1
|
Zhao L, Tabari E, Rong H, Dong X, Xue D, Su Z. Antisense transcription and its roles in adaption to environmental stress in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533988. [PMID: 36993172 PMCID: PMC10055363 DOI: 10.1101/2023.03.23.533988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED It has been reported that a highly varying proportion (1% ∼ 93%) of genes in various prokaryotes have antisense RNA (asRNA) transcription. However, the extent of the pervasiveness of asRNA transcription in the well-studied E. coli K12 strain has thus far been an issue of debate. Furthermore, very little is known about the expression patterns and functions of asRNAs under various conditions. To fill these gaps, we determined the transcriptomes and proteomes of E. coli K12 at multiple time points in five culture conditions using strand-specific RNA-seq, differential RNA-seq, and quantitative mass spectrometry methods. To reduce artifacts of possible transcriptional noise, we identified asRNA using stringent criteria with biological replicate verification and transcription start sites (TSSs) information included. We identified a total of 660 asRNAs, which were generally short and largely condition-dependently transcribed. We found that the proportions of the genes which had asRNA transcription highly depended on the culture conditions and time points. We classified the transcriptional activities of the genes in six transcriptional modes according to their relative levels of asRNA to mRNA. Many genes changed their transcriptional modes at different time points of the culture conditions, and such transitions can be described in a well-defined manner. Intriguingly, the protein levels and mRNA levels of genes in the sense-only/sense-dominant mode were moderately correlated, but the same was not true for genes in the balanced/antisense-dominant mode, in which asRNAs were at a comparable or higher level to mRNAs. These observations were further validated by western blot on candidate genes, where an increase in asRNA transcription diminished gene expression in one case and enhanced it in another. These results suggest that asRNAs may directly or indirectly regulate translation by forming duplexes with cognate mRNAs. Thus, asRNAs may play an important role in the bacterium's responses to environmental changes during growth and adaption to different environments. IMPORTANCE The cis -antisense RNA (asRNA) is a type of understudied RNA molecules in prokaryotes, which is believed to be important in regulating gene expression. Our current understanding of asRNA is constrained by inconsistent reports about its identification and properties. These discrepancies are partially caused by a lack of sufficient samples, biological replicates, and culture conditions. This study aimed to overcome these disadvantages and identified 660 putative asRNAs using integrated information from strand-specific RNA-seq, differential RNA-seq, and mass spectrometry methods. In addition, we explored the relative expression between asRNAs and sense RNAs and investigated asRNA regulated transcriptional activity changes over different culture conditions and time points. Our work strongly suggests that asRNAs may play a crucial role in bacterium's responses to environmental changes during growth and adaption to different environments.
Collapse
|
2
|
Gu T, Tong Z, Zhang X, Wang Z, Zhang Z, Hwang TS, Li L. Carbon Metabolism of a Soilborne Mn(II)-Oxidizing Escherichia coli Isolate Implicated as a Pronounced Modulator of Bacterial Mn Oxidation. Int J Mol Sci 2022; 23:ijms23115951. [PMID: 35682628 PMCID: PMC9180420 DOI: 10.3390/ijms23115951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Mn(II)-oxidizing microorganisms are generally considered the primary driving forces in the biological formation of Mn oxides. However, the mechanistic elucidation of the actuation and regulation of Mn oxidation in soilborne bacteria remains elusive. Here, we performed joint multiple gene-knockout analyses and comparative morphological and physiological determinations to characterize the influence of carbon metabolism on the Mn oxide deposit amount (MnODA) and the Mn oxide formation of a soilborne bacterium, Escherichia coli MB266. Different carbon source substances exhibited significantly varied effects on the MnODA of MB266. A total of 16 carbon metabolism-related genes with significant variant expression levels under Mn supplementation conditions were knocked out in the MB266 genome accordingly, but only little effect on the MnODA of each mutant strain was accounted for. However, a simultaneous four-gene-knockout mutant (namely, MB801) showed an overall remarkable MnODA reduction and an initially delayed Mn oxide formation compared with the wild-type MB266. The assays using scanning/transmission electron microscopy verified that MB801 exhibited not only a delayed Mn-oxide aggregate processing, but also relatively smaller microspherical agglomerations, and presented flocculent deposit Mn oxides compared with normal fibrous and crystalline Mn oxides formed by MB266. Moreover, the Mn oxide aggregate formation was highly related to the intracellular ROS level. Thus, this study demonstrates that carbon metabolism acts as a pronounced modulator of MnODA in MB266, which will provide new insights into the occurrence of Mn oxidation and Mn oxide formation by soilborne bacteria in habitats where Mn(II) naturally occurs.
