1
|
Liu J, Zhao B, Wang L, Zhang W, Zan T, Chen Z, Li Y. Occurrence, fate, and transport of N-nitrosamines and precursors in sewage treatment plants and receiving rivers in a highly urbanized basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125808. [PMID: 39914564 DOI: 10.1016/j.envpol.2025.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
N-nitrosamines (NAs), highly carcinogenic disinfection by-products, were frequently detected in raw sewage, sewage treatment plants (STPs), and receiving rivers. This study investigated five NAs, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosodi-n-butylamine (NDBA), and N-nitrosopiperidine (NPIP), and their formation potentials (FPs) in a highly urbanized basin. The results showed that total NAs and their FPs ranged from 101 to 141 ng/L and 72.6-203 ng/L in the influent, implying that NAs and their FPs in the raw sewage might be affected by the sewage type, especially for NDMA (up to 103 ng/L) influenced by industrial wastewater. NDMA FP was positively correlated with NH4+, TN, and TOC, while NDMA, NDEA, and NDEA FP were strongly associated with heavy metals, especially Hg, implying factories using Hg as potential sources. The biological treatment effectively removed NAs in STPs, but NMOR showed the weakest biological removal. In addition, the removal efficiency of NDMA was related to the type of biological treatment in the following order: Modified anaerobic-anoxic-oxic-membrane-bioreactor (Modified AAO-MBR) (81.2%) > AAO (60.1%) > Oxidation ditch (53.3%) > UNITANK (46.5%) > Modified AAO (25.8%). After treatment, total NAs (mainly NDMA and NMOR) in the effluent still ranged from 7.09 to 31.8 ng/L. In the receiving rivers, although NMOR was mainly photodegraded, Patescibacteria discharged from STPs was the first time to be identified as a potential contributor for NMOR. NDMA was primarily degraded through photodegradation and biodegradation, NDMA FP was probably biodegraded, with Proteobacteria probably contributing to the biodegradation of NDMA and NDMA FP.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tingchao Zan
- Nanjing Jiangning Water Business Group, Nanjing, 210000, PR China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
2
|
Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Arch Microbiol 2024; 206:363. [PMID: 39073473 DOI: 10.1007/s00203-024-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Katy Foss
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Beersheba, Israel
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Betsholtz A, Falås P, Svahn O, Cimbritz M, Davidsson Å. New Perspectives on the Interactions between Adsorption and Degradation of Organic Micropollutants in Granular Activated Carbon Filters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11771-11780. [PMID: 38889182 PMCID: PMC11223462 DOI: 10.1021/acs.est.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The removal of organic micropollutants in granular activated carbon (GAC) filters can be attributed to adsorption and biological degradation. These two processes can interact with each other or proceed independently. To illustrate the differences in their interaction, three 14C-labeled organic micropollutants with varying potentials for adsorption and biodegradation were selected to study their adsorption and biodegradation in columns with adsorbing (GAC) and non-adsorbing (sand) filter media. Using 14CO2 formation as a marker for biodegradation, we demonstrated that the biodegradation of poorly adsorbing N-nitrosodimethylamine (NDMA) was more sensitive to changes in the empty bed contact time (EBCT) compared with that of moderately adsorbing diclofenac. Further, diclofenac that had adsorbed under anoxic conditions could be degraded when molecular oxygen became available, and substantial biodegradation (≥60%) of diclofenac could be achieved with a 15 min EBCT in the GAC filter. These findings suggest that the retention of micropollutants in GAC filters, by prolonging the micropollutant residence time through adsorption, can enable longer time periods for degradations than what the hydraulic retention time would allow for. For the biologically recalcitrant compound carbamazepine, differences in breakthrough between the 14C-labeled and nonradiolabeled compounds revealed a substantial retention via successive adsorption-desorption, which could pose a potential challenge in the interpretation of GAC filter performance.
Collapse
Affiliation(s)
- Alexander Betsholtz
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Per Falås
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Ola Svahn
- School
of Education and Environment, Division of Natural Sciences, Kristianstad University, Kristianstad 291 88, Sweden
| | - Michael Cimbritz
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Åsa Davidsson
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| |
Collapse
|
4
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
5
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Vanzin GF, Wrighton KC, Sedlak DL, Sharp JO. Methane-Oxidizing Activity Enhances Sulfamethoxazole Biotransformation in a Benthic Constructed Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7240-7253. [PMID: 37099683 DOI: 10.1021/acs.est.2c09314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Ammonia monooxygenase and analogous oxygenase enzymes contribute to pharmaceutical biotransformation in activated sludge. In this study, we hypothesized that methane monooxygenase can enhance pharmaceutical biotransformation within the benthic, diffuse periphytic sediments (i.e., "biomat") of a shallow, open-water constructed wetland. To test this hypothesis, we combined field-scale metatranscriptomics, porewater geochemistry, and methane gas fluxes to inform microcosms targeting methane monooxygenase activity and its potential role in pharmaceutical biotransformation. In the field, sulfamethoxazole concentrations decreased within surficial biomat layers where genes encoding for the particulate methane monooxygenase (pMMO) were transcribed by a novel methanotroph classified as Methylotetracoccus. Inhibition microcosms provided independent confirmation that methane oxidation was mediated by the pMMO. In these same incubations, sulfamethoxazole biotransformation was stimulated proportional to aerobic methane-oxidizing activity and exhibited negligible removal in the absence of methane, in the presence of methane and pMMO inhibitors, and under anoxia. Nitrate reduction was similarly enhanced under aerobic methane-oxidizing conditions with rates several times faster than for canonical denitrification. Collectively, our results provide convergent in situ and laboratory evidence that methane-oxidizing activity can enhance sulfamethoxazole biotransformation, with possible implications for the combined removal of nitrogen and trace organic contaminants in wetland sediments.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Gary F Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), Colorado School of Mines, Golden, Colorado 80401, United States
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Hwangbo M, Shao Y, Hatzinger PB, Chu KH. Acidophilic methanotrophs: Occurrence, diversity, and possible bioremediation applications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 37041665 DOI: 10.1111/1758-2229.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH4 ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH4 , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH4 monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yiru Shao
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Paul B Hatzinger
- Aptim Federal Services, LLC, 17 Princess Road, Lawrenceville, New Jersey, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
7
|
Baskaran B, Gill TM, Furst AL. An Improved Spectrophotometric Method for Toluene-4-Monooxygenase Activity. Chemistry 2023; 29:e202203322. [PMID: 36593585 PMCID: PMC10423644 DOI: 10.1002/chem.202203322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Monooxygenases, an important class of enzymes, have been the subject of enzyme engineering due to their high activity and versatile substrate scope. Reactions performed by these biocatalysts have long been monitored by a colorimetric method involving the coupling of a dye precursor to naphthalene hydroxylation products generated by the enzyme. Despite the popularity of this method, we found the dye product to be unstable, preventing quantitative readout. By incorporating an extraction step to solubilize the dye produced, we have improved this assay to the point where quantitation of enzyme activity is possible. Further, by incorporating spectral deconvolution, we have, for the first time, enabled independent quantification of the two possible regioisomeric products: 1-naphthol and 2-naphthol. Previously, such analysis was only possible with chromatographic separation, increasing the cost and complexity of analysis. The efficacy of our improved workflow was evaluated by monitoring the activity of a toluene-4-monooxygenase enzyme from Pseudomonas mendocina KR-1. Our colorimetric regioisomer quantification was found to be consistent with chromatographic analysis by HPLC. The development and validation of a quantitative colorimetric assay for monooxygenase activity that enables regioisomeric distinction and quantification represents a significant advance in analytical methods to monitor enzyme activity. By maintaining facile, low-cost, high-throughput readout while incorporating quantification, this assay represents an important alternative to more expensive chromatographic quantification techniques.
