1
|
El Maachi I, Kyriakou S, Rütten S, Kopp A, Köpf M, Jockenhoevel S, Fernández-Colino A. Silk Fibroin as Adjuvant in the Fabrication of Mechanically Stable Fibrin Biocomposites. Polymers (Basel) 2022; 14:2251. [PMID: 35683920 PMCID: PMC9183065 DOI: 10.3390/polym14112251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrin is a very attractive material for the development of tissue-engineered scaffolds due to its exceptional bioactivity, versatility in the fabrication, affinity to cell mediators; and the possibility to isolate it from blood plasma, making it autologous. However, fibrin application is greatly limited due to its low mechanical properties, fast degradation, and strong contraction in the presence of cells. In this study, we present a new strategy to overcome these drawbacks by combining it with another natural polymer: silk fibroin. Specifically, we fabricated biocomposites of fibrin (5 mg/mL) and silk fibroin (0.1, 0.5 and 1% w/w) by using a dual injection system, followed by ethanol annealing. The shear elastic modulus increased from 23 ± 5 Pa from fibrin alone, to 67 ± 22 Pa for fibrin/silk fibroin 0.1%, 241 ± 67 Pa for fibrin/silk fibroin 0.5% and 456 ± 32 Pa for fibrin/silk fibroin 1%. After culturing for 27 days with strong contractile cells (primary human arterial smooth muscle cells), fibrin/silk fibroin 0.5% and fibrin/silk fibroin 1% featured minimal cell-mediated contraction (ca. 15 and 5% respectively) in contrast with the large surface loss of the pure fibrin scaffolds (ca. 95%). Additionally, the composites enabled the formation of a proper endothelial cell layer after culturing with human primary endothelial cells under standard culture conditions. Overall, the fibrin/silk fibroin composites, manufactured within this study by a simple and scalable biofabrication approach, offer a promising avenue to boost the applicability of fibrin in tissue engineering.
Collapse
Affiliation(s)
- Ikram El Maachi
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| | - Stavroula Kyriakou
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| | - Stephan Rütten
- Electron Microscopy Facility, Uniklinik RWTH Aachen, D-52074 Aachen, Germany;
| | - Alexander Kopp
- Fibrothelium GmbH, D-52068 Aachen, Germany; (A.K.); (M.K.)
| | - Marius Köpf
- Fibrothelium GmbH, D-52068 Aachen, Germany; (A.K.); (M.K.)
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
- AMIBM-Aachen-Maastricht-Institute for Biobased Materials, Faculty of Science and Engineering, Brightlands Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| | - Alicia Fernández-Colino
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, D-52074 Aachen, Germany; (I.E.M.); (S.K.)
| |
Collapse
|
2
|
Shafaati M, Ghorbani M, Mahmoodi M, Ebadi M, Jalalirad R. Expression and characterization of hemagglutinin-neuraminidase protein from Newcastle disease virus in Bacillus subtilis WB800. J Genet Eng Biotechnol 2022; 20:77. [PMID: 35608724 PMCID: PMC9130408 DOI: 10.1186/s43141-022-00357-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Background Newcastle disease virus (NDV) belongs to the genus Avaluvirus and Paramyxoviridae family, and it can cause acute, highly contagious Newcastle disease in poultry. The two proteins, haemagglutinin neuraminidase (HN) and Fusion (F), are the main virulence factor of the virus and play an essential role in immunogenicity against the virus. In most paramyxoviruses, the F protein requires HN protein to fuse the membrane, and HN proteins substantially enhance the viruses’ fusion activity. Results The present study describes the successful cloning and expression of HN protein from NDV in Bacillus subtilis WB800 using the modified shuttle vector pHT43. HN coding sequence was cloned into the pGet II vector. It was then subcloned into the PHT43 shuttle vector and transferred to Escherichia coli for replication. The recombinant plasmid was extracted from E. coli and used to transform B. subtilis by electroporation. After induction of recombinant B. subtilis by IPTG, total cell protein and the protein secreted into the media were analysed through a time course using SDS-PAGE. The expressed HN protein was purified using cation exchange chromatography followed by metal affinity chromatography, using the 6× His epitope introduced at the carboxyl terminus of the recombinant protein. The accuracy of the PHT43-HN construct was confirmed by sequencing and enzymatic digestion. SDS-PAGE results showed that the recombinant HN protein was successfully expressed and secreted into the medium. Moreover, the purified HN protein showed neuraminidase activity with characteristics similar to the indigenous HN NDV protein. B. subtilis is a free endotoxin host that could be a favourite prokaryotic platform for producing the recombinant HN protein. Conclusion The establishment of this expression and purification system has allowed us to explore further the biochemical characteristics of HN protein and obtain material that could be suitable for a new production of NDV candidate vaccine with high immunogenicity.
Collapse
Affiliation(s)
- Mohammadreza Shafaati
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Masoud Ghorbani
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran.
| | - Minoo Mahmoodi
- Department of Cellular & Molecular Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Damaghan Branch, Islamic Azad University, Damghan, Semnan, Iran
| | - Reza Jalalirad
- Pasteur Institute of Iran, Production and Research Complex, Department of Research and Development, Kilometre 25 Karaj-Tehran Highway, Karaj, Alborz, 31599, Iran
| |
Collapse
|
3
|
Zastosowanie fibryny w inżynierii tkankowej. Osiągnięcia i perspektywy. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
W ostatnich latach istotnym obszarem zastosowania fibryny stała się inżynieria tkankowa, w której wykorzystuje się naturalne właściwości biostatyczne i bioaktywne fibryny, a także możliwość pułapkowania i wiązania w jej strukturze czynników wzrostu. Fibryna jest najczęściej stosowana w postaci żeli i dysków. Jednak każda postać wskutek pochłaniania wody docelowo przyjmuje postać żelu. Białko to w warunkach in vivo spełnia rolę rusztowania dla komórek, a także może być aplikowane w miejsca trudno dostępne – może wypełniać ubytki tkanek i podtrzymywać tkanki okalające, zapobiegając ich zapadaniu się. Ponadto fibryna hamuje krwawienie i inicjuje proces odnowy, jak również pełni rolę stymulatora wzrostu komórek. Przez modyfikacje struktury fibryny cząsteczkami adhezyjnymi, można przyspieszyć odbudowę prawidłowej struktury tkanek. Jej właściwości strukturalne mogą być także wykorzystywane jako rezerwuar czynników wzrostu i system ich przedłużonego uwalniania. Fibryna jest materiałem biodegradowalnym, umożliwiając skorelowanie ubytku matrycy fibrynowej z odbudową tkanek własnych pacjenta. Wprowadzenie metod druku 3D i elektroprzędzenia umożliwia formulację dopasowanych do uszkodzeń kształtek oraz włóknin bez utraty bioaktywnych funkcji fibryny. Metody te umożliwiają także poprawę właściwości mechanicznych przez otrzymywanie m.in. włóknin fibryny z innymi polimerami, co jest szczególnie uzasadnione w przypadku materiałów stosowanych w odbudowie takich struktur jak ścięgna czy kości. Biotechnologiczna synteza fibrynogenu może w przyszłości uniezależnić pozyskiwanie go z krwi i zwiększyć popularność wyrobów medycznych otrzymywanych z fibryny.
Collapse
|
4
|
Roy S, Mukherjee P, Das PK, Ghosh PR, Datta P, Kundu B, Nandi SK. Local delivery systems of morphogens/biomolecules in orthopedic surgical challenges. MATERIALS TODAY COMMUNICATIONS 2021; 27:102424. [DOI: 10.1016/j.mtcomm.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
White KA, Cali VJ, Olabisi RM. Micropatterning biomineralization with immobilized mother of pearl proteins. Sci Rep 2021; 11:2141. [PMID: 33495508 PMCID: PMC7835238 DOI: 10.1038/s41598-021-81534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 11/09/2022] Open
Abstract
In response to the drawbacks of autograft donor-site morbidity and bone morphogenetic protein type 2 (BMP2) carcinogenesis and ectopic bone formation, there has been an increased research focus towards developing alternatives capable of achieving spatial control over bone formation. Here we show for the first time both osteogenic differentiation and mineralization (from solution or mediated by cells) occurring within predetermined microscopic patterns. Our results revealed that both PEGylated BMP2 and nacre proteins induced stem cell osteodifferentiation in microscopic patterns when these proteins were covalently bonded in patterns onto polyethylene glycol diacrylate (PEGDA) hydrogel substrates; however, only nacre proteins induced mineralization localized to the micropatterns. These findings have broad implications on the design and development of orthopedic biomaterials and drug delivery.
Collapse
Affiliation(s)
- Kristopher A White
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
| | - Vincent J Cali
- Department of Anatomy and Physiology, Queens College, City University of New York, Bayside, NY, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Human Fresh Fibrin Membrane with Bone Morphogenetic Protein-2 (BMP-2) Induces Bone Formation in the Subcutaneous Tissues of Nude Mice. MATERIALS 2020; 14:ma14010150. [PMID: 33396335 PMCID: PMC7796051 DOI: 10.3390/ma14010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Autologous blood-derived fibrin glue with platelets, called the concentrated growth factor (CGF), can be prepared immediately by only the decided centrifuge without the addition of coagulation factors. Collagen materials combined with recombinant human BMP-2 have been commercially available for clinical use. The fresh CGF is auto-clot with wettability and elasticity, while most collagen membranes are derived from the cow or pig. The fresh CGF has wettability and elasticity, while collagen membranes are dry materials without elasticity. The aim of this study was to observe the microstructures of human CGF membrane and evaluate its behavior as a delivery scaffold of rhBMP-2 in the subcutaneous tissues of nude mice. Twenty-four nude mice (5-week-old, male) were used for the assessment of in vivo ectopic bone formation. Mice were received the CGF membrane as the controls and the CGF/rhBMP-2 membrane as the experimental group in the subcutaneous tissues, and harvested at 7, 10, and 14 days after the graft. Harvested samples were evaluated for the histological examination and the histomorphometric measurement was conducted to compare the residue of the CGF, as well as the new bone. Mature fibrin fibers assembled from multiple fibrillary elements and platelets with the rhBMP-2 membrane induced several bony islands and cartilage without residues of CGF at 14 days, while the CGF membrane alone was almost absorbed at 10 days and failed to induce bone formation at 14 days. These results demonstrated that the fresh, human CGF membrane could contribute to a short-term, sticky fibrin matrix for the delivery of rhBMP-2.
Collapse
|
7
|
Dodt K, Lamer S, Drießen M, Bölch S, Schlosser A, Lühmann T, Meinel L. Mass-Encoded Reporters Reporting Proteolytic Activity from within the Extracellular Matrix. ACS Biomater Sci Eng 2020; 6:5240-5253. [PMID: 33455273 DOI: 10.1021/acsbiomaterials.0c00691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reporting matrix metalloproteinase (MMP) activity directly from the extracellular matrix (ECM) may provide critical insights to better characterize 2D and 3D cell culture model systems of inflammatory diseases and potentially leverage in vivo diagnosis. In this proof-of-concept study, we designed MMP-sensors, which were covalently linked onto the ECM by co-administration of the activated transglutaminase factor XIIIa (FXIIIa). Elements of the featured MMP-sensors are the D-domain of insulin-like growth factor I (IGF-I) through which co-administered FXIIIa covalently links the sensor to the ECM followed by an MMP sensitive peptide sequence and locally reporting on MMP activity, an isotopically labeled mass tag encoding for protease activity, and an affinity tag facilitating purification from fluids. All sensors come in identical pairs, other than the MMP sensitive peptide sequence, which is synthesized with l-amino acids or d-amino acids, the latter serving as internal standard. As a proof of concept for multiplexing, we successfully profiled two MMP-sensors with different MMP sensitive peptide sequences reporting MMP activity directly from an engineered 3D ECM. Future use may include covalently ECM bound diagnostic depots reporting MMP activity from inflamed tissues.
Collapse
Affiliation(s)
- Katharina Dodt
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Stephanie Lamer
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Marc Drießen
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Sebastian Bölch
- Department for Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, Brettreichstrasse 11, 97074 Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
8
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
9
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
10
|
Jose G, Shalumon K, Chen JP. Natural Polymers Based Hydrogels for Cell Culture Applications. Curr Med Chem 2020; 27:2734-2776. [PMID: 31480996 DOI: 10.2174/0929867326666190903113004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
It is well known that the extracellular matrix (ECM) plays a vital role in the growth, survival
and differentiation of cells. Though two-dimensional (2D) materials are generally used as substrates for
the standard in vitro experiments, their mechanical, structural, and compositional characteristics can
alter cell functions drastically. Many scientists reported that cells behave more natively when cultured
in three-dimensional (3D) environments than on 2D substrates, due to the more in vivo-like 3D cell
culture environment that can better mimic the biochemical and mechanical properties of the ECM. In
this regard, water-swollen network polymer-based materials called hydrogels are highly attractive for
developing 3D ECM analogs due to their biocompatibility and hydrophilicity. Since hydrogels can be
tuned and altered systematically, these materials can function actively in a defined culture medium to
support long-term self-renewal of various cells. The physico-chemical and biological properties of the
materials used for developing hydrogel should be tunable in accordance with culture needs. Various
types of hydrogels derived either from natural or synthetic origins are currently being used for cell culture
applications. In this review, we present an overview of various hydrogels based on natural polymers
that can be used for cell culture, irrespective of types of applications. We also explain how each
hydrogel is made, its source, pros and cons in biological applications with a special focus on regenerative
engineering.
Collapse
Affiliation(s)
- Gils Jose
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - K.T. Shalumon
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
Ren X, Zhao M, Lash B, Martino MM, Julier Z. Growth Factor Engineering Strategies for Regenerative Medicine Applications. Front Bioeng Biotechnol 2020; 7:469. [PMID: 32039177 PMCID: PMC6985039 DOI: 10.3389/fbioe.2019.00469] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023] Open
Abstract
Growth factors are critical molecules for tissue repair and regeneration. Therefore, recombinant growth factors have raised a lot of hope for regenerative medicine applications. While using growth factors to promote tissue healing has widely shown promising results in pre-clinical settings, their success in the clinic is not a forgone conclusion. Indeed, translation of growth factors is often limited by their short half-life, rapid diffusion from the delivery site, and low cost-effectiveness. Trying to circumvent those limitations by the use of supraphysiological doses has led to serious side-effects in many cases and therefore innovative technologies are required to improve growth factor-based regenerative strategies. In this review, we present protein engineering approaches seeking to improve growth factor delivery and efficacy while reducing doses and side effects. We focus on engineering strategies seeking to improve affinity of growth factors for biomaterials or the endogenous extracellular matrix. Then, we discuss some examples of increasing growth factor stability and bioactivity, and propose new lines of research that the field of growth factor engineering for regenerative medicine may adopt in the future.
Collapse
Affiliation(s)
- Xiaochen Ren
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Moyuan Zhao
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Blake Lash
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mikaël M. Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Roberts IV, Bukhary D, Valdivieso CYL, Tirelli N. Fibrin Matrices as (Injectable) Biomaterials: Formation, Clinical Use, and Molecular Engineering. Macromol Biosci 2019; 20:e1900283. [PMID: 31769933 DOI: 10.1002/mabi.201900283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Indexed: 12/19/2022]
Abstract
This review focuses on fibrin, starting from biological mechanisms (its production from fibrinogen and its enzymatic degradation), through its use as a medical device and as a biomaterial, and finally discussing the techniques used to add biological functions and/or improve its mechanical performance through its molecular engineering. Fibrin is a material of biological (human, and even patient's own) origin, injectable, adhesive, and remodellable by cells; further, it is nature's most common choice for an in situ forming, provisional matrix. Its widespread use in the clinic and in research is therefore completely unsurprising. There are, however, areas where its biomedical performance can be improved, namely achieving a better control over mechanical properties (and possibly higher modulus), slowing down degradation or incorporating cell-instructive functions (e.g., controlled delivery of growth factors). The authors here specifically review the efforts made in the last 20 years to achieve these aims via biomimetic reactions or self-assembly, as much via formation of hybrid materials.
Collapse
Affiliation(s)
- Iwan Vaughan Roberts
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Deena Bukhary
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | | | - Nicola Tirelli
- Division of Pharmacy and Optometry, School of Health Science, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.,Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy
| |
Collapse
|
13
|
Goetzke R, Keijdener H, Franzen J, Ostrowska A, Nüchtern S, Mela P, Wagner W. Differentiation of Induced Pluripotent Stem Cells towards Mesenchymal Stromal Cells is Hampered by Culture in 3D Hydrogels. Sci Rep 2019; 9:15578. [PMID: 31666572 PMCID: PMC6821810 DOI: 10.1038/s41598-019-51911-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 10/10/2019] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of induced pluripotent stem cells (iPSCs) towards specific lineages remains a major challenge in regenerative medicine, while there is a growing perception that this process can be influenced by the three-dimensional environment. In this study, we investigated whether iPSCs can differentiate towards mesenchymal stromal cells (MSCs) when embedded into fibrin hydrogels to enable a one-step differentiation procedure within a scaffold. Differentiation of iPSCs on tissue culture plastic or on top of fibrin hydrogels resulted in a typical MSC-like phenotype. In contrast, iPSCs embedded into fibrin gel gave rise to much smaller cells with heterogeneous growth patterns, absence of fibronectin, faint expression of CD73 and CD105, and reduced differentiation potential towards osteogenic and adipogenic lineage. Transcriptomic analysis demonstrated that characteristic genes for MSCs and extracellular matrix were upregulated on flat substrates, whereas genes of neural development were upregulated in 3D culture. Furthermore, the 3D culture had major effects on DNA methylation profiles, particularly within genes for neuronal and cardiovascular development, while there was no evidence for epigenetic maturation towards MSCs. Taken together, iPSCs could be differentiated towards MSCs on tissue culture plastic or on a flat fibrin hydrogel. In contrast, the differentiation process was heterogeneous and not directed towards MSCs when iPSCs were embedded into the hydrogel.
Collapse
Affiliation(s)
- Roman Goetzke
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Hans Keijdener
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Julia Franzen
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Alina Ostrowska
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Selina Nüchtern
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany. .,Medical Materials and Implants, Department of Mechanical Engineering and Munich School of BioEngineering, Technical University of Munich, Garching, Germany.
| | - Wolfgang Wagner
- Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, RWTH Aachen University Medical School, Aachen, Germany.
| |
Collapse
|
14
|
Fibrin as a Multipurpose Physiological Platform for Bone Tissue Engineering and Targeted Delivery of Bioactive Compounds. Pharmaceutics 2019; 11:pharmaceutics11110556. [PMID: 31661853 PMCID: PMC6920828 DOI: 10.3390/pharmaceutics11110556] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Although bone graft is still considered as the gold standard method, bone tissue engineering offers promising alternatives designed to mimic the extracellular matrix (ECM) and to guide bone regeneration process. In this attempt, due to their similarity to the ECM and their low toxicity/immunogenicity properties, growing attention is paid to natural polymers. In particular, considering the early critical role of fracture hematoma for bone healing, fibrin, which constitutes blood clot, is a candidate of choice. Indeed, in addition to its physiological roles in bone healing cascade, fibrin biochemical characteristics make it suitable to be used as a multipurpose platform for bioactive agents’ delivery. Thus, taking advantage of these key assets, researchers and clinicians have the opportunity to develop composite systems that might further improve bone tissue reconstruction, and more generally prevent/treat skeletal disorders.
Collapse
|
15
|
Goonoo N, Bhaw-Luximon A. Mimicking growth factors: role of small molecule scaffold additives in promoting tissue regeneration and repair. RSC Adv 2019; 9:18124-18146. [PMID: 35702423 PMCID: PMC9115879 DOI: 10.1039/c9ra02765c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
The primary aim of tissue engineering scaffolds is to mimic the in vivo environment and promote tissue growth. In this quest, a number of strategies have been developed such as enhancing cell-material interactions through modulation of scaffold physico-chemical parameters. However, more is required for scaffolds to relate to the cell natural environment. Growth factors (GFs) secreted by cells and extracellular matrix (ECM) are involved in both normal repair and abnormal remodeling. The direct use of GFs on their own or when incorporated within scaffolds represent a number of challenges such as release rate, stability and shelf-life. Small molecules have been proposed as promising alternatives to GFs as they are able to minimize or overcome many shortcomings of GFs, in particular immune response and instability. Despite the promise of small molecules in various TE applications, their direct use is limited by nonspecific adverse effects on non-target tissues and organs. Hence, they have been incorporated within scaffolds to localize their actions and control their release to target sites. However, scanty rationale is available which links the chemical structure of these molecules with their mode of action. We herewith review various small molecules either when used on their own or when incorporated within polymeric carriers/scaffolds for bone, cartilage, neural, adipose and skin tissue regeneration.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| | - Archana Bhaw-Luximon
- Biomaterials, Drug Delivery and Nanotechnology (BDDN) Unit, Centre for Biomedical and Biomaterials Research, University of Mauritius Réduit Mauritius
| |
Collapse
|
16
|
Subbiah R, Guldberg RE. Materials Science and Design Principles of Growth Factor Delivery Systems in Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2019; 8:e1801000. [PMID: 30398700 DOI: 10.1002/adhm.201801000] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/13/2018] [Indexed: 01/22/2023]
Abstract
Growth factors (GFs) are signaling molecules that direct cell development by providing biochemical cues for stem cell proliferation, migration, and differentiation. GFs play a key role in tissue regeneration, but one major limitation of GF-based therapies is dosage-related adverse effects. Additionally, the clinical applications and efficacy of GFs are significantly affected by the efficiency of delivery systems and other pharmacokinetic factors. Hence, it is crucial to design delivery systems that provide optimal activity, stability, and tunable delivery for GFs. Understanding the physicochemical properties of the GFs and the biomaterials utilized for the development of biomimetic GF delivery systems is critical for GF-based regeneration. Many different delivery systems have been developed to achieve tunable delivery kinetics for single or multiple GFs. The identification of ideal biomaterials with tunable properties for spatiotemporal delivery of GFs is still challenging. This review characterizes the types, properties, and functions of GFs, the materials science of widely used biomaterials, and various GF loading strategies to comprehensively summarize the current delivery systems for tunable spatiotemporal delivery of GFs aimed for tissue regeneration applications. This review concludes by discussing fundamental design principles for GF delivery vehicles based on the interactive physicochemical properties of the proteins and biomaterials.
Collapse
Affiliation(s)
- Ramesh Subbiah
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; George W. Woodruff School of Mechanical Engineering; Georgia Institute of Technology; Atlanta GA 30332 USA
- Phil and Penny Knight Campus for Accelerating Scientific Impact; 6231 University of Oregon; Eugene OR 97403 USA
| |
Collapse
|
17
|
Heher P, Mühleder S, Mittermayr R, Redl H, Slezak P. Fibrin-based delivery strategies for acute and chronic wound healing. Adv Drug Deliv Rev 2018; 129:134-147. [PMID: 29247766 DOI: 10.1016/j.addr.2017.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/24/2017] [Accepted: 12/09/2017] [Indexed: 12/17/2022]
Abstract
Fibrin, a natural hydrogel, is the end product of the physiological blood coagulation cascade and naturally involved in wound healing. Beyond its role in hemostasis, it acts as a local reservoir for growth factors and as a provisional matrix for invading cells that drive the regenerative process. Its unique intrinsic features do not only promote wound healing directly via modulation of cell behavior but it can also be fine-tuned to evolve into a delivery system for sustained release of therapeutic biomolecules, cells and gene vectors. To further augment tissue regeneration potential, current strategies exploit and modify the chemical and physical characteristics of fibrin to employ combined incorporation of several factors and their timed release. In this work we show advanced therapeutic approaches employing fibrin matrices in wound healing and cover the many possibilities fibrin offers to the field of regenerative medicine.
Collapse
|
18
|
Braun AC, Gutmann M, Lühmann T, Meinel L. Bioorthogonal strategies for site-directed decoration of biomaterials with therapeutic proteins. J Control Release 2018; 273:68-85. [PMID: 29360478 DOI: 10.1016/j.jconrel.2018.01.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/04/2023]
Abstract
Emerging strategies targeting site-specific protein modifications allow for unprecedented selectivity, fast kinetics and mild reaction conditions with high yield. These advances open exciting novel possibilities for the effective bioorthogonal decoration of biomaterials with therapeutic proteins. Site-specificity is particularly important to the therapeutics' end and translated by targeting specific functional groups or introducing new functional groups into the therapeutic at predefined positions. Biomimetic strategies are designed for modification of therapeutics emulating enzymatic strategies found in Nature. These strategies are suitable for a diverse range of applications - not only for protein-polymer conjugation, particle decoration and surface immobilization, but also for the decoration of complex biomaterials and the synthesis of bioresponsive drug delivery systems. This article reviews latest chemical and enzymatic strategies for the biorthogonal decoration of biomaterials with therapeutic proteins and inter-positioned linker structures. Finally, the numerous reports at the interface of biomaterials, linkers, and therapeutic protein decoration are integrated into practical advice for design considerations intended to support the selection of productive ligation strategies.
Collapse
Affiliation(s)
- Alexandra C Braun
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Tessa Lühmann
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074 Würzburg, Germany.
| |
Collapse
|
19
|
Heterologous Secretory Expression and Characterization of Dimerized Bone Morphogenetic Protein 2 in Bacillus subtilis. BIOMED RESEARCH INTERNATIONAL 2018; 2017:9350537. [PMID: 29333457 PMCID: PMC5733156 DOI: 10.1155/2017/9350537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022]
Abstract
Recombinant human Bone Morphogenetic Protein 2 (rhBMP2) has important applications in the spine fusion and ortho/maxillofacial surgeries. Here we first report the secretory expression of biological active dimerized rhBMP2 from Bacillus subtilis system. The mature domain of BMP2 gene was amplified from pTz57R/BMP2 plasmid. By using pHT43 expression vector two constructs, pHT43-BMP2-M (single BMP2 gene) and pHT43-BMP2-D (two BMP2 genes coupled with a linker to produce a dimer), were designed. After primary cloning (DH5α strain) and sequence analysis, constructs were transformed into Bacillus subtilis for secretory expression. Expression conditions like media (2xYT) and temperature (30°C) were optimized. Maximum 35% and 25% secretory expression of monomer (~13 kDa) and dimer (~25 kDa), respectively, were observed on SDS-PAGE in SCK6 strain. The expression and dimeric nature of rhBMP2 were confirmed by western blot and native PAGE analysis. For rhBMP2 purification, 200 ml culture supernatant was freeze dried to 10 ml and dialyzed (Tris-Cl, pH 8.5) and Fast Protein Liquid Chromatography (6 ml, Resource Q column) was performed. The rhBMP2 monomer and dimer were eluted at 0.9 M and 0.6 M NaCl, respectively. The alkaline phosphatase assay of rhBMP2 (0, 50, 100, 200, and 400 ng/ml) was analyzed on C2C12 cells and maximum 200 ng/ml activity was observed in dose dependent manner.
Collapse
|
20
|
Noori A, Ashrafi SJ, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 2017; 12:4937-4961. [PMID: 28761338 PMCID: PMC5516781 DOI: 10.2147/ijn.s124671] [Citation(s) in RCA: 280] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Tissue engineering has emerged as a new treatment approach for bone repair and regeneration seeking to address limitations associated with current therapies, such as autologous bone grafting. While many bone tissue engineering approaches have traditionally focused on synthetic materials (such as polymers or hydrogels), there has been a lot of excitement surrounding the use of natural materials due to their biologically inspired properties. Fibrin is a natural scaffold formed following tissue injury that initiates hemostasis and provides the initial matrix useful for cell adhesion, migration, proliferation, and differentiation. Fibrin has captured the interest of bone tissue engineers due to its excellent biocompatibility, controllable biodegradability, and ability to deliver cells and biomolecules. Fibrin is particularly appealing because its precursors, fibrinogen, and thrombin, which can be derived from the patient's own blood, enable the fabrication of completely autologous scaffolds. In this article, we highlight the unique properties of fibrin as a scaffolding material to treat bone defects. Moreover, we emphasize its role in bone tissue engineering nanocomposites where approaches further emulate the natural nanostructured features of bone when using fibrin and other nanomaterials. We also review the preparation methods of fibrin glue and then discuss a wide range of fibrin applications in bone tissue engineering. These include the delivery of cells and/or biomolecules to a defect site, distributing cells, and/or growth factors throughout other pre-formed scaffolds and enhancing the physical as well as biological properties of other biomaterials. Thoughts on the future direction of fibrin research for bone tissue engineering are also presented. In the future, the development of fibrin precursors as recombinant proteins will solve problems associated with using multiple or single-donor fibrin glue, and the combination of nanomaterials that allow for the incorporation of biomolecules with fibrin will significantly improve the efficacy of fibrin for numerous bone tissue engineering applications.
Collapse
Affiliation(s)
- Alireza Noori
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran
| | | | - Roza Vaez-Ghaemi
- Department of Chemical and Biological Engineering, Faculty of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
21
|
IGF-1-containing multi-layered collagen-fibrin hybrid scaffolds for bladder tissue engineering. Acta Biomater 2016; 41:75-85. [PMID: 27286676 DOI: 10.1016/j.actbio.2016.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/25/2016] [Accepted: 06/07/2016] [Indexed: 02/03/2023]
Abstract
UNLABELLED Clinical success of bladder reconstructive procedures could be promoted by the availability of functional biomaterials. In this study, we have developed a multi-layered scaffold consisting of a bioactive fibrin layer laminated between two collagen sheets all having undergone plastic compression. With this construct we performed bladder augmentation in a nude rat model after partial bladder excision and evaluated the morphological and functional behavior of the implant. The fibrin was functionalized with a recombinant human insulin-like growth factor-1 (IGF-1) variant that covalently binds fibrin during polymerization and has a matrix metalloproteinase-cleavage insert to enable cell-mediated release. The purified IGF-1 variant showed similar bioactivity in vitro compared to commercially available wild type (wt) IGF-1, inducing receptor phosphorylation and induction of human smooth muscle cell proliferation. In vivo, the multi-layered bioactive collagen-fibrin scaffolds loaded with the IGF-1 variant triggered dose-dependent functional host smooth muscle cell invasion and bundle formation with re-urothelialization 4weeks after surgery in a rat model. STATEMENT OF SIGNIFICANCE The design of new bio-functional scaffolds that can be employed for bladder reconstructive procedures is a growing focus in the field of tissue engineering. In this study, a fibrin binding form of human insulin-like growth factor-1 (IGF-1) was produced and used to functionalize a multi-layered collagen-fibrin scaffold consisting of bioactive fibrin layer, sandwiched between two collagen gels. An effective dosage of our IGF-1 variant was successfully determined via a nude rat bladder model, which may play a critical role in estimating its therapeutic dosage in clinical trials. Thus, this new bioactive scaffold may offer an advanced approach to accelerate bladder regeneration.
Collapse
|
22
|
Kootala S, Zhang Y, Ghalib S, Tolmachev V, Hilborn J, Ossipov DA. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomater Sci 2016; 4:250-4. [DOI: 10.1039/c5bm00355e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequestration and active release of BMP-2 in HA-BP hydrogels to precursor cells aid rapid differentiation to osteoblasts.
Collapse
Affiliation(s)
- Sujit Kootala
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Yu Zhang
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Sara Ghalib
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences
- Rudbeck Laboratory
- Uppsala University
- S-75121 Uppsala
- Sweden
| | - Jöns Hilborn
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Dmitri A. Ossipov
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
23
|
Martino MM, Briquez PS, Maruyama K, Hubbell JA. Extracellular matrix-inspired growth factor delivery systems for bone regeneration. Adv Drug Deliv Rev 2015; 94:41-52. [PMID: 25895621 DOI: 10.1016/j.addr.2015.04.007] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/27/2015] [Accepted: 04/11/2015] [Indexed: 12/22/2022]
Abstract
Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.
Collapse
Affiliation(s)
- Mikaël M Martino
- Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| | - Priscilla S Briquez
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Kenta Maruyama
- Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Jeffrey A Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Materials Science Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
24
|
Peeters M, Detiger SEL, Karfeld-Sulzer LS, Smit TH, Yayon A, Weber FE, Helder MN. BMP-2 and BMP-2/7 Heterodimers Conjugated to a Fibrin/Hyaluronic Acid Hydrogel in a Large Animal Model of Mild Intervertebral Disc Degeneration. Biores Open Access 2015; 4:398-406. [PMID: 26543683 PMCID: PMC4623986 DOI: 10.1089/biores.2015.0025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is etiologically associated with low back pain and is currently only treated in severe cases with spinal fusion. Regenerative medicine attempts to restore degenerated tissue by means of cells, hydrogels, and/or growth factors and can therefore be used to slow, halt, or reverse the degeneration of the IVD in a minimally invasive manner. Previously, the growth factors bone morphogenetic proteins 2 and 7 (BMP-2, -7) were shown to enhance disc regeneration, in vitro and in vivo. Since BMPs have only a short in vivo half-life, and to prevent heterotopic ossification, we evaluated the use of a slow release system for BMP-2 homodimers and BMP-2/7 heterodimers for IVD regeneration. BMP growth factors were conjugated to a fibrin/hyaluronic acid (FB/HA) hydrogel and intradiscally injected in a goat model of mild IVD degeneration to study safety and efficacy. Mild degeneration was induced in five lumbar discs of seven adult Dutch milk goats, by injections with the enzyme chondroitinase ABC. After 12 weeks, discs were treated with either FB/HA-hydrogel only or supplemented with 1 or 5 μg/mL of BMP-2 or BMP-2/7. BMPs were linked to the FB/HA hydrogels using a transglutaminase moiety, to be released through an incorporated plasmin cleavage site. After another 12 weeks, goats were sacrificed and discs were assessed using radiography, MRI T2* mapping, and biochemical and histological analyses. All animals maintained weight throughout the study and no heterotopic bone formation or other adverse effects were noted during follow-up. Radiographs showed significant disc height loss upon induction of mild degeneration. MRI T2* mapping showed strong and significant correlations with biochemistry and histology as shown before. Surprisingly, no differences could be demonstrated in any parameter between intervention groups. To our knowledge, this is the first large animal study evaluating BMPs conjugated to an FB/HA-hydrogel for the treatment of mild IVD degeneration. The conjugated BMP-2 and BMP-2/7 appeared safe, but no disc regeneration was observed. Possible explanations include too low dosages, short follow-up time, and/or insufficient release of the conjugated BMPs. These aspects should be addressed in future studies.
Collapse
Affiliation(s)
- Mirte Peeters
- Department of Orthopaedic Surgery, VU University Medical Center , Amsterdam, The Netherlands . ; Center for Translational Regenerative Medicine (CTRM), MOVE Research Institute Amsterdam , Amsterdam, The Netherlands
| | - Suzanne E L Detiger
- Department of Orthopaedic Surgery, VU University Medical Center , Amsterdam, The Netherlands . ; Center for Translational Regenerative Medicine (CTRM), MOVE Research Institute Amsterdam , Amsterdam, The Netherlands
| | | | - Theo H Smit
- Department of Orthopaedic Surgery, VU University Medical Center , Amsterdam, The Netherlands . ; Center for Translational Regenerative Medicine (CTRM), MOVE Research Institute Amsterdam , Amsterdam, The Netherlands
| | - Avner Yayon
- ProCore Biomed Ltd. , Weizman Science Park, Nes Ziona, Israel
| | - Franz E Weber
- University Hospital , Cranio-Maxillofacial and Oral Surgery/Bioengineering, Zürich, Switzerland
| | - Marco N Helder
- Department of Orthopaedic Surgery, VU University Medical Center , Amsterdam, The Netherlands . ; Center for Translational Regenerative Medicine (CTRM), MOVE Research Institute Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
25
|
Chang CH, Yeh SY, Lee BH, Chen CJ, Su CT, Lin YT, Liu CL, Chen HY. Osteogenic Surface Modification Based on Functionalized Poly-P-Xylylene Coating. PLoS One 2015; 10:e0137017. [PMID: 26379273 PMCID: PMC4574780 DOI: 10.1371/journal.pone.0137017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
The biotechnology to immobilize biomolecules on material surfaces has been developed vigorously due to its high potentials in medical applications. In this study, a simple and effective method was designed to immobilize biomolecules via amine-N-hydroxysuccinimide (NHS) ester conjugation reaction using functionalized poly-p-xylylene coating on material surfaces. The NHS ester functionalized coating is synthesized via chemical vapor deposition, a facile and solvent-less method, creating a surface which is ready to perform a one-step conjugation reaction. Bone morphogenetic protein 2 (BMP-2) is immobilized onto material surfaces by this coating method, forming an osteogenic environment. The immobilization process is controlled at a low temperature which does not damage proteins. This modified surface induces differentiation of preosteoblast into osteoblast, manifested by alkaline phosphatase (ALP) activity assay, Alizarin Red S (ARS) staining and the expression of osteogenic gene markers, Alpl and Bglap3. With this coating technology, immobilization of growth factors onto material surface can be achieved more simply and more effectively.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Yun Yeh
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Bing-Heng Lee
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Jie Chen
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiao-Tzu Su
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yen-Ting Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chien-Lin Liu
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Ahmad E, Fatima MT, Hoque M, Owais M, Saleemuddin M. Fibrin matrices: The versatile therapeutic delivery systems. Int J Biol Macromol 2015; 81:121-36. [PMID: 26231328 DOI: 10.1016/j.ijbiomac.2015.07.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022]
Abstract
Fibrin sealants, that have been employed for over a century by surgeons to stop post surgery bleeding, are finding novel applications in the controlled delivery of antibiotics and several other therapeutics. Fibrinogen can be easily purified from blood plasma and converted by thrombolysis to fibrin that undergoes spontaneous aggregation to form insoluble clot. During the gelling, fibrin can be formulated into films, clots, threads, microbeads, nanoconstructs and nanoparticles. Whole plasma clots in the form of beads and microparticles can also be prepared by activating endogenous thrombin, for possible drug delivery. Fibrin formulations offer remarkable scope for controlling the porosity as well as in vivo degradability and hence the release of the associated therapeutics. Binding/covalent-linking of therapeutics to the fibrin matrix, crosslinking of the matrix with bifunctional reagents and coentrapment of protease inhibitors have been successful in regulating both in vitro and in vivo release of the therapeutics. The release rates can also be remarkably lowered by preentrapment of therapeutics in insoluble particles like liposomes or by anchoring them to the matrix via molecules that bind them as well as fibrin.
Collapse
Affiliation(s)
- Ejaj Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Mehboob Hoque
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammed Saleemuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
27
|
Van Hove AH, Benoit DSW. Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review. Front Bioeng Biotechnol 2015; 3:102. [PMID: 26236708 PMCID: PMC4504170 DOI: 10.3389/fbioe.2015.00102] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 06/29/2015] [Indexed: 01/13/2023] Open
Abstract
Insufficient vascularization currently limits the size and complexity for all tissue engineering approaches. Additionally, increasing or re-initiating blood flow is the first step toward restoration of ischemic tissue homeostasis. However, no FDA-approved pro-angiogenic treatments exist, despite the many pre-clinical approaches that have been developed. The relatively small size of peptides gives advantages over protein-based treatments, specifically with respect to synthesis and stability. While many pro-angiogenic peptides have been identified and shown promising results in vitro and in vivo, the majority of biomaterials developed for pro-angiogenic drug delivery focus on protein delivery. This narrow focus limits pro-angiogenic therapeutics as peptides, similar to proteins, suffer from poor pharmacokinetics in vivo, necessitating the development of controlled release systems. This review discusses pro-angiogenic peptides and the biomaterials delivery systems that have been developed, or that could easily be adapted for peptide delivery, with a particular focus on depot-based delivery systems.
Collapse
Affiliation(s)
- Amy H. Van Hove
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Danielle S. W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
28
|
Sharma V, Patel N, Dye JF, Hook L, Mason C, García-Gareta E. Albumin removal from human fibrinogen preparations for manufacturing human fibrin-based biomaterials. BIOCHIMIE OPEN 2015; 1:6-10. [PMID: 29632825 PMCID: PMC5889427 DOI: 10.1016/j.biopen.2015.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/21/2015] [Indexed: 10/26/2022]
Abstract
Commercially available two component human fibrin sealants are commonly used to manufacture human fibrin-based biomaterials. However, this method is costly and allows little room for further tuning of the biomaterial. Human fibrinogen solutions offer a more cost-effective and versatile alternative to manufacture human fibrin-based biomaterials. Yet, human fibrinogen is highly unstable and contains certain impurities like human albumin. Within the context of biomaterials and tissue engineering we offer a simple yet novel solution based on classical biochemical techniques to significantly reduce albumin in human fibrinogen solutions. This method can be used for various tissue engineering and biomedical applications as an initial step in the manufacturing of human fibrin-based biomaterials to optimise their regenerative application.
Collapse
Affiliation(s)
- Vaibhav Sharma
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.,Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Nimesha Patel
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Julian F Dye
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Lilian Hook
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK
| | - Chris Mason
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK
| |
Collapse
|
29
|
Bone Regeneration Using Bone Morphogenetic Proteins and Various Biomaterial Carriers. MATERIALS 2015; 8:1778-1816. [PMID: 28788032 PMCID: PMC5507058 DOI: 10.3390/ma8041778] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/27/2015] [Indexed: 01/28/2023]
Abstract
Trauma and disease frequently result in fractures or critical sized bone defects and their management at times necessitates bone grafting. The process of bone healing or regeneration involves intricate network of molecules including bone morphogenetic proteins (BMPs). BMPs belong to a larger superfamily of proteins and are very promising and intensively studied for in the enhancement of bone healing. More than 20 types of BMPs have been identified but only a subset of BMPs can induce de novo bone formation. Many research groups have shown that BMPs can induce differentiation of mesenchymal stem cells and stem cells into osteogenic cells which are capable of producing bone. This review introduces BMPs and discusses current advances in preclinical and clinical application of utilizing various biomaterial carriers for local delivery of BMPs to enhance bone regeneration.
Collapse
|
30
|
Ferreira DS, Lin YA, Cui H, Hubbell JA, Reis RL, Azevedo HS. Molecularly engineered self-assembling membranes for cell-mediated degradation. Adv Healthc Mater 2015; 4:602-12. [PMID: 25413155 DOI: 10.1002/adhm.201400586] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/22/2014] [Indexed: 11/12/2022]
Abstract
The use of peptide engineering to develop self-assembling membranes that are responsive to cellular enzyme activities is reported. The membranes are obtained by combining hyaluronan (HA) and a rationally designed peptide amphiphile (PA) containing a proteolytic domain (GPQGIWGQ octapeptide) sensitive to matrix metalloproteinase-1 (MMP-1). Insertion of an octapeptide in a typical PA structure does not disturb its self-assembly into fibrillar nanostructures neither the ability to form membranes with HA. In vitro enzymatic degradation with hyaluronidase and MMP-1 shows that membranes containing the MMP-1 substrate exhibit enhanced enzymatic degradation, compared with control membranes (absence of MMP-1 cleavable peptide or containing a MMP-1 insensitive sequence), being completely degraded after 7 days. Cell viability and proliferation is minimally affected by the enzymatically cleavable functionality of the membrane, but the presence of MMP-1 cleavable sequence does stimulate the secretion of MMP-1 by fibroblasts and interfere with matrix deposition, particularly the deposition of collagen. By showing cell-responsiveness to biochemical signals presented on self-assembling membranes, this study highlights the ability of modulating certain cellular activities through matrix engineering. This concept can be further explored to understand the cellular remodeling process and as a strategy to develop artificial matrices with more biomimetic degradation for tissue engineering applications.
Collapse
Affiliation(s)
- Daniela S. Ferreira
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
- School of Engineering and Materials Science; Queen Mary, University of London; Mile End Road London E1 4NS UK
- Institute for Bioengineering; School of Basic Science; École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
| | - Yi-An Lin
- Department of Chemical and Biomolecular Engineering; The Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
- Institute for NanoBioTechnology; The Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering; The Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
- Institute for NanoBioTechnology; The Johns Hopkins University; 3400 North Charles Street Baltimore MD 21218 USA
| | - Jeffrey A. Hubbell
- Institute for Bioengineering; School of Basic Science; École Polytechnique Fédérale de Lausanne (EPFL); Lausanne CH-1015 Switzerland
- Institute for Molecular Engineering; University of Chicago; Chicago IL 606037 USA
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
| | - Helena S. Azevedo
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4806-909 Taipas Guimarães Portugal
- ICVS/3B's - PT Government Associate Laboratory; Braga/Guimarães Portugal
- School of Engineering and Materials Science; Queen Mary, University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
31
|
Fibrin Hydrogel Based Bone Substitute Tethered with BMP-2 and BMP-2/7 Heterodimers. MATERIALS 2015; 8:977-991. [PMID: 28787983 PMCID: PMC5455435 DOI: 10.3390/ma8030977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 03/02/2015] [Indexed: 12/18/2022]
Abstract
Current clinically used delivery methods for bone morphogenetic proteins (BMPs) are collagen based and require large concentrations that can lead to dangerous side effects. Fibrin hydrogels can serve as osteoinductive bone substitute materials in non-load bearing bone defects in combination with BMPs. Two strategies to even further optimize such a fibrin based system include employing more potent BMP heterodimers and engineering growth factors that can be covalently tethered to and slowly released from a fibrin matrix. Here we present an engineered BMP-2/BMP-7 heterodimer where an N-terminal transglutaminase substrate domain in the BMP-2 portion provides covalent attachment to fibrin together with a central plasmin substrate domain, a cleavage site for local release of the attached BMP-2/BMP-7 heterodimer under the influence of cell-activated plasmin. In vitro and in vivo results revealed that the engineered BMP-2/BMP-7 heterodimer induces significantly more alkaline phosphatase activity in pluripotent cells and bone formation in a rat calvarial model than the engineered BMP-2 homodimer. Therefore, the engineered BMP-2/BMP-7 heterodimer could be used to reduce the amount of BMP needed for clinical effect.
Collapse
|
32
|
Brown AC, Baker SR, Douglas AM, Keating M, Alvarez-Elizondo MB, Botvinick EL, Guthold M, Barker TH. Molecular interference of fibrin's divalent polymerization mechanism enables modulation of multiscale material properties. Biomaterials 2015; 49:27-36. [PMID: 25725552 DOI: 10.1016/j.biomaterials.2015.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
Abstract
Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular 'interference' of fibrin's native polymerization mechanism. We have previously reported that engagement of fibrin's polymerization 'hole b', also known as 'b-pockets', through PEGylated complementary 'knob B' mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics.
Collapse
Affiliation(s)
- Ashley C Brown
- The School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Stephen R Baker
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Alison M Douglas
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States
| | - Mark Keating
- Beckman Laser Institute/Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92612, United States
| | - Martha B Alvarez-Elizondo
- Beckman Laser Institute/Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92612, United States
| | - Elliot L Botvinick
- Beckman Laser Institute/Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, Irvine, CA 92612, United States
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States
| | - Thomas H Barker
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States; The Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
33
|
Application of AMOR in craniofacial rabbit bone bioengineering. BIOMED RESEARCH INTERNATIONAL 2015; 2015:628769. [PMID: 25705677 PMCID: PMC4325208 DOI: 10.1155/2015/628769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/09/2014] [Indexed: 12/17/2022]
Abstract
Endogenous molecular and cellular mediators modulate tissue repair and regeneration. We have recently described antibody mediated osseous regeneration (AMOR) as a novel strategy for bioengineering bone in rat calvarial defect. This entails application of anti-BMP-2 antibodies capable of in vivo capturing of endogenous osteogenic BMPs (BMP-2, BMP-4, and BMP-7). The present study sought to investigate the feasibility of AMOR in other animal models. To that end, we examined the efficacy of a panel of anti-BMP-2 monoclonal antibodies (mAbs) and a polyclonal Ab immobilized on absorbable collagen sponge (ACS) to mediate bone regeneration within rabbit calvarial critical size defects. After 6 weeks, de novo bone formation was demonstrated by micro-CT imaging, histology, and histomorphometric analysis. Only certain anti-BMP-2 mAb clones mediated significant in vivo bone regeneration, suggesting that the epitopes with which anti-BMP-2 mAbs react are critical to AMOR. Increased localization of BMP-2 protein and expression of osteocalcin were observed within defects, suggesting accumulation of endogenous BMP-2 and/or increased de novo expression of BMP-2 protein within sites undergoing bone repair by AMOR. Considering the ultimate objective of translation of this therapeutic strategy in humans, preclinical studies will be necessary to demonstrate the feasibility of AMOR in progressively larger animal models.
Collapse
|
34
|
Izadifar M, Haddadi A, Chen X, Kelly ME. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering. NANOTECHNOLOGY 2015; 26:012001. [PMID: 25474543 DOI: 10.1088/0957-4484/26/1/012001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.
Collapse
Affiliation(s)
- Mohammad Izadifar
- Division of Biomedical Engineering, College of Engineering, 57 Campus Drive, University of Saskatchewan, Saskatoon, SK, S7N5A9, Canada
| | | | | | | |
Collapse
|
35
|
Kim S, Bedigrew K, Guda T, Maloney WJ, Park S, Wenke JC, Yang YP. Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater 2014; 10:5021-5033. [PMID: 25174669 DOI: 10.1016/j.actbio.2014.08.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to develop and characterize a novel photo-cross-linkable chitosan-lactide-fibrinogen (CLF) hydrogel and evaluate the efficacy of bone morphogenetic protein-2 (BMP-2) containing a CLF hydrogel for osteogenesis in vitro and in vivo. We synthesized the CLF hydrogels and characterized their chemical structure, degradation rate, compressive modulus and in vitro BMP-2 release kinetics. We evaluated bioactivities of the BMP-2 containing CLF hydrogels (0, 50, 100 and 500ngml(-1)) in vitro using W-20-17 preosteoblast mouse bone marrow stromal cells and C2C12 mouse myoblast cells. The effect of BMP-2 containing CLF gels (0, 0.5, 1, 2 and 5μg) on bone formation was evaluated using rat critical size segmental bone defects for 4weeks. Fourier transform infrared spectroscopy spectra and scanning electron microscopy images showed chemical and structural changes by the addition of fibrinogen into the chitosan-lactide copolymer. The incorporation of fibrinogen molecules significantly increased the compressive modulus of the hydrogels. The in vitro BMP-2 release study showed initial burst releases from the CLF hydrogels followed by sustained releases, regardless of the concentration of the BMP-2 over 4weeks. Cells in all groups were viable in the presence of the hydrogels regardless of BMP-2 doses, indicating non-cytotoxicity of hydrogels. Alkaline phosphate activity and mineralization of cells exhibited dose dependence on BMP-2 containing CLF hydrogels. Radiography, microcomputed tomography and histology confirmed that the BMP-2 containing CLF hydrogels prompted neo-osteogenesis and accelerated healing of the defects in a dose-dependent manner. Thus the CLF hydrogel is a promising delivery system of growth factors for bone regeneration.
Collapse
|
36
|
Allen AB, Priddy LB, Li MTA, Guldberg RE. Functional augmentation of naturally-derived materials for tissue regeneration. Ann Biomed Eng 2014; 43:555-67. [PMID: 25422160 DOI: 10.1007/s10439-014-1192-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/13/2014] [Indexed: 12/12/2022]
Abstract
Tissue engineering strategies have utilized a wide spectrum of synthetic and naturally-derived scaffold materials. Synthetic scaffolds are better defined and offer the ability to precisely and reproducibly control their properties, while naturally-derived scaffolds typically have inherent biological and structural properties that may facilitate tissue growth and remodeling. More recently, efforts to design optimized biomaterial scaffolds have blurred the line between these two approaches. Naturally-derived scaffolds can be engineered through the manipulation of intrinsic properties of the pre-existing backbone (e.g., structural properties), as well as the addition of controllable functional components (e.g., biological properties). Chemical and physical processing techniques used to modify structural properties of synthetic scaffolds have been tailored and applied to naturally-derived materials. Such strategies include manipulation of mechanical properties, degradation, and porosity. Furthermore, biofunctional augmentation of natural scaffolds via incorporation of exogenous cells, proteins, peptides, or genes has been shown to enhance functional regeneration over endogenous response to the material itself. Moving forward, the regenerative mode of action of naturally-derived materials requires additional investigation. Elucidating such mechanisms will allow for the determination of critical design parameters to further enhance efficacy and capitalize on the full potential of naturally-derived scaffolds.
Collapse
Affiliation(s)
- Ashley B Allen
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA, 30332, USA,
| | | | | | | |
Collapse
|
37
|
Liu P, Skelly JD, Song J. Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable high-efficiency delivery of therapeutic proteins. Acta Biomater 2014; 10:4296-303. [PMID: 24956565 DOI: 10.1016/j.actbio.2014.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022]
Abstract
Zwitterions are well known for their anti-biofouling properties. Past investigations of zwitterionic materials for biomedical uses have been centered on exploiting their ability to inhibit non-specific adsorption of proteins. Here, we report that zwitterionic motifs, when presented in three dimensions (e.g. in crosslinked hydrogels), could effectively sequester osteogenic bone morphogenetic protein-2 (rhBMP-2). The ionic interactions between rhBMP-2 and the 3-D zwitterionic network enabled dynamic sequestering and sustained release of the protein with preserved bioactivity. We further demonstrated that the zwitterionic hydrogel confers high-efficiency in vivo local delivery of rhBMP-2. It can template the functional healing of critical-size femoral segmental defects in rats with rhBMP-2 at a loading dose substantially lower than those required for current natural or synthetic polymeric carriers. These findings reveal a novel function of zwitterionic materials beyond their commonly perceived anti-biofouling property, and may establish 3-D zwitterionic matrices as novel high-efficiency vehicles for protein/ionic drug therapeutic delivery.
Collapse
|
38
|
Vedakumari WS, Sastry TP. Physiologically clotted fibrin – Preparation and characterization for tissue engineering and drug delivery applications. Biologicals 2014; 42:277-84. [DOI: 10.1016/j.biologicals.2014.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 06/11/2014] [Accepted: 06/24/2014] [Indexed: 10/25/2022] Open
|
39
|
Thoma DS, Kruse A, Ghayor C, Jung RE, Weber FE. Bone augmentation using a synthetic hydroxyapatite/silica oxide-based and a xenogenic hydroxyapatite-based bone substitute materials with and without recombinant human bone morphogenetic protein-2. Clin Oral Implants Res 2014; 26:592-8. [PMID: 25138542 DOI: 10.1111/clr.12469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 12/01/2022]
Abstract
AIM To test whether or not bone regeneration using deproteinized bovine bone mineral (DBBM) is comparable to hydroxyapatite/silica oxide (HA/SiO) and to test the effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) as an adjunct to DBBM for localized bone regeneration. MATERIALS AND METHODS In each of the 10 rabbits, 4 titanium cylinders were placed on the external cortical plates of their calvaria. Four treatment modalities were randomly allocated: (i) empty, (ii) HA/SiO, (iii) DBBM, and (iv) DBBM plus rhBMP-2 (DBBM/BMP). The animals were sacrificed at week 8. Descriptive histology and histomorphometric assessment using a superimposed test grid of points and cycloids were performed. RESULTS The mean number of points of the test grid coinciding with bone within the cylinder reached 124 ± 35 bone points for empty controls, 92 ± 40 bone points for DBBM, 98 ± 44 bone points for synthetic HA/SiO, and 146 ± 34 bone points DBBM/BMP. The P-value for DBBM with and without BMP reached a borderline statistical significance of 0.051. However, the area of bone regeneration within the cylinders peaked for DBBM/BMP and was statistically significantly higher compared with empty cylinders (P < 0.05). The bone-to-bone substitute contact ranged between 32.9% ± 21.7 for DBBM, 39.6 ± 18.4% for HA/SiO, and 57.8% ± 10.2 for DBBM/BMP. The differences between DBBM/BMP and controls (DBBM, HA/SiO) were statistically significant (P < 0.05). CONCLUSIONS DBBM and HA/SiO rendered comparable amounts of bone regeneration. The addition of rhBMP-2 to DBBM resulted in more favorable outcomes with respect to the area of bone regeneration and to bone-to-implant contact, thereby indicating the potential of this growth factor to enhance bone regeneration within this animal model.
Collapse
Affiliation(s)
- D S Thoma
- Department of Fixed and Removable Prothodontics and Dental Material Science, Dental School, University of Zurich, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Qian D, Bai B, Yan G, Zhang S, Liu Q, Chen Y, Tan X, Zeng Y. Construction of doxycycline-mediated BMP-2 transgene combining with APA microcapsules for bone repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:270-6. [PMID: 25092431 DOI: 10.3109/21691401.2014.942458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Dongyang Qian
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Bo Bai
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Guangbin Yan
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Shujiang Zhang
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Qi Liu
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Yi Chen
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Xiaobo Tan
- a Department of Orthopaedics , the First Affiliated Hospital, Guangzhou Medical University , Guangzhou , P. R. China
| | - Yanjun Zeng
- b Biomechanics & Medical Information Institute, Beijing University of Technology , Beijing , P. R. China
| |
Collapse
|
41
|
Rodda AE, Meagher L, Nisbet DR, Forsythe JS. Specific control of cell–material interactions: Targeting cell receptors using ligand-functionalized polymer substrates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.11.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Han L, Lin H, Lu X, Zhi W, Wang K, Meng F, Jiang O. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:1-8. [DOI: 10.1016/j.msec.2014.03.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 01/01/2023]
|
43
|
Abstract
With advancements in biological and engineering sciences, the definition of an ideal biomaterial has evolved over the past 50 years from a substance that is inert to one that has select bioinductive properties and integrates well with adjacent host tissue. Biomaterials are a fundamental component of tissue engineering, which aims to replace diseased, damaged, or missing tissue with reconstructed functional tissue. Most biomaterials are less than satisfactory for pediatric patients because the scaffold must adapt to the growth and development of the surrounding tissues and organs over time. The pediatric community, therefore, provides a distinct challenge for the tissue engineering community.
Collapse
Affiliation(s)
- Timothy J Keane
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Bridgeside Point 2, 450 Technology Drive, Pittsburgh, Pennsylvania 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
44
|
Biomimetic materials for medical application through enzymatic modification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:181-205. [PMID: 21072699 DOI: 10.1007/10_2010_85] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Living organisms synthesize functional materials, based on proteins and polysaccharides, using enzyme-catalyzed reactions. According to the biomimetic approach, biomaterial matrices for tissue engineering are designed to be able to mimic the properties and the functions of the extracellular matrix (ECM). In this chapter, the most significant research efforts dedicated to the study and the preparation of biomimetic materials through enzymatic modifications were reviewed. The functionalizations of different polymeric matrices obtained through the catalytic activity of two enzymes (Transglutaminase, TGase and Tyrosinase, TYRase) were discussed. Specifically, the biomimetic applications of TGase and TYRase to confer appropriate biomimetic properties to the biomaterials, such as the possibility to obtain in situ gelling hydrogels and the incorporation of bioactive molecules (growth factors) and cell-binding peptides into the scaffolds, were reviewed.
Collapse
|
45
|
Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci U S A 2014; 111:6952-7. [PMID: 24778233 DOI: 10.1073/pnas.1404605111] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clinical trials of therapeutic angiogenesis by vascular endothelial growth factor (VEGF) gene delivery failed to show efficacy. Major challenges include the need to precisely control in vivo distribution of growth factor dose and duration of expression. Recombinant VEGF protein delivery could overcome these issues, but rapid in vivo clearance prevents the stabilization of induced angiogenesis. Here, we developed an optimized fibrin platform for controlled delivery of recombinant VEGF, to robustly induce normal, stable, and functional angiogenesis. Murine VEGF164 was fused to a sequence derived from α2-plasmin inhibitor (α2-PI1-8) that is a substrate for the coagulation factor fXIIIa, to allow its covalent cross-linking into fibrin hydrogels and release only by enzymatic cleavage. An α2-PI1-8-fused variant of the fibrinolysis inhibitor aprotinin was used to control the hydrogel degradation rate, which determines both the duration and effective dose of factor release. An optimized aprotinin-α2-PI1-8 concentration ensured ideal degradation over 4 wk. Under these conditions, fibrin-α2-PI1-8-VEGF164 allowed exquisitely dose-dependent angiogenesis: concentrations ≥25 μg/mL caused widespread aberrant vascular structures, but a 500-fold concentration range (0.01-5.0 μg/mL) induced exclusively normal, mature, nonleaky, and perfused capillaries, which were stable after 3 mo. Optimized delivery of fibrin-α2-PI1-8-VEGF164 was therapeutically effective both in ischemic hind limb and wound-healing models, significantly improving angiogenesis, tissue perfusion, and healing rate. In conclusion, this optimized platform ensured (i) controlled and highly tunable delivery of VEGF protein in ischemic tissue and (ii) stable and functional angiogenesis without introducing genetic material and with a limited and controllable duration of treatment. These findings suggest a strategy to improve safety and efficacy of therapeutic angiogenesis.
Collapse
|
46
|
Martino MM, Briquez PS, Güç E, Tortelli F, Kilarski WW, Metzger S, Rice JJ, Kuhn GA, Müller R, Swartz MA, Hubbell JA. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science 2014; 343:885-8. [PMID: 24558160 DOI: 10.1126/science.1247663] [Citation(s) in RCA: 355] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2(123-144)) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor-A, platelet-derived growth factor-BB, and bone morphogenetic protein-2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.
Collapse
Affiliation(s)
- Mikaël M Martino
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rizzi SC, Upton Z, Bott K, Dargaville TR. Recent advances in dermal wound healing: biomedical device approaches. Expert Rev Med Devices 2014; 7:143-54. [DOI: 10.1586/erd.09.57] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Vasita R, Katti DS. Growth factor-delivery systems for tissue engineering: a materials perspective. Expert Rev Med Devices 2014; 3:29-47. [PMID: 16359251 DOI: 10.1586/17434440.3.1.29] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transplantation of organs, their surgical reconstruction or implantation of synthetic devices that can perform the function of organs, are the currently available methods for treating loss of tissue/organs in humans. However, the limitations associated with these techniques have led to the development of tissue engineering. One of the primary goals of tissue engineering is to provide growth factor delivery systems that can induce desired cell responses both in vitro and in vivo, in order to cause accelerated tissue regeneration. To make growth factors a more therapeutically viable alternative for the treatment of chronic degenerative diseases, a wide range of natural and synthetic materials have been employed as vehicles for their controlled delivery. The choice of material and design of the carrier device influence the mode of immobilization of growth factors on the scaffolds and their local/systemic administration. From a tissue engineer's perspective, materials could be used for designing scaffolds as well as for delivering single or multiple growth factors. Therefore, this review discusses growth factor delivery systems, with particular reference to carrier-based growth factor delivery systems with a focus on materials.
Collapse
Affiliation(s)
- Rajesh Vasita
- Indian Institute of Technology - Kanpur, Department of Biological Sciences and Bioengineering, Kanpur-208016, Uttar-Pradesh, India.
| | | |
Collapse
|
49
|
Immobilization of bone morphogenetic protein on DOPA- or dopamine-treated titanium surfaces to enhance osseointegration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:265980. [PMID: 24459666 PMCID: PMC3888698 DOI: 10.1155/2013/265980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/16/2013] [Accepted: 11/25/2013] [Indexed: 01/31/2023]
Abstract
Titanium was treated with 3,4-dihydroxy-L-phenylalanine (DOPA) or dopamine to immobilize bone morphogenetic protein-2 (BMP2), a biomolecule. DOPA and dopamine solutions turned into suspensions, and precipitates were produced at high pH. Both treatments produced a brown surface on titanium that was thicker at high pH than low pH. Dopamine produced a thicker layer than DOPA. The hydrophobicity of the surfaces increased after treatment with dopamine independent of pH. Furthermore, there were more amino groups in the layers formed at pH 8.5 than pH 4.5 in both treatments. Dopamine treatment produced more amino groups in the layer than DOPA. BMP2 was immobilized on the treated surfaces via a coupling reaction using carbodiimide. More BMP2 was immobilized on surfaces treated at pH 8.5 than pH 4.5 in both treatments. The immobilized BMP induced specific signal transduction and alkali phosphatase, a differentiation marker. Thus, the present study demonstrates that titanium treated with DOPA or dopamine can become bioactive via the surface immobilization of BMP2, which induces specific signal transduction.
Collapse
|
50
|
Kearney CJ, Mooney DJ. Macroscale delivery systems for molecular and cellular payloads. NATURE MATERIALS 2013; 12:1004-17. [PMID: 24150418 DOI: 10.1038/nmat3758] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 08/15/2013] [Indexed: 05/18/2023]
Abstract
Macroscale drug delivery (MDD) devices are engineered to exert spatiotemporal control over the presentation of a wide range of bioactive agents, including small molecules, proteins and cells. In contrast to systemically delivered drugs, MDD systems act as a depot of drug localized to the treatment site, which can increase drug effectiveness while reducing side effects and confer protection to labile drugs. In this Review, we highlight the key advantages of MDD systems, describe their mechanisms of spatiotemporal control and provide guidelines for the selection of carrier materials. We also discuss the combination of MDD technologies with classic medical devices to create multifunctional MDD devices that improve integration with host tissue, and the use of MDD technology in tissue-engineering strategies to direct cell behaviour. As our ever-expanding knowledge of human biology and disease provides new therapeutic targets that require precise control over their application, the importance of MDD devices in medicine is expected to increase.
Collapse
Affiliation(s)
- Cathal J Kearney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA, and Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|