Collapse
Affiliation(s)
- Tong Gu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhenghu Tong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Xue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
| | - Zhiyong Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000, China
| | - Zhen Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Tzann-Shun Hwang
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan
- Correspondence: (T.-S.H.); (L.L.)
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (T.G.); (Z.T.); (X.Z.); (Z.W.); (Z.Z.)
- Correspondence: (T.-S.H.); (L.L.)
| |
Collapse
|
3
|
Matilla MA, Ortega Á, Krell T. The role of solute binding proteins in signal transduction. Comput Struct Biotechnol J 2021; 19:1786-1805. [PMID: 33897981 PMCID: PMC8050422 DOI: 10.1016/j.csbj.2021.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The solute binding proteins (SBPs) of prokaryotes are present in the extracytosolic space. Although their primary function is providing substrates to transporters, SBPs also stimulate different signaling proteins, including chemoreceptors, sensor kinases, diguanylate cyclases/phosphodiesterases and Ser/Thr kinases, thereby causing a wide range of responses. While relatively few such systems have been identified, several pieces of evidence suggest that SBP-mediated receptor activation is a widespread mechanism. (1) These systems have been identified in Gram-positive and Gram-negative bacteria and archaea. (2) There is a structural diversity in the receptor domains that bind SBPs. (3) SBPs belonging to thirteen different families interact with receptor ligand binding domains (LBDs). (4) For the two most abundant receptor LBD families, dCache and four-helix-bundle, there are different modes of interaction with SBPs. (5) SBP-stimulated receptors carry out many different functions. The advantage of SBP-mediated receptor stimulation is attributed to a strict control of SBP levels, which allows a precise adjustment of the systeḿs sensitivity. We have compiled information on the effect of ligands on the transcript/protein levels of their cognate SBPs. In 87 % of the cases analysed, ligands altered SBP expression levels. The nature of the regulatory effect depended on the ligand family. Whereas inorganic ligands typically downregulate SBP expression, an upregulation was observed in response to most sugars and organic acids. A major unknown is the role that SBPs play in signaling and in receptor stimulation. This review attempts to summarize what is known and to present new information to narrow this gap in knowledge.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| | - Álvaro Ortega
- Department of Biochemistry and Molecular Biology 'B' and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", Murcia, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, Granada 18008, Spain
| |
Collapse
|
4
|
Rombouts JL, Mos G, Weissbrodt DG, Kleerebezem R, Van Loosdrecht MCM. Diversity and metabolism of xylose and glucose fermenting microbial communities in sequencing batch or continuous culturing. FEMS Microbiol Ecol 2018; 95:5228722. [DOI: 10.1093/femsec/fiy233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julius L Rombouts
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Galvin Mos
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - David G Weissbrodt
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Mark C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| |
Collapse
|
5
|
Na H, Kim Y, Kim D, Yoon H, Ryu S. Transcriptomic Analysis of Shiga Toxin-Producing Escherichia coli FORC_035 Reveals the Essential Role of Iron Acquisition for Survival in Canola Sprouts and Water Dropwort. Front Microbiol 2018; 9:2397. [PMID: 30349522 PMCID: PMC6186786 DOI: 10.3389/fmicb.2018.02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/19/2018] [Indexed: 12/03/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that poses a serious threat to humans. Although EHEC is problematic mainly in food products containing meat, recent studies have revealed that many EHEC-associated foodborne outbreaks were attributable to spoiled produce such as sprouts and green leafy vegetables. To understand how EHEC adapts to the environment in fresh produce, we exposed the EHEC isolate FORC_035 to canola spouts (Brassica napus) and water dropwort (Oenanthe javanica) and profiled the transcriptome of this pathogen at 1 and 3 h after incubation with the plant materials. Transcriptome analysis revealed that the expression of genes associated with iron uptake were down-regulated during adaptation to plant tissues. A mutant strain lacking entB, presumably defective in enterobactin biosynthesis, had growth defects in co-culture with water dropwort, and the defective phenotype was complemented by the addition of ferric ion. Furthermore, gallium treatment to block iron uptake inhibited bacterial growth on water dropwort and also hampered biofilm formation. Taken together, these results indicate that iron uptake is essential for the fitness of EHEC in plants and that gallium can be used to prevent the growth of this pathogen in fresh produce.
Collapse
Affiliation(s)
- Hongjun Na
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Yeonkyung Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Dajeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
Sowa SW, Gelderman G, Leistra AN, Buvanendiran A, Lipp S, Pitaktong A, Vakulskas CA, Romeo T, Baldea M, Contreras LM. Integrative FourD omics approach profiles the target network of the carbon storage regulatory system. Nucleic Acids Res 2017; 45:1673-1686. [PMID: 28126921 PMCID: PMC5389547 DOI: 10.1093/nar/gkx048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/20/2017] [Indexed: 01/13/2023] Open
Abstract
Multi-target regulators represent a largely untapped area for metabolic engineering and anti-bacterial development. These regulators are complex to characterize because they often act at multiple levels, affecting proteins, transcripts and metabolites. Therefore, single omics experiments cannot profile their underlying targets and mechanisms. In this work, we used an Integrative FourD omics approach (INFO) that consists of collecting and analyzing systems data throughout multiple time points, using multiple genetic backgrounds, and multiple omics approaches (transcriptomics, proteomics and high throughput sequencing crosslinking immunoprecipitation) to evaluate simultaneous changes in gene expression after imposing an environmental stress that accentuates the regulatory features of a network. Using this approach, we profiled the targets and potential regulatory mechanisms of a global regulatory system, the well-studied carbon storage regulatory (Csr) system of Escherichia coli, which is widespread among bacteria. Using 126 sets of proteomics and transcriptomics data, we identified 136 potential direct CsrA targets, including 50 novel ones, categorized their behaviors into distinct regulatory patterns, and performed in vivo fluorescence-based follow up experiments. The results of this work validate 17 novel mRNAs as authentic direct CsrA targets and demonstrate a generalizable strategy to integrate multiple lines of omics data to identify a core pool of regulator targets.
Collapse
Affiliation(s)
- Steven W Sowa
- Microbiology Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
| | - Grant Gelderman
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Aishwarya Buvanendiran
- Biological Sciences Program College of Natural Sciences, University of Texas at Austin, 120 Inner Campus Drive Stop G2500, Austin, TX 78712, USA
| | - Sarah Lipp
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Areen Pitaktong
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Christopher A Vakulskas
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611-0700, USA
| | - Michael Baldea
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
7
|
Reizman IMB, Stenger AR, Reisch CR, Gupta A, Connors NC, Prather KLJ. Improvement of glucaric acid production in E. coli via dynamic control of metabolic fluxes. Metab Eng Commun 2015; 2:109-116. [PMID: 26478859 PMCID: PMC4606470 DOI: 10.1016/j.meteno.2015.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
D-glucaric acid can be used as a building block for biopolymers as well as in the formulation of detergents and corrosion inhibitors. A biosynthetic route for production in Escherichia coli has been developed (Moon et al., 2009), but previous work with the glucaric acid pathway has indicated that competition with endogenous metabolism may limit carbon flux into the pathway. Our group has recently developed an E. coli strain where phosphofructokinase (Pfk) activity can be dynamically controlled and demonstrated its use for improving yields and titers of the glucaric acid precursor myo-inositol on glucose minimal medium. In this work, we have explored the further applicability of this strain for glucaric acid production in a supplemented medium more relevant for scale-up studies, both under batch conditions and with glucose feeding via in situ enzymatic starch hydrolysis. It was found that glucaric acid titers could be improved by up to 42% with appropriately timed knockdown of Pfk activity during glucose feeding. The glucose feeding protocol could also be used for reduction of acetate production in the wild type and modified E. coli strains. Dynamic growth/production switching for glucaric acid production in E. coli. Optimal time for switching via Pfk knockdown was screened in microtiter format. Production from glucose was improved under batch conditions and with starch feeding. Glucaric acid yield and titer improvements of up to 42% were achieved.
Collapse
Affiliation(s)
- Irene M Brockman Reizman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew R Stenger
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA
| | - Chris R Reisch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Apoorv Gupta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Neal C Connors
- Research Institute for Scientists Emeriti, Drew University, Madison, NJ 07940, USA ; Kalion, Inc., Milton, MA 02186, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ; Synthetