable characteristics for use in biological systems. Results show PEC formulations from precursors with similar low molecular weights yielded dispersions with suitable physicochemical characteristics, as verified by photon correlation spectroscopy and TEM, presumably due to efficient ion pairing. Similar low molecular weight PECs fabricated with dispergation exhibited pH-independent stability, as validated by charge and size measurements. These physicochemical advantages lead to an ideal delivery platform.
Collapse
Affiliation(s)
- Sean M Hartig
- Department of Chemical Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, USA
| | | | | | | |
Collapse
|
12
|
Tsai CC, Lin V, Tang L. Injectable biomaterials for incontinence and vesico-ureteral reflux: current status and future promise. J Biomed Mater Res B Appl Biomater 2006; 77:171-8. [PMID: 16211572 DOI: 10.1002/jbm.b.30428] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many injectable biomaterials have been produced as bulking agents for compression of urethral sphincter or ureteral orifice for treating adult stress incontinence or vesico-ureteral reflux in pediatrics. The agents being developed include glutaraldehyde crosslinked collagen, dextranomer/hyaluronic acid copolymer, pyrolytic carbon-coated zirconium oxide beads, polydimethyl-siloxane microparticles, polytetrafluoroethylene paste, autologous fats, autologous chondrocytes, and others. Though less invasive nature of these agents has gained their popularity as a quick solution of the disease symptoms, most of such treatments fail to produce good long-term efficacy. The failure is likely caused by the rapid degradation of material implants and the lack of tissue regeneration/integration properties. We thus believe that a good injectable biomaterial for incontinence should possess the following two properties: (1) to resist degradation and to reside in the implantation sites for a long period of time or (2) to enhance tissue regeneration and to establish permanent periurethral or subureteric tissue. Here we report some recent results for supporting this hypothesis.
Collapse
Affiliation(s)
- Chi-Chun Tsai
- Alcon Research, Ltd., 6201 South Freeway, Mail Stop R1-18, Fort Worth, Texas 76134, USA.
| | | | | |
Collapse
|
13
|
Liang L, Yao P, Jiang M. Reversibility of Structural Transition of Cytochrome c on Interacting with and Releasing from Alternating Copolymers of Maleic Acid and Alkene. Biomacromolecules 2006; 7:1829-35. [PMID: 16768404 DOI: 10.1021/bm060150n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction of cytochrome c (cyt c) with poly(isobutylene-alt-maleic acid) (PIMA) and poly(1-tetradecene-alt-maleic acid) (PTMA) was studied using circular dichroism, absorption spectroscopy, and atomic force microscopy to investigate the electrostatic and hydrophobic influence of the copolymers on the structure of cyt c. At pH 7.4, the interaction of PIMA with cyt c can only partly disturb the integrity of the heme pocket, while PTMA has very intensive influence on the structure of cyt c. After adding 0.15 M NaCl, PIMA-cyt c complexes dissociate, and the released cyt c recovers its native structure, whereas NaCl has no significant influence on PTMA-cyt c complexes. GuHCl (0.5 M) destroys PTMA-cyt c complexes, forming GuHCl-PTMA precipitates; the cyt c released from the complexes regenerates its native structure. In comparison with electrostatic interaction, hydrophobic interaction leads to more stable polymer-cyt c complexes and more intensive influence on cyt c structure, but cyt c can recover its native state after release.
Collapse
Affiliation(s)
- Li Liang
- The Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
14
|
Boissière M, Tourrette A, Devoisselle JM, Di Renzo F, Quignard F. Pillaring effects in macroporous carrageenan–silica composite microspheres. J Colloid Interface Sci 2006; 294:109-16. [PMID: 16083892 DOI: 10.1016/j.jcis.2005.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/24/2005] [Accepted: 07/06/2005] [Indexed: 11/15/2022]
Abstract
The impregnation of a carrageenan gel by a silica sol is an efficient method to form a composite material which can be conveniently activated by CO2 supercritical drying. The textural properties of the solids have been characterized by nitrogen adsorption-desorption at 77 K and their composition by thermogravimetric analysis and EDX microprobe. Morphology was examined by SEM. The silica-carrageenan composites present an open macroporous structure. Silica particles retained inside the gel behaved as pillars between the polysaccharide fibrils and form a stick-and-ball network. The stiffening of the carrageenan gel by silica prevented its shrinkage upon drying. The nature of the alkali cations affected the retention of silica particles inside the gel. In the absence of silica, carrageenan fibrils rearrange under supercritical drying and form an aerogel with cavities in the mesopore range.
Collapse
Affiliation(s)
- M Boissière
- Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique, UMR 5618-CNRS-ENSCM-UM1, Institut C. Gerhardt, FR 1878, 8 rue de l'Ecole Normale, 34296 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
15
|
Abstract
Development of new delivery systems that deliver the potential drug specifically to the target site in order to meet the therapeutic needs of the patients at the required time and level remains the key challenge in the field of pharmaceutical biotechnology. Developments in this context to achieve desired goal has led to the evolution of the multidisciplinary field nanobiotechnology which involves the combination of two most promising technologies of 21st century--biotechnology and nanotechnology. Nanobiotechnology encompasses a wide array of different techniques to improve the delivery of biotech drugs, and nanoparticles offer the most suitable form whose properties can be tailored by chemical methods. This review highlights the different types of nanoparticulate delivery systems employed for biotech drugs in the field of molecular medicine with a short overlook at its applications and the probable associated drawbacks.
Collapse
Affiliation(s)
- Manju Rawat
- Institute of Pharmacy, Pt Ravishankar Shukla University, Raipur, India
| | | | | | | |
Collapse
|
16
|
Shang W, Dordick JS, Palazzo RE, Siegel RW. Direct patterning of centrosome arrays as templates for the assembly of microtubules. Biotechnol Bioeng 2006; 94:1012-6. [PMID: 16639717 DOI: 10.1002/bit.20846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have achieved, for the first time, the selective patterning of centrosomes onto solid substrates. The use of such patterned centrosome arrays as templates for the directed polymerization of microtubules was also demonstrated. Centrosomes are small organelles in animal cells that serve as nucleation and organization centers of microtubules. Directed assembly of microtubules on the patterned centrosome arrays provides a new route to control the positions and directions of microtubules on surfaces. Combining the patterning of the isolated centrosomes and the directed growth of microtubules may lead to the generation of desired microtubule networks for bio-based nanodevices.
Collapse
Affiliation(s)
- Wen Shang
- Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180-3950, USA
| | | | | | | |
Collapse
|
17
|
Dziubla TD, Karim A, Muzykantov VR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Release 2005; 102:427-39. [PMID: 15653162 DOI: 10.1016/j.jconrel.2004.10.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/15/2004] [Indexed: 11/20/2022]
Abstract
Polymeric nanocarriers (PNCs), proposed as an attractive vehicle for vascular drug delivery, remain an orphan technology for enzyme therapies due to poor loading and inactivation of protein cargoes. To unite enzyme delivery by PNC with a clinically relevant goal of containment of vascular oxidative stress, a novel freeze-thaw encapsulation strategy was designed and provides approximately 20% efficiency loading of an active large antioxidant enzyme, catalase, into PNC (200-300 nm) composed of biodegradable block copolymers poly(ethylene glycol)-b-poly(lactic-glycolic acid). Catalase's substrate, H(2)O(2), was freely diffusible in the PNC polymer. Furthermore, PNC-loaded catalase stably retained 25-30% of H(2)O(2)-degrading activity for at least 18 h in a proteolytic environment, while free catalase lost activity within 1 h. Delivery and protection of catalase from lysosomal degradation afforded by PNC nanotechnology may advance effectiveness and duration of treatment of diverse disease conditions associated with vascular oxidative stress.
Collapse
Affiliation(s)
- Thomas D Dziubla
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan/6068, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
18
|
Muro S, Cui X, Gajewski C, Murciano JC, Muzykantov VR, Koval M. Slow intracellular trafficking of catalase nanoparticles targeted to ICAM-1 protects endothelial cells from oxidative stress. Am J Physiol Cell Physiol 2003; 285:C1339-47. [PMID: 12878488 DOI: 10.1152/ajpcell.00099.2003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nanotechnologies promise new means for drug delivery. ICAM-1 is a good target for vascular immunotargeting of nanoparticles to the perturbed endothelium, although endothelial cells do not internalize monomeric anti-ICAM-1 antibodies. However, coupling ICAM-1 antibodies to nanoparticles creates multivalent ligands that enter cells via an amiloride-sensitive endocytic pathway that does not require clathrin or caveolin. Fluorescence microscopy revealed that internalized anti-ICAM nanoparticles are retained in a stable form in early endosomes for an unusually long time (1-2 h) and subsequently were degraded following slow transport to lysosomes. Inhibition of lysosome acidification by chloroquine delayed degradation without affecting anti-ICAM trafficking. Also, the microtubule disrupting agent nocodazole delayed degradation by inhibiting anti-ICAM nanoparticle trafficking to lysosomes. Addition of catalase to create anti-ICAM nanoparticles with antioxidant activity did not affect the mechanisms of nanoparticle uptake or trafficking. Intracellular anti-ICAM/catalase nanoparticles were active, because endothelial cells were resistant to H2O2-induced oxidative injury for 1-2 h after nanoparticle uptake. Chloroquine and nocodazole increased the duration of antioxidant protection by decreasing the extent of anti-ICAM/catalase degradation. Therefore, the unique trafficking pathway followed by internalized anti-ICAM nanoparticles seems well suited for targeted delivery of therapeutic enzymes to endothelial cells and may provide a basis for treatment of acute vascular oxidative stress.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, 1 John Morgan/6068, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
19
|
Girard M, Turgeon SL, Gauthier SF. Quantification of the interactions between beta-lactoglobulin and pectin through capillary electrophoresis analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:6043-6049. [PMID: 13129314 DOI: 10.1021/jf034266b] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biopolymer interactions have many potential applications in pharmaceutical, cosmetic, nutraceutical, and functional food industries. Attractive interactions between proteins and polysaccharides can lead to the formation of complexes. Binding parameters of beta-lactoglobulin (beta-lg)/pectin complexes were determined using frontal analysis continuous capillary electrophoresis and the overlapping binding site model. At pH 4, approximately 23 beta-lg molecules were cooperatively complexed on low-methoxyl pectin, where each beta-lg molecule covered an average of 12 galacturonic acid residues. The calculated binding constant was 1431 M(-1). The interactions between pectin and four selected peptides located on the outer surface of the beta-lg were investigated in order to identify which part of the protein was likely to interact with the pectin. The peptide beta-lg 132-148, which corresponds to the alpha-helix zone, and the peptides beta-lg 76-83, 41-60, and 1-14 would be involved in the interaction with the pectin.
Collapse
Affiliation(s)
- Maude Girard
- STELA Dairy Research Centre, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon Paul-Comtois, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
20
|
Park YJ, Liang JF, Song H, Li YT, Naik S, Yang VC. ATTEMPTS: a heparin/protamine-based triggered release system for the delivery of enzyme drugs without associated side-effects. Adv Drug Deliv Rev 2003; 55:251-65. [PMID: 12564979 DOI: 10.1016/s0169-409x(02)00181-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A prodrug type delivery system based on competitive ionic binding for the conversion of the prodrug to an active drug has been developed for delivery of enzyme drugs without their associated toxic side-effects. This approach, termed "ATTEMPTS" (antibody targeted, triggered, electrically modified prodrug-type strategy), would permit the administration of an inactive drug and then subsequently triggered release of the active drug at the target site. The underlying principle was to modify the enzyme with small cationic species so that it could bind a negatively charged heparin-linked antibody, and the latter would block the activity of the enzyme drug until it reached the target. To provide the enzyme drug with appropriate binding strength to heparin, a cationic poly(Arg)(7) peptide was incorporated onto the enzyme either by the chemical conjugation method using a bifunctional crosslinker or by the biological conjugation method using the recombinant methodology. Methods for drug modification, heparin-antibody conjugation, and the prodrug and triggered release features of the "ATTEMPTS" approach are described in detail in this review article.
Collapse
Affiliation(s)
- Yoon-Jeong Park
- College of Pharmacy, The University of Michigan, 428 Church Street, Ann Arbor, MI 48108-1065, USA
| | | | | | | | | | | |
Collapse
|
21
|
Arad-Yellin R, Firer M, Kahana N, Green BS. Functionalized polysulfone as a novel and useful carrier for immunization and antibody detection. REACT FUNCT POLYM 2003. [DOI: 10.1016/s1381-5148(02)00178-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Prokop A, Kozlov E, Carlesso G, Davidson JM. Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications. FILLED ELASTOMERS DRUG DELIVERY SYSTEMS 2002. [DOI: 10.1007/3-540-45362-8_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|