Collapse
Affiliation(s)
- Barathkumar Baskaran
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Thomas M. Gill
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ariel L. Furst
- Deparment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
8
|
Cupples AM, Li Z, Wilson FP, Ramalingam V, Kelly A. In silico analysis of soil, sediment and groundwater microbial communities to predict biodegradation potential. J Microbiol Methods 2022; 202:106595. [DOI: 10.1016/j.mimet.2022.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/27/2022]
|
9
|
Vega MAP, Scholes RC, Brady AR, Daly RA, Narrowe AB, Bosworth LB, Wrighton KC, Sedlak DL, Sharp JO. Pharmaceutical Biotransformation is Influenced by Photosynthesis and Microbial Nitrogen Cycling in a Benthic Wetland Biomat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14462-14477. [PMID: 36197061 DOI: 10.1021/acs.est.2c03566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In shallow, open-water engineered wetlands, design parameters select for a photosynthetic microbial biomat capable of robust pharmaceutical biotransformation, yet the contributions of specific microbial processes remain unclear. Here, we combined genome-resolved metatranscriptomics and oxygen profiling of a field-scale biomat to inform laboratory inhibition microcosms amended with a suite of pharmaceuticals. Our analyses revealed a dynamic surficial layer harboring oxic-anoxic cycling and simultaneous photosynthetic, nitrifying, and denitrifying microbial transcription spanning nine bacterial phyla, with unbinned eukaryotic scaffolds suggesting a dominance of diatoms. In the laboratory, photosynthesis, nitrification, and denitrification were broadly decoupled by incubating oxic and anoxic microcosms in the presence and absence of light and nitrogen cycling enzyme inhibitors. Through combining microcosm inhibition data with field-scale metagenomics, we inferred microbial clades responsible for biotransformation associated with membrane-bound nitrate reductase activity (emtricitabine, trimethoprim, and atenolol), nitrous oxide reduction (trimethoprim), ammonium oxidation (trimethoprim and emtricitabine), and photosynthesis (metoprolol). Monitoring of transformation products of atenolol and emtricitabine confirmed that inhibition was specific to biotransformation and highlighted the value of oscillating redox environments for the further transformation of atenolol acid. Our findings shed light on microbial processes contributing to pharmaceutical biotransformation in open-water wetlands with implications for similar nature-based treatment systems.
Collapse
Affiliation(s)
- Michael A P Vega
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rachel C Scholes
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Adam R Brady
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lily B Bosworth
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523, United States
| | - David L Sedlak
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- NSF Engineering Research Center for Reinventing the Nation's Urban Water Infrastructure (ReNUWIt), https://www.renuwit.org
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
10
|
An Overview on Methanotrophs and the Role of Methylosinus trichosporium OB3b for Biotechnological Applications. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0046-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Cupples AM, Thelusmond JR. Predicting the occurrence of monooxygenases and their associated phylotypes in soil microcosms. METHODS IN MICROBIOLOGY 2021; 193:106401. [PMID: 34973287 DOI: 10.1016/j.mimet.2021.106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Cometabolic oxidation involves the oxidation of chemicals often by monooxygenases or dioxygenases and can be a removal process for environmental contaminants such as trichloroethene (TCE) or 1,4-dioxane. Information on the occurrence of these genes and their associated microorganisms in environmental samples has the potential to enhance our understanding of contaminant removal. The overall aims were to 1) ascertain which genes encoding for monooxygenases (from methanotrophs, ammonia oxidizing bacteria and toluene/phenol oxidizers) and other key enzymes are present in soil microcosms and 2) determine which phylotypes are associated with those genes. The approach involved a predictive tool called PICRUSt2 and 16S rRNA gene amplicon datasets from two previous soil microcosm studies. The following targets from the KEGG database were examined: pmo/amo, mmo, dmp/pox/tomA, tmo/tbu/tou, bssABC (and downstream genes), tod, xylM, xylA, gst, dhaA, catE, dbfA1, dbfA2 and phenol 2-monooxygenase. A large number of phylotypes were associated with pmo/amo, while mmo was linked to only five. Several phylotypes were associated with both pmo/amo and mmo. The most dominant microorganism predicted for mmoX was Mycobacterium (also predicted for pmo/amo). A large number of phylotypes were associated with all six genes from the dmp/pox/tomA KEGG group. The taxonomic associations predicted for the tmo/tbu/tou KEGG group were more limited. In both datasets, Geobacter was a key phylotype for benzylsuccinate synthase. The dioxygenase-mediated toluene degradation pathway encoded by todC1C2BA was largely absent, as were the genes (xylM, xylA) encoding for xylene monooxygenase. All other genes investigated were predicted to be present and were associated with a number of microorganisms. Overall, the analysis predicted the genes encoding for sMMO (mmo), T3MO/T3MO/ToMO (tmo/tbu/tou) and benzylsuccinate synthase (bssABC) are present for a limited number of phylotypes compared to those encoding for pMMO/AMO (pmo/amo) and phenol monooxygenase/T2MO (dmp/poxA/tomA). These findings suggest in soils contaminant removal via pMMO/AMO or phenol monooxygenase/T2MO may be common because of the occurrence of these enzymes with a large number of phylotypes.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Borths CJ, Burns M, Curran T, Ide ND. Nitrosamine Reactivity: A Survey of Reactions and Purge Processes. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher J. Borths
- Drug Substance Technologies, Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Burns
- Lhasa Limited, Leeds, West Yorkshire, U.K., LS11 5PS
| | - Timothy Curran
- Vertex Pharmaceuticals, Inc., 50 Northern Avenue, Boston, Massachusetts 01757, United States
| | - Nathan D. Ide
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
13
|
Han Y, Zhang K, Lu Q, Wu Z, Li J. Performance and mechanism of nickel hydroxide catalyzed reduction of N-nitrosodimethylamine by iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145550. [PMID: 33770887 DOI: 10.1016/j.scitotenv.2021.145550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Since iron (Fe) was first proven to have a strong reduction ability, it has been successfully applied to remove pollutants from water. In this study, nickel hydroxide (Ni(OH)2), a catalyst commonly used in hydrogen evolution reactions, was added to improve the activity of Fe to remove N-nitrosodimethylamine (NDMA). The results showed that with the increasing Ni(OH)2 dosages, the reactions accelerated. The NDMA removal rates increased when the pH value was 6 or 7. Further, when the dissolved oxygen concentration was in the range of 0-12.0 mg∙L-1, it had little effect on the Fe/Ni(OH)2 system, and all the reactions obeyed pseudo-first-order kinetics. 1,1-dimethylhydrazine and dimethylamine were formed during NDMA degradation. The capture of active substances and electron spin resonance method confirmed that the main active species were active hydrogen atoms, which participated in the removal of NDMA. Ni(OH)2 acting as a catalyst was confirmed using wide-angle X-ray diffraction, X-ray photoelectron spectroscopy and Ni2+ dissolution. Further, catalytic hydrogenation was proposed as the main removal mechanism as Ni(OH)2 promotes the corrosion of Fe and dissociation of water, thereby generating more active hydrogen atoms. In addition, Ni(OH)2 may activate both Fe and NDMA. This technique could be employed as an alternative for NDMA reduction and expand the application field of Ni(OH)2.
Collapse
Affiliation(s)
- Ying Han
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Kemin Zhang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qingjie Lu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhao Wu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jun Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
14
|
Vaidya R, Wilson CA, Salazar-Benites G, Pruden A, Bott C. Factors affecting removal of NDMA in an ozone-biofiltration process for water reuse. CHEMOSPHERE 2021; 264:128333. [PMID: 33011478 DOI: 10.1016/j.chemosphere.2020.128333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosodimethylamine (NDMA) is a carcinogen and a disinfection byproduct that is formed by ozone and combined chlorine. Various factors affecting NDMA formation and removal were examined at pilot-scale for a treatment train consisting of ozone, biologically-active carbon (BAC) filtration, and granular activated carbon (GAC) adsorption applied to two distinct feed waters. High concentrations of ozone and monochloramine were added to the influent, demonstrating that ozone removed monochloramine precursors of NDMA. Further, longer empty bed contact times (EBCTs) of 10 min for BAC and 10 and 20 min for GAC removed NDMA to <10 ng/L for both feed waters. NDMA removal by the BAC process was most favorable >22 °C, presumably due to elevated microbial activity. A monochloramine residual of 3 mg/L-Cl2 in the BAC influent reduced NDMA removal in the 5 min EBCT BAC from 79% to 36% and in the 10 min EBCT BAC from 88.5% to 73.7%. The absence of ozone in the treatment process significantly reduced NDMA formed post ozone, but decreased NDMA removal in BAC, probably due to lower NDMA concentration in the BAC influent. Finally, adding 5 mg/L of allylthiourea, an inhibitor of ammonia-oxidizing bacteria, indicated that removal mechanisms for ammonia and NDMA are distinct. However, nitrification is still a good indicator for NDMA biodegradation potential, because nitrifying bacteria appear to flourish under similar EBCT, temperature. and monochloramine residual conditions during BAC filtration.
Collapse
Affiliation(s)
- Ramola Vaidya
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Christopher A Wilson
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| | | | - Amy Pruden
- Civil and Environmental Engineering Department, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Charles Bott
- Hampton Roads Sanitation District, 1434 Air Rail Ave., Virginia Beach, VA, 23455, USA
| |
Collapse
|
15
|
Luo Q, Bei E, Liu C, Deng YL, Miao Y, Qiu Y, Lu WQ, Chen C, Zeng Q. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139695. [PMID: 32497885 DOI: 10.1016/j.scitotenv.2020.139695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Nitrosamines, as a class of emerging frequently detected nitrogenous disinfection byproducts (N-DBPs) in drinking water, have gained increasing attention due to their potentially high health risk. Few studies focus on the occurrence variation and carcinogenic health risk of nitrosamines in drinking water systems. Our study aimed to investigate the spatial and temporal variability of nitrosamines in a drinking water system and to conduct a carcinogenic health risk assessment. Three types of water samples, including influent water, treated water and tap water, were collected monthly during an entire year in a drinking water system utilizing a combination of chlorine dioxide and chlorine in central China, and 9 nitrosamines were measured. The nitrosamine formation potentials (FPs) in influent water were also determined. N-nitrosodimethylamine (NDMA) was the most prevalent compound and was dominant in the water samples with average concentrations ranging from 2.5 to 67.4 ng/L, followed by N-nitrosodiethylamine (NDEA) and N-nitrosopiperidine (NPIP). Nitrosamine occurrence varied monthly, and significant seasonal differences were observed in tap water (p < .05). There were decreasing mean NDMA, NDEA and NPIP concentrations from influent water to treated water to tap water, but no significant spatial variability was observed within the water distribution system (p > .05). The average and 95th percentile total lifetime cancer risks for the three main nitrosamines were 4.83 × 10-5 and 4.48 × 10-4, respectively, exceeding the negligible risk level (10-6) proposed by the USEPA. Exposure to nitrosamines in drinking water posed a higher cancer risk for children than for adults, and children aged 0.75 to 1 years suffered the highest cancer risk. These results suggest that nitrosamine occurrence in tap water varied temporally but not spatially. Exposure to drinking water nitrosamines may pose a carcinogenic risk to human health, especially to children.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
16
|
Hatzinger PB, Lippincott DR. Field demonstration of N-Nitrosodimethylamine (NDMA) treatment in groundwater using propane biosparging. WATER RESEARCH 2019; 164:114923. [PMID: 31400594 DOI: 10.1016/j.watres.2019.114923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is found in groundwater and drinking water from industrial, agricultural, water treatment, and military/aerospace sources, and it must often be treated to part-per-trillion (ng/L) concentrations. The most effective remedial technology for NDMA in groundwater is pump-and-treat with ultraviolet irradiation (UV), but this approach is expensive because it requires ex situ infrastructure and high energy input. The objective of this project was to evaluate an in situ biological treatment approach for NDMA. Previous laboratory studies have revealed that propane-oxidizing bacteria are capable of biodegrading NDMA from μg/L to low ng/L concentrations (Fournier et al., 2009; Webster et al., 2013). During this field study, air and propane gas were sparged into an NDMA-contaminated aquifer for more than 1 year. Groundwater samples were collected throughout the study from a series of monitoring wells within, downgradient, and sidegradient of the zone of influence of the biosparge system. Over the course of the study, NDMA concentrations declined by 99.7% to >99.9% in the four monitoring wells within the zone of influence of the biosparge system, reaching low ng/L concentrations whereas the control well declined by only 14%. Pseudo first-order degradation rate constants for NDMA in system monitoring wells ranged from ∼0.019 day -1 to 0.037 day -1 equating to half-lives ranging from 19 to 36 days. Native propanotrophs increased by more than one order of magnitude in the propane-impacted wells but not in the control well. The field data show for the first time that propane biosparging can be an effective in situ approach to reduce the concentrations of NDMA in a groundwater to ng/L concentrations.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States.
| | - David R Lippincott
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States
| |
Collapse
|
17
|
Na-Phatthalung W, Musikavong C, Suttinun O. Degradation of N-nitrosodimethylamine and its amine precursors by cumene-induced Rhodococcus sp. strain L4. Biodegradation 2019; 30:375-388. [DOI: 10.1007/s10532-019-09876-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
18
|
Dong C, Huang G, Cheng G, An C, Yao Y, Chen X, Chen J. Wastewater treatment in amine-based carbon capture. CHEMOSPHERE 2019; 222:742-756. [PMID: 30738317 DOI: 10.1016/j.chemosphere.2019.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
Amine-based CO2 capture (ACC) has become one cost-effective method for reducing carbon emissions in order to mitigate climate changes. The amine-rich wastewater (ARWW) generated from ACC may contain a series of degradation products of amine-based solvents (ABSs). These products are harmful for ecological environment and human health. Effective and reliable ARWW treatment methods are highly required for mitigating the harmfulness. However, there is a lack of a comprehensive review of the existing limited methods that can guide ARWW-related technological advancements and treatment practices. To fill this gap, the review is achieved in this study. All available technologies for treating the ARWW from washwater, condenser, and reclaimer units in ACC are examined based on clarification of degradation mechanisms and ARWW compounds. A series of significant findings and recommendations are revealed through this review. For instance, ARWW treatment methods should be selected according to degradation conditions and pollution concentrations. UV light can be only used for treating wastewater from washwater and condenser units in ACC. Biological activated carbon is feasible for removing nitrosamines from washwater and condenser units. Sequence batch reactors, microbial fuel cells, and the other techniques for removing amines and similar degradation products are applicable for treating ARWW. This review provides scientific support for the selection and improvement of ARWW treatment techniques, the mitigation of ACC's consequences in environment, health and other aspects, and the extensive development and applications of ACC systems.
Collapse
Affiliation(s)
- Cong Dong
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Gordon Huang
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| | - Guanhui Cheng
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
| | - Yao Yao
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Xiujuan Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Jiapei Chen
- Institute for Energy, Environment and Sustainable Communities, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada; Institute for Energy, Environment and Sustainability Research, UR-BNU, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| |
Collapse
|
19
|
Hatzinger PB, Begley JF, Lippincott DR, Bodour A, Forbes R. In situ bioremediation of 1,2-dibromoethane (EDB) in groundwater to part-per-trillion concentrations using cometabolism. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 218:120-129. [PMID: 30293921 DOI: 10.1016/j.jconhyd.2018.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 06/08/2023]
Abstract
1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was historically added to leaded gasoline as a scavenger to prevent the build-up of lead oxide deposits in engines. Studies indicate that EDB is present at thousands of past fuel spill sites above its stringent EPA Maximum Contaminant Level (MCL) of 0.05 μg/L. There are currently no proven in situ options to enhance EDB degradation in groundwater to meet this requirement. Based on successful laboratory studies showing that ethane can be used as a primary substrate to stimulate the aerobic, cometabolic biodegradation of EDB to <0.015 μg/L (Hatzinger et al., 2015), a groundwater recirculation system was installed at the FS-12 EDB plume on Joint Base Cape Cod (JBCC), MA to facilitate in situ treatment. Groundwater was taken from an existing extraction well, amended with ethane, oxygen, and inorganic nutrients and then recharged into the aquifer upgradient of the extraction well creating an in situ reactive zone. The concentrations of EDB, ethane, oxygen, and anions in groundwater were measured with time in a series of nested monitoring wells installed between the extraction and injection well. EDB concentrations in the six monitoring wells that were hydraulically well-connected to the pumping system declined from ~ 0.3 μg/L (the average concentration in the recirculation cell after 3 months of operation without amendment addition) to <0.02 μg/L during the 4-month amendment period, meeting both the federal MCL and the more stringent Massachusetts MCL (0.02 μg/L). The data indicate that cometabolic treatment is a promising in situ technology for EDB, and that low regulatory levels can be achieved with this biological approach.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States.
| | - James F Begley
- MT Environmental Restoration, Duxbury, MA, United States
| | - David R Lippincott
- Biotechnology Development and Applications Group, Aptim Federal Services, Lawrenceville, NJ, United States
| | - Adria Bodour
- Kirtland Air Force Base, Albuquerque, NM, United States
| | - Rose Forbes
- Air Force Civil Engineer Center, Joint Base Cape Cod, MA, United States
| |
Collapse
|
20
|
Trussell B, Trussell S, Qu Y, Gerringer F, Stanczak S, Venezia T, Monroy I, Bacaro F, Trussell R. A four-year simulation of soil aquifer treatment using columns filled with San Gabriel Valley sand. WATER RESEARCH 2018; 144:26-35. [PMID: 30014976 DOI: 10.1016/j.watres.2018.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Two column pairs filled with 3.05-m of a sandy soil from the Upper San Gabriel Valley were operated for a period of four and ½ years on municipal effluent from the San Jose Creek Water Reclamation Plant operated by the Sanitation Districts of Los Angeles County (LACSD). One column pair was fed filtered, chlorinated effluent (tertiary effluent) for the entire period. The other pair was fed ozonated secondary effluent for 8-mo, ozonated secondary effluent filtered through biological activated carbon (O3/BAC) for 7-mo and tertiary effluent for 38-mo. Each column pair was operated in series, where the first column was operated for a shorter residence time and the second column for a longer residence time. Residence times tested were 5-d, 28-d, 30-d, 58-d, 60-d, 150-d and 180-d. For the last 38-mo, both pairs of columns had a residence time of 30-d in the first column and the total residence time of the two pairs was 150 and 180-d, respectively. Testing showed both of these pairs had the same long-term performance. The column pairs with a 150 to 180-d residence time, which were both fed tertiary effluent, reached an effluent total organic carbon (TOC) of 1.8 mg/L. Column pairs with a 28 to 30-d residence time, which were fed tertiary, ozonated, and O3/BAC effluent, reached effluent TOCs of 2.3, 2.1 and 1.8 mg/L respectively. In the latter, some TOC removal was shifted from the soil columns to the BAC. During the last 38 months of testing, using tertiary effluent as the source water, a series of sampling events was performed throughout the soil column system for N-nitrosodimethylamine (NDMA) and chemicals of emerging concern (CECs). NDMA was substantially reduced in all the columns, with a median value of 3 ng/L after 30-d and <2 ng/L after both 150 and 180-d. Twenty-one CECs were found in the majority of tertiary effluent samples, twelve of which were attenuated by the soil columns and the remaining were not. Chemicals found to be recalcitrant were 4-nonylphenol, acesulfame-k, carbamazepine, lidocaine, primidone, simazine, sucralose, sulfamethoxazole, and TCEP. Using excitation-emission matrix (EEM) techniques, soluble microbial products (SMP) peak characteristic of effluent organic matter (EfOM) is nearly eliminated after a 30-d hydraulic retention time (HRT) and completely eliminated in the 150/180-d samples. The intensity of the other peaks is significantly reduced as well, resulting in an EEM much like that of natural groundwater.
Collapse
Affiliation(s)
- Bryan Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States.
| | - Shane Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Yan Qu
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Fred Gerringer
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Sangam Stanczak
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Teresa Venezia
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Israel Monroy
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| | - Fernanda Bacaro
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Rhodes Trussell
- Trussell Technologies Incorporation, 232 N. Lake Avenue Suite 300, Pasadena, CA 91101, United States
| |
Collapse
|
21
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
22
|
Hatzinger PB, Lewis C, Webster TS. Biological treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in a field-scale fluidized bed bioreactor. WATER RESEARCH 2017; 126:361-371. [PMID: 28972939 DOI: 10.1016/j.watres.2017.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The ex situ treatment of N-nitrosodimethylamine (NDMA) and N-nitrodimethylamine (NTDMA) in groundwater was evaluated in a field-scale fluidized bed bioreactor (FBR). Both of these compounds, which originally entered groundwater at the test site from the use of liquid rocket propellant, are suspected human carcinogens. The objective of this research was to examine the application of a novel field-scale propane-fed fluidized bed bioreactor as an alternative to ultraviolet irradiation (UV) for treating NDMA and NTDMA to low part-per-trillion (ng/L) concentrations. Previous laboratory studies have shown that the bacterium Rhodococcus ruber ENV425 can biodegrade NDMA and NTDMA during growth on propane as a primary substrate and that the strain can effectively reduce NDMA concentrations in propane-fed bench-scale bioreactors of different design. R. ruber ENV425 was used as a seed culture for the FBR, which operated at a fluidization flow of ∼19 L-per-min (LPM) and received propane, oxygen, and inorganic nutrients in the feed. The reactor effectively treated ∼1 μg/L of influent NDMA to effluent concentrations of less than 10 ng/L at a hydraulic residence time (HRT) of only 10 min. At a 20 min HRT, the FBR reduced NDMA to <4.2 ng/L in the effluent, which was the discharge limit at the test site where the study was conducted. Similarly, NTDMA was consistently treated in the FBR from ∼0.5 μg/L to <10 ng/L at an HRT of 10 min or longer. Based on these removal rates, the average NDMA and NTDMA elimination capacities achieved were 2.1 mg NDMA treated/m3 of expanded bed/hr of operation and 1.1 mg NTDMA treated/m3 of expanded bed/hr of operation, respectively. The FBR system was highly resilient to upsets including power outages. Treatment of NDMA, but not NTDMA, was marginally affected when trace co-contaminants including trichloroethene (TCE) and trichlorofluoromethane (Freon 11) were initially added to feed groundwater, but performance recovered over a few weeks in the continued presence of these compounds. Strain ENV425 appeared to be replaced by native propanotrophs over time based on qPCR analysis, but contaminant treatment was not diminished. The results suggest that a FBR can be a viable alternative to UV treatment for removing NDMA from groundwater.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, CB&I Federal Services, Lawrenceville, NJ, 08648, USA.
| | - Celeste Lewis
- Envirogen Technologies, Inc., Rancho Cucamonga, CA, 91730, USA
| | - Todd S Webster
- Envirogen Technologies, Inc., Rancho Cucamonga, CA, 91730, USA
| |
Collapse
|
23
|
Liu C, Olivares CI, Pinto AJ, Lauderdale CV, Brown J, Selbes M, Karanfil T. The control of disinfection byproducts and their precursors in biologically active filtration processes. WATER RESEARCH 2017; 124:630-653. [PMID: 28822343 DOI: 10.1016/j.watres.2017.07.080] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
While disinfection provides hygienically safe drinking water, the disinfectants react with inorganic or organic precursors, leading to the formation of harmful disinfection byproducts (DBPs). Biological filtration is a process in which an otherwise conventional granular filter is designed to remove not only fine particulates but also dissolved organic matters (e.g., DBP precursors) through microbially mediated degradation. Recently, applications of biofiltration in drinking water treatment have increased significantly. This review summarizes the effectiveness of biofiltration in removing DBPs and their precursors and identifies potential factors in biofilters that may control the removal or contribute to formation of DBP and their precursors during drinking water treatment. Biofiltration can remove a fraction of the precursors of halogenated DBPs (trihalomethanes, haloacetic acids, haloketones, haloaldehydes, haloacetonitriles, haloacetamides, and halonitromethanes), while also demonstrating capability in removing bromate and halogenated DBPs, except for trihalomethanes. However, the effectiveness of biofiltration mediated removal of nitrosamine and its precursors appears to be variable. An increase in nitrosamine precursors after biofiltration was ascribed to the biomass sloughing off from media or direct nitrosamine formation in the biofilter under certain denitrifying conditions. Operating parameters, such as pre-ozonation, media type, empty bed contact time, backwashing, temperature, and nutrient addition may be optimized to control the regulated DBPs in the biofilter effluent while minimizing the formation of unregulated emerging DBPs. While summarizing the state of knowledge of biofiltration mediated control of DBPs, this review also identifies several knowledge gaps to highlight future research topics of interest.
Collapse
Affiliation(s)
- Chao Liu
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Christopher I Olivares
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Ameet J Pinto
- Department of Civil & Environmental Engineering, Northeastern University, 269 SN, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | - Jess Brown
- Carollo Engineers, Inc., 3150 Bristol Street, Suite 500, Costa Mesa, CA 92929, USA
| | - Meric Selbes
- Hazen and Sawyer, Environmental Engineers and Scientists, Fairfax, VA 22030, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
24
|
Li D, Stanford B, Dickenson E, Khunjar WO, Homme CL, Rosenfeldt EJ, Sharp JO. Effect of advanced oxidation on N-nitrosodimethylamine (NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration. WATER RESEARCH 2017; 113:160-170. [PMID: 28213337 DOI: 10.1016/j.watres.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H2O2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H2O2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H2O2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications.
Collapse
Affiliation(s)
- Dong Li
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Eric Dickenson
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA; Water Quality Research and Development Division, Southern Nevada Water Authority, Henderson, NV 89015, USA
| | | | - Carissa L Homme
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Jonathan O Sharp
- NSF Engineering Research Center ReNUWIt, Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
25
|
Lim S, Lee W, Na S, Shin J, Lee Y. N-nitrosodimethylamine (NDMA) formation during ozonation of N,N-dimethylhydrazine compounds: Reaction kinetics, mechanisms, and implications for NDMA formation control. WATER RESEARCH 2016; 105:119-128. [PMID: 27611639 DOI: 10.1016/j.watres.2016.08.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 05/17/2023]
Abstract
Compounds with N,N-dimethylhydrazine moieties ((CH3)2N-N-) form N-nitrosodimethylamine (NDMA) during ozonation, but the relevant reaction chemistry is hitherto poorly understood. This study investigated the reaction kinetics and mechanisms of NDMA formation during ozonation of unsymmetrical dimethylhydrazine (UDMH) and daminozide (DMZ) as structural model N,N-dimethylhydrazine compounds. The reaction of ozone with these NDMA precursor compounds was fast, and kO3 at pH 7 was 2 × 106 M-1 s-1 for UDMH and 5 × 105 M-1 s-1 for DMZ. Molar NDMA yields (i.e., Δ[NDMA]/Δ[precursor] × 100) were 84% and 100% for UDMH and DMZ, respectively, determined at molar ozone dose ratio ([O3]0/[precursor]0) of ≥4 in the presence of tert-butanol as hydroxyl radical (OH) scavenger. The molar NDMA yields decreased significantly in the absence of tert-butanol, indicating OH formation and its subsequent reaction with the parent precursors forming negligible NDMA. The kOH at pH 7 was 4.9 × 109 M-1 s-1 and 3.4 × 109 M-1 s-1 for UDMH and DMZ, respectively. Reaction mechanisms are proposed in which an ozone adduct is formed at the nitrogen next to N,N-dimethylamine which decomposes via homolytic and heterolytic cleavages of the -N+-O-O-O- bond, forming NDMA as a final product. The heterolytic cleavage pathway explains the significant OH formation via radical intermediates. Overall, significant NDMA formation was found to be unavoidable during ozonation or even O3/H2O2 treatment of waters containing N,N-dimethylhydrazine compounds due to their rapid reaction with ozone forming NDMA with high yield. Thus, source control or pre-treatment of N,N-dimethylhydrazine precursors and post-treatment of NDMA are proposed as the mitigation options.
Collapse
Affiliation(s)
- Sungeun Lim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Soyoung Na
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Republic of Korea.
| |
Collapse
|
26
|
Leavey-Roback SL, Sugar CA, Krasner SW, Suffet IHM. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation. WATER RESEARCH 2016; 95:300-309. [PMID: 27015632 DOI: 10.1016/j.watres.2016.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/16/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed).
Collapse
Affiliation(s)
- Shannon L Leavey-Roback
- Environmental Science and Engineering Program, Institute for the Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA; Metropolitan Water District of Southern California, 700 Moreno Avenue, La Verne, CA 91750, USA.
| | - Catherine A Sugar
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, 650 Charles E. Young Dr. South, 51-254 CHS, Los Angeles, CA 90095-1772, USA; Department of Psychiatry and Biobehavioral Sciences David Geffen School of Medicine, University of California, Los Angeles, 760 Westwood Plaza, 37-457 Semel, Los Angeles, CA 90095-1759, USA
| | - Stuart W Krasner
- Metropolitan Water District of Southern California, 700 Moreno Avenue, La Verne, CA 91750, USA
| | - Irwin H Mel Suffet
- Environmental Science and Engineering Program, Institute for the Environment and Sustainability, University of California, Los Angeles, La Kretz Hall, Suite 300, Box 951496, Los Angeles, CA 90095-1496, USA
| |
Collapse
|
27
|
Mikkelson KM, Homme CL, Li D, Sharp JO. Propane biostimulation in biologically activated carbon (BAC) selects for bacterial clades adept at degrading persistent water pollutants. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:1405-1414. [PMID: 26154499 DOI: 10.1039/c5em00212e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Biologically activated carbon (BAC) can be used in both municipal water and hazardous waste remediation applications to enhance contaminant attenuation in water; however, questions remain about how selective pressures can be applied to increase the capabilities of microbial communities to attenuate recalcitrant contaminants. Here we utilized flow-through laboratory columns seeded with municipally derived BAC and exposed to water from a local drinking water facility to query how propane biostimulation impacts resident microorganisms. Ecological analyses using high throughput phylogenetic sequencing revealed that while propane did not increase the total number of microbiological species, it did select for bacterial communities that were distinct from those without propane. Temporal extractions demonstrated that microbial succession was rapid and established in approximately 2 months. A higher density of propane monooxygenase genes and bacterial clades including the Pelosinus and Dechloromonas genera suggest an enhanced potential for the degradation of persistent water pollutants in propane-stimulated systems. However, the ecological selective pressure was exhausted in less than 15 cm of transit in this flow-through scenario (25 hour retention) indicating a pronounced zonation that could limit the size of a biostimulated zone and require physical mixing, hydraulic manipulation, or other strategies to increase the spatial impact of biostimulation in flow-through scenarios.
Collapse
Affiliation(s)
- Kristin M Mikkelson
- ReNUWit Engineering Research Center, Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, USA.
| | | | | | | |
Collapse
|
28
|
Wang W, Guo Y, Yang Q, Huang Y, Zhu C, Fan J, Pan F. Characterization of the microbial community structure and nitrosamine-reducing isolates in drinking water biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:219-225. [PMID: 25841075 DOI: 10.1016/j.scitotenv.2015.03.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Two biofilters were constructed using biological activated carbon (BAC) and nitrosamine-containing water from two drinking water treatment plants. The microbiome of each biofilter was characterized by 454 high-throughput pyrosequencing, and one nitrosamine-reducing bacterium was isolated. The results showed that nitrosamines changed the relative abundance at both the phylum and class levels, and the new genera were observed in the microbial communities of the two BAC filters after cultivation. As such, the genus Rhodococcus, which includes many nitrosamine-reducing strains reported in previous studies, was only detected in the BAC2 filter after cultivation. These findings indicate that nitrosamines can significantly affect the genus level in the microbial communities. Furthermore, the isolated bacterial culture Rhodococcus cercidiphylli A41 AS-1 exhibited the ability to reduce five nitrosamines (N-nitrosodimethylamine, N-nitrosodiethylamine, N-nitrosodi-n-propylamine, N-nitrosopyrrolidine, and N-nitrosodi-n-butylamine) with removal ratios that ranged from 38.1% to 85.4%. The isolate exhibited a better biodegradation ability with nitrosamine as the carbon source when compared with nitrosamine as the nitrogen source. This study increases our understanding of the microbial community in drinking water biofilters with trace quantities of nitrosamines, and provides information on the metabolism of nitrosamine-reducing bacteria.
Collapse
Affiliation(s)
- Wanfeng Wang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China.
| | - Yanling Guo
- College of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qingxiang Yang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Yao Huang
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Chunyou Zhu
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Feng Pan
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
29
|
Weathers TS, Higgins CP, Sharp JO. Enhanced biofilm production by a toluene-degrading Rhodococcus observed after exposure to perfluoroalkyl acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5458-5466. [PMID: 25806435 DOI: 10.1021/es5060034] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study focuses on interactions between aerobic soil-derived hydrocarbon degrading bacteria and a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates that are found in aqueous film-forming foams used for fire suppression. No effect on toluene degradation rate or induction time was observed when active cells of Rhodococcus jostii strain RHA1 were exposed to toluene and a mixture of perfluoroalkyl acids (PFAAs) including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) at concentrations near the upper bounds of groundwater relevance (11 PFAAs at 10 mg/L each). However, exposure to aqueous PFAA concentrations above 2 mg/L (each) was associated with enhanced aggregation of bacterial cells and significant increases in extracellular polymeric substance production. Flocculation was only observed during exponential growth and not elicited when PFAAs were added to resting incubations; analogous flocculation was also observed in soil enrichments. Aggregation was accompanied by 2- to 3-fold upregulation of stress-associated genes, sigF3 and prmA, during growth of this Rhodococcus in the presence of PFAAs. These results suggest that biological responses, such as microbial stress and biofilm formation, could be more prominent than suppression of co-contaminant biodegradation in subsurface locations where poly- and perfluoroalkyl substances occur with hydrocarbon fuels.
Collapse
Affiliation(s)
- Tess S Weathers
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Christopher P Higgins
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Jonathan O Sharp
- Hydrologic Science and Engineering Program and Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
30
|
Johnson DR, Helbling DE, Men Y, Fenner K. Can meta-omics help to establish causality between contaminant biotransformations and genes or gene products? ENVIRONMENTAL SCIENCE : WATER RESEARCH & TECHNOLOGY 2015; 1:272-278. [PMID: 27239323 PMCID: PMC4880034 DOI: 10.1039/c5ew00016e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is increasing interest in using meta-omics association studies to investigate contaminant biotransformations. The general strategy is to characterize the complete set of genes, transcripts, or enzymes from in situ environmental communities and use the abundances of particular genes, transcripts, or enzymes to establish associations with the communities' potential to biotransform one or more contaminants. The associations can then be used to generate hypotheses about the underlying biological causes of particular biotransformations. While meta-omics association studies are undoubtedly powerful, they have a tendency to generate large numbers of non-causal associations, making it potentially difficult to identify the genes, transcripts, or enzymes that cause or promote a particular biotransformation. In this perspective, we describe general scenarios that could lead to pervasive non-causal associations or conceal causal associations. We next explore our own published data for evidence of pervasive non-causal associations. Finally, we evaluate whether causal associations could be identified despite the discussed limitations. Analysis of our own published data suggests that, despite their limitations, meta-omics association studies might still be useful for improving our understanding and predicting the contaminant biotransformation capacities of microbial communities.
Collapse
Affiliation(s)
- David R. Johnson
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - Damian E. Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Yujie Men
- Department of Environmental Chemistry, Eawag, Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- ; Fax: +41 58 765 5802; Tel: +41 58 765 5085
| |
Collapse
|
31
|
Gerrity D, Pisarenko AN, Marti E, Trenholm RA, Gerringer F, Reungoat J, Dickenson E. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation. WATER RESEARCH 2015; 72:251-261. [PMID: 25037928 DOI: 10.1016/j.watres.2014.06.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 06/03/2023]
Abstract
Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454015, Las Vegas, NV 89154-4015, United States.
| | - Aleksey N Pisarenko
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States
| | - Erica Marti
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States; Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Box 454015, Las Vegas, NV 89154-4015, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States
| | - Fred Gerringer
- Trussell Technologies, Inc., 380 Stevens Avenue, Suite 308, Solana Beach, CA 92075, United States
| | - Julien Reungoat
- Advanced Water Management Centre, University of Queensland, Level 4, Gehrmann Building (60), St. Lucia, QLD 4072, Australia
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, River Mountain Water Treatment Facility, P.O. Box 99954, Las Vegas, NV 89193-9954, United States.
| |
Collapse
|
32
|
Hatzinger PB, Streger SH, Begley JF. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients. JOURNAL OF CONTAMINANT HYDROLOGY 2015; 172:61-70. [PMID: 25437228 DOI: 10.1016/j.jconhyd.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to <0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Biotechnology Development and Applications Group, CB&I Federal Services, Lawrenceville, NJ 08648, United States.
| | - Sheryl H Streger
- Biotechnology Development and Applications Group, CB&I Federal Services, Lawrenceville, NJ 08648, United States
| | - James F Begley
- MT Environmental Restoration, Plymouth, MA 02360, United States
| |
Collapse
|
33
|
Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 2014; 98:6583-97. [PMID: 24866947 DOI: 10.1007/s00253-014-5826-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/10/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.
Collapse
Affiliation(s)
- Klaus Fischer
- Department of Analytical and Ecological Chemistry, University of Trier, Behringstr. 21, 54296, Trier, Germany,
| | | |
Collapse
|
34
|
Venkatesan A, Pycke BFG, Halden RU. Detection and occurrence of N-nitrosamines in archived biosolids from the targeted national sewage sludge survey of the U.S. Environmental Protection Agency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5085-92. [PMID: 24697330 PMCID: PMC4018098 DOI: 10.1021/es5001352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The occurrence of eight carcinogenic N-nitrosamines in biosolids from 74 wastewater treatment plants (WWTPs) in the contiguous United States was investigated. Using liquid chromatography-tandem mass spectrometry, seven nitrosamines [(N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine, N-nitrosodi-n-propylamine (NDPA), N-nitrosodibutylamine, N-nitrosopyrrolidine, N-nitrosopiperidine (NPIP), and N-nitrosodiphenylamine (NDPhA)] were detected with varying detection frequency (DF) in 88% of the biosolids samples (n = 80), with five of the seven being reported here for the first time in biosolids. While rarely detected (DF 3%), NDMA was the most abundant compound at an average concentration of 504 ± 417 ng/g dry weight of biosolids. The most frequently detected nitrosamine was NDPhA (0.7-147 ng/g) with a DF of 79%, followed by NDPA (7-505 ng/g) and NPIP (51-1185 ng/g) at 21% and 11%, respectively. The DF of nitrosamines in biosolids was positively correlated with their respective n-octanol-water partition coefficients (R(2) = 0.65). The DF and sum of mean concentrations of nitrosamines in biosolids increased with the treatment capacity of WWTPs. Given their frequent occurrence in nationally representative samples and the amount of U.S. biosolids being applied on land as soil amendment, this study warrants more research into the occurrence and fate of nitrosamines in biosolids-amended soils in the context of crop and drinking water safety.
Collapse
Affiliation(s)
| | | | - Rolf U. Halden
- E-mail: . Phone: +1 (480) 727-0893. Fax: +1 (480) 965-6603
| |
Collapse
|
35
|
Nurrokhmah L, Mezher T, Abu-Zahra MRM. Evaluation of handling and reuse approaches for the waste generated from MEA-based CO2 capture with the consideration of regulations in the UAE. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13644-13651. [PMID: 24219116 DOI: 10.1021/es4027198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A waste slip-stream is generated from the reclaiming process of monoethanolamine (MEA) based Post-Combustion Capture (PCC). It mainly consists of MEA itself, ammonium, heat-stable salts (HSS), carbamate polymers, and water. In this study, the waste quantity and nature are characterized for Fluor's Econamine FGSM coal-fired CO2 capture base case. Waste management options, including reuse, recycling, treatment, and disposal, are investigated due to the need for a more environmentally sound handling. Regulations, economic potential, and associated costs are also evaluated. The technical, economic, and regulation assessment suggests waste reuse for NOx scrubbing. Moreover, a high thermal condition is deemed as an effective technique for waste destruction, leading to considerations of waste recycling into a coal burner or incineration. As a means of treatment, three secondary-biological processes covering Complete-Mix Activated Sludge (CMAS), oxidation ditch, and trickling filter are designed to meet the wastewater standards in the United Arab Emirates (UAE). From the economic point of view, the value of waste as a NOx scrubbing agent is 6,561,600-7,348,992 USD/year. The secondary-biological treatment cost is 0.017-0.02 USD/ton of CO2, while the cost of an on-site incinerator is 0.031 USD/ton of CO2 captured. In conclusion, secondary biological treatment is found to be the most economical option.
Collapse
Affiliation(s)
- Laila Nurrokhmah
- Masdar Institute of Science and Technology , P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | | | | |
Collapse
|
36
|
Abstract
Microbiota and host form a complex 'super-organism' in which symbiotic relationships confer benefits to the host in many key aspects of life. However, defects in the regulatory circuits of the host that control bacterial sensing and homeostasis, or alterations of the microbiome, through environmental changes (infection, diet or lifestyle), may disturb this symbiotic relationship and promote disease. Increasing evidence indicates a key role for the bacterial microbiota in carcinogenesis. In this Opinion article, we discuss links between the bacterial microbiota and cancer, with a particular focus on immune responses, dysbiosis, genotoxicity, metabolism and strategies to target the microbiome for cancer prevention.
Collapse
Affiliation(s)
- Robert F. Schwabe
- Department of Medicine, and Institute of Human Nutrition, Columbia University, College of Physicians and Surgeons, New York 10032, USA
| | - Christian Jobin
- Department of Medicine and Department of Infectious Diseases & Pathology, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
37
|
Lee DG, Chu KH. Effects of growth substrate on triclosan biodegradation potential of oxygenase-expressing bacteria. CHEMOSPHERE 2013; 93:1904-1911. [PMID: 23890965 DOI: 10.1016/j.chemosphere.2013.06.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/10/2013] [Accepted: 06/24/2013] [Indexed: 06/02/2023]
Abstract
Triclosan is an antimicrobial agent, an endocrine disrupting compound, and an emerging contaminant in the environment. This is the first study investigating triclosan biodegradation potential of four oxygenase-expressing bacteria: Rhodococcus jostii RHA1, Mycobacterium vaccae JOB5, Rhodococcus ruber ENV425, and Burkholderia xenovorans LB400. B. xenovorans LB400 and R. ruber ENV425 were unable to degrade triclosan. Propane-grown M. vaccae JOB5 can completely degrade triclosan (5 mg L(-1)). R. jostii RHA1 grown on biphenyl, propane, and LB medium with dicyclopropylketone (DCPK), an alkane monooxygenase inducer, was able to degrade the added triclosan (5 mg L(-1)) to different extents. Incomplete degradation of triclosan by RHA1 is probably due to triclosan product toxicity. The highest triclosan transformation capacity (Tc, defined as the amount of triclosan degraded/the number of cells inactivated; 5.63×10(-3) ng triclosan/16S rRNA gene copies) was observed for biphenyl-grown RHA1 and the lowest Tc (0.20×10(-3) ng-triclosan/16S rRNA gene copies) was observed for propane-grown RHA1. No triclosan degradation metabolites were detected during triclosan degradation by propane- and LB+DCPK-grown RHA1. When using biphenyl-grown RHA1 for degradation, four chlorinated metabolites (2,4-dichlorophenol, monohydroxy-triclosan, dihydroxy-triclosan, and 2-chlorohydroquinone (a new triclosan metabolite)) were detected. Based on the detected metabolites, a meta-cleavage pathway was proposed for triclosan degradation.
Collapse
Affiliation(s)
- Do Gyun Lee
- Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | | |
Collapse
|
38
|
Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 2013; 79:7702-8. [PMID: 24096414 DOI: 10.1128/aem.02418-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite β-hydroxyethoxyacetic acid (HEAA) and on THF. Comparison of the transcriptomes of CB1190 grown on THF and succinate (an intermediate of THF degradation) permitted the identification of other genes involved in THF metabolism. Dioxane and THF oxidation activity of the THF MO was verified in Rhodococcus jostii RHA1 cells heterologously expressing the CB1190 thmADBC gene cluster. Interestingly, these thmADBC expression clones accumulated HEAA as a dead-end product of dioxane transformation, indicating that despite its genes being transcriptionally upregulated during growth on HEAA, the THF MO enzyme is not responsible for degradation of HEAA in CB1190. Similar activities were also observed in RHA1 cells heterologously expressing the thmADBC gene cluster from Pseudonocardia tetrahydrofuranoxydans K1.
Collapse
|
39
|
Brisson IJ, Levallois P, Tremblay H, Sérodes J, Deblois C, Charrois J, Taguchi V, Boyd J, Li X, Rodriguez MJ. Spatial and temporal occurrence of N-nitrosamines in seven drinking water supply systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7693-7708. [PMID: 23435811 DOI: 10.1007/s10661-013-3128-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/05/2013] [Indexed: 06/01/2023]
Abstract
The spatiotemporal presence of eight N-nitrosamines in the water of seven supply systems in Quebec considered to be susceptible to these emerging disinfection by-products was evaluated. This is the first study on the presence of N-nitrosamines in drinking water utilities in Quebec. Seven sampling campaigns were carried out at several sampling points in each of the systems over a period of 1 year. The results show that N-nitrosamines, primarily N-nitrosodimethylamine (NDMA), were not commonly detected in the water of the facilities under study (10 % of samples). The concentrations measured were lower than those reported in recent North American studies. None of the 195 samples taken exceeded the Ontario standard of 9 ng/L for NDMA (maximum value observed of 3.3 ng/L). N-nitrosomethylethylamine and N-nitrosopiperidine were detected once, with concentrations of 3.7 and 6.0 ng/L, respectively. Chloramination was identified as being the main risk factor regarding the presence of N-nitrosamines, but water quality and some operating parameters, in particular disinfectant residual, also seem to be related to their presence. NDMA concentrations at the end of the distribution systems were generally higher than water leaving the plant. No seasonal trends were observed for the formation of N-nitrosamines in the investigated supply systems. Finally, an association between the presence of N-nitrosamines and the levels of trihalomethanes and haloacetic acids was observed in some facilities.
Collapse
|
40
|
Homme CL, Sharp JO. Differential microbial transformation of nitrosamines by an inducible propane monooxygenase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7388-7395. [PMID: 23718280 DOI: 10.1021/es401129u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The toxicity of N-nitrosamines, their presence in drinking and environmental water supplies, and poorly understood recalcitrance collectively necessitate a better understanding of their potential for bioattenuation. Here, we show that the bacterial strain Rhodococcus jostii RHA1 can biotransform N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPYR), and possibly N-nitrosomorpholine (NMOR) in addition to N-nitrosodimethylamine (NDMA). Growth of cells on propane as the sole carbon source greatly enhanced degradation rates when contrasted with cells grown on complex organics. Propane-induced rates in order of fastest to slowest were NDMA > NDEA > NDPA > NPYR > NMOR at concentrations <2000 μg/L. Removal rates for linear functional groups scaled inversely with mass and cyclic nitrosamines were more recalcitrant than linear nitrosamines. Controls demonstrated significant NDEA and NDPA losses independent of biomass, suggesting abiotic processes may play a role in attenuation of these two compounds under experimental conditions tested here. In contrast to NDMA, a transition from first to zero order kinetics was not observed for the other nitrosamines included in this study over a concentration range of 20-2000 μg/L. A genetic knockout for the propane monooxygenase enzyme (PrMO) confirmed the role of this enzyme in the biotransformation of NDEA and NPYR. This study furthers our understanding of environmental nitrosamine attenuation by revealing an enzymatic mechanism for the biotransformation of multiple nitrosamines, their relative recalcitrance to transformation, and potential for abiotic loss.
Collapse
Affiliation(s)
- Carissa L Homme
- Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, United States
| | | |
Collapse
|
41
|
Weidhaas J, Dupont RR. Aerobic biotransformation of N-nitrosodimethylamine and N-nitrodimethylamine in methane and benzene amended soil columns. JOURNAL OF CONTAMINANT HYDROLOGY 2013; 150:45-53. [PMID: 23673086 DOI: 10.1016/j.jconhyd.2013.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 06/02/2023]
Abstract
Aerobic biotransformation of N-nitrosodimethylamine (NDMA), an emerging contaminant of concern, and its structural analog N-nitrodimethylamine (DMN), was evaluated in benzene and methane amended groundwater passed through laboratory scale soil columns. Competitive inhibition models were used to model the kinetics for NDMA and DMN cometabolism accounting for the concurrent degradation of the growth and cometabolic substrates. Transformation capacities for NDMA and DMN with benzene (13 and 23μg (mgcells)(-1)) and methane (0.14 and 8.4μg (mgcells)(-1)) grown cultures, respectively are comparable to those presented in the literature, as were first order endogenous decay rates estimated to be 2.1×10(-2)±1.7×10(-3)d(-1) and 6.5×10(-1)±7.1×10(-1)d(-1) for the methane and benzene amended cultures, respectively. These studies highlight possible attenuation mechanisms and rates for NDMA and DMN biotransformation in aerobic aquifers undergoing active remediation, natural attenuation or managed aquifer recharge with treated wastewater (i.e., reclaimed water).
Collapse
Affiliation(s)
- Jennifer Weidhaas
- West Virginia University, Civil and Environmental Engineering, PO Box 6103, Morgantown, WV 26505, United States.
| | | |
Collapse
|
42
|
Nurrokhmah L, Mezher T, Abu-Zahra MR. The evaluation of monoethanolamine-based CO2 post-combustion capture process waste handling approaches considering the regulations in UAE. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.egypro.2013.05.164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Patterson BM, Pitoi MM, Furness AJ, Bastow TP, McKinley AJ. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer. WATER RESEARCH 2012; 46:1260-1272. [PMID: 22244272 DOI: 10.1016/j.watres.2011.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Laboratory and field experiments were undertaken to assess the fate of N-nitrosodimethylamine (NDMA) in aerobic recycled water that was recharged into a deep anaerobic pyritic aquifer, as part of a managed aquifer recharge (MAR) strategy. Laboratory studies demonstrated a high mobility of NDMA in the Leederville aquifer system with a retardation coefficient of 1.1. Anaerobic degradation column and (14)C-NDMA microcosm studies showed that anaerobic conditions of the aquifer provided a suitable environment for the biodegradation of NDMA with first-order kinetics. At microgram per litre concentrations, inhibition of biodegradation was observed with degradation half-lives (260±20 days) up to an order of magnitude greater than at nanogram per litre concentrations (25-150 days), which are more typical of environmental concentrations. No threshold effects were observed at the lower ng L(-1) concentrations with NDMA concentrations reduced from 560 ng L(-1) to <6 ng L(-1) over a 42 day 14C-NDMA aerobic microcosm experiment. Aerobic (14)C-NDMA microcosm studies were also undertaken to assess potential aerobic degradation, likely to occur close to the recharge bore. These microcosm experiments showed a faster degradation rate than anaerobic microcosms, with a degradation half-life of 8±2 days, after a lag period of approximately 10 days. Results from a MAR field trial recharging the Leederville aquifer with aerobic recycled water showed that NDMA concentrations reduced from 2.5±1.0 ng L(-1) to 1.3±0.4 ng L(-1) between the recharge bore and a monitoring location 20 m down gradient (an estimated aquifer residence time of 10 days), consistent with data from the aerobic microcosm experiment. Further down gradient, in the anaerobic zone of the aquifer, NDMA degradation could not be assessed, as NDMA concentrations were too close to their analytical detection limit (<1 ng L(-1)).
Collapse
Affiliation(s)
- B M Patterson
- CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia.
| | | | | | | | | |
Collapse
|
44
|
Sharma VK. Kinetics and mechanism of formation and destruction of N-nitrosodimethylamine in water – A review. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2011.11.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
45
|
Tezel U, Padhye LP, Huang CH, Pavlostathis SG. Biotransformation of nitrosamines and precursor secondary amines under methanogenic conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8290-8297. [PMID: 21863807 DOI: 10.1021/es2005557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biotransformation potential of six nitrosamines and their precursor secondary amines by a mixed methanogenic culture was investigated. Among the six nitrosamines tested, N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), and N-nitrosopyrrolidine (NPYR) were almost completely degraded but only when degradable electron donors were available. On the contrary, N-nitrosodiethylamine (NDEA), N-nitrosodipropylamine (NDPA), and N-nitrosodibutylamine (NDBA) were not degraded. Three precursor secondary amines, corresponding to the three biodegradable nitrosamines, were also completely utilized even with very low levels of available electron donors. The secondary amine precursors of the three, nonbiodegradable nitrosamines were also recalcitrant. A bioassay conducted to elucidate the biotransformation pathway of NDMA in the mixed methanogenic culture using H(2) as the electron donor showed that NDMA was utilized as an electron acceptor and transformed to dimethylamine (DMA), which in turn was degraded to ammonia and methane. The H(2) threshold concentration for NDMA bioreduction ranged between 0.0017 and 0.031 atm. Such a high H(2) threshold concentration suggests that in mixed methanogenic cultures, NDMA reducers are weak competitors to other, H(2)-consuming microbial species, such as homoacetogens and methanogens. Thus, complete removal of nitrosamines in anaerobic digestion systems, where the H(2) partial pressure is typically below 10(-4) atm, is difficult to achieve.
Collapse
Affiliation(s)
- Ulas Tezel
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | |
Collapse
|
46
|
Nawrocki J, Andrzejewski P. Nitrosamines and water. JOURNAL OF HAZARDOUS MATERIALS 2011; 189:1-18. [PMID: 21353742 DOI: 10.1016/j.jhazmat.2011.02.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/17/2011] [Accepted: 02/03/2011] [Indexed: 05/30/2023]
Abstract
This paper provides an overview of all current issues that are connected to the presence of nitrosamines in water technology. N-nitrosodimethylamine (NDMA) is the most frequently detected member of this family. Nitrosamines became the hottest topic in drinking water science when they were identified as disinfection by-products (DBPs) in chloraminated waters. The danger that they pose to consumer health seems to be much higher than that from chlorinated DBPs. This review summarizes our contemporary knowledge of these compounds in water, their occurrence, and precursors of nitrosamines in drinking and wastewaters, in addition to attempts to remove nitrosamines from water. The paper also reviews our knowledge of the mechanisms of nitrosamine formation in water technology. The current, commonly accepted mechanism of NDMA formation during chloramination of drinking waters assumes that dichloramine reacts with dimethylamine, forms unsymmetrical dimethylhydrazine and further oxidizes to NDMA. The question to answer is which precursors are responsible for delivering the DMA moiety for the reaction since the presence of DMA in water cannot explain the quantities of NDMA that are formed. There are also reports that other oxidants that are commonly used in water technology may generate NDMA. However, the mechanisms of such transformations are unknown. Methods for the removal of nitrosamines from water are described briefly. However, the research that has been undertaken on such methods seems to be at an early stage of development. It is predicted that photolytic methods may have the greatest potential for technological application.
Collapse
Affiliation(s)
- Jacek Nawrocki
- Laboratory of Water Treatment Technology, Faculty of Chemistry, A Mickiewicz University, Poznań, Poland.
| | | |
Collapse
|
47
|
Ho L, Grasset C, Hoefel D, Dixon MB, Leusch FDL, Newcombe G, Saint CP, Brookes JD. Assessing granular media filtration for the removal of chemical contaminants from wastewater. WATER RESEARCH 2011; 45:3461-3472. [PMID: 21529882 DOI: 10.1016/j.watres.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/25/2011] [Accepted: 04/02/2011] [Indexed: 05/30/2023]
Abstract
Granular media filtration was evaluated for the removal of a suite of chemical contaminants that can be found in wastewater. Laboratory- and pilot-scale sand and granular activated carbon (GAC) filters were trialled for their ability to remove atrazine, estrone (E1), 17α-ethynylestradiol (EE2), N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR) and N-nitrosodiethylamine (NDEA). In general, sand filtration was ineffective in removing the contaminants from a tertiary treated wastewater, with the exception of E1 and EE2, where efficient removals were observed after approximately 150 d. Batch degradation experiments confirmed that the removal of E1 was through biological activity, with a pseudo-first-order degradation rate constant of 7.4 × 10(-3) h(-1). GAC filtration was initially able to effectively remove all contaminants; although removals decreased over time due to competition with other organics present in the water. The only exception was atrazine where removal remained consistently high throughout the experiment. Previously unreported differences were observed in the adsorption of the three nitrosamines, with the ease of removal following the trend, NDEA > NMOR > NDMA, consistent with their hydrophobic character. In most instances the removals from the pilot-scale filters were generally in agreement with the laboratory-scale filter, suggesting that there is potential in using laboratory-scale filters as monitoring tools to evaluate the performance of pilot- and possibly full-scale sand and GAC filters at wastewater treatment plants.
Collapse
Affiliation(s)
- Lionel Ho
- Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide SA 5000, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Robrock KR, Mohn WW, Eltis LD, Alvarez-Cohen L. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs. Biotechnol Bioeng 2011; 108:313-21. [PMID: 20872819 DOI: 10.1002/bit.22952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants that have been widely used in consumer products, but that are problematic because of their environmental persistence and endocrine-disrupting properties. To date, very little is known about PBDE degradation by aerobic microorganisms and the enzymes involved in PBDE transformation. Resting cells of the polychlorinated biphenyl-degrading actinomycete, Rhodococcus jostii RHA1, depleted nine mono- through penta-BDEs in separate assays. Extensive depletion of PBDEs occurred with cells grown on biphenyl, ethylbenzene, propane, or styrene, whereas very limited depletion occurred with cells grown on pyruvate or benzoate. In RHA1, expression of bphAa encoding biphenyl dioxygenase (BPDO) and etbAa1 and etbAc encoding ethylbenzene dioxygenase (EBDO) was induced 30- to 3,000-fold during growth on the substrates that supported PBDE depletion. The BPDO and EBDO enzymes had gene expression profiles that matched the PBDE-depletion profiles exhibited by RHA1 grown on different substrates. Using the non-PBDE-degrading bacterium Rhodococcus erythropolis as a host, two recombinant strains were developed by inserting the eth and bph genes of RHA1, respectively. The resultant EBDO extensively depleted mono- through penta-BDEs, while the BPDO depleted only mono-, di-, and one tetra-BDE. A dihydroxylated-BDE was detected as the primary metabolite of 4-bromodiphenyl ether in both recombinant strains. These results indicate that although both dioxygenases are capable of transforming PBDEs, EBDO more potently transforms the highly brominated congeners. The availability of substrates or inducing compounds can markedly affect total PBDE removal as well as patterns of removal of individual congeners.
Collapse
Affiliation(s)
- Kristin R Robrock
- Department of Civil & Environmental Engineering, University of California, Berkeley, USA
| | | | | | | |
Collapse
|
49
|
Hatzinger PB, Condee C, McClay KR, Paul Togna A. Aerobic treatment of N-nitrosodimethylamine in a propane-fed membrane bioreactor. WATER RESEARCH 2011; 45:254-262. [PMID: 20701948 DOI: 10.1016/j.watres.2010.07.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 06/16/2010] [Accepted: 07/18/2010] [Indexed: 05/29/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a suspected human carcinogen that has recently been detected in wastewater, groundwater and drinking water. Treatment of this compound to low part-per-trillion (ng/L) concentrations is required to mitigate cancer risk. Current treatment generally entails UV irradiation, which while effective, is also expensive. The objective of this research was to explore potential bioremediation strategies as alternatives for treating NDMA to ng/L concentrations. Batch studies revealed that the propanotroph Rhodococcus ruber ENV425 was capable of metabolizing NDMA from 8 μg/L to <2 ng/L after growth on propane, and that the strain produced metabolites that do not pose a significant risk at the concentrations generated (Fournier et al., 2009). A laboratory-scale membrane bioreactor (MBR) was subsequently constructed to evaluate the potential for long-term ex situ treatment of NDMA. The MBR was seeded with ENV425 and received propane as the primary growth substrate and oxygen as an electron acceptor. At an average influent NDMA concentration of 7.4 μg/L and a 28.5 h hydraulic residence time, the reactor effluent concentration was 3.0 ± 2.3 ng/L (>99.95% removal) over more than 70 days of operation. The addition of trichloroethene (TCE) to the reactor resulted in a significant increase in effluent NDMA concentrations, most likely due to cell toxicity from TCE-epoxide produced during its cometabolic oxidation by ENV425. The data suggest that an MBR system can be a viable treatment option for NDMA in groundwater provided that high concentrations of TCE are not present.
Collapse
Affiliation(s)
- Paul B Hatzinger
- Shaw Environmental, Inc, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | | | | | | |
Collapse
|
50
|
Sharp JO, Sales CM, Alvarez-Cohen L. Functional characterization of propane-enhanced N-nitrosodimethylamine degradation by two actinomycetales. Biotechnol Bioeng 2010; 107:924-32. [DOI: 10.1002/bit.22899] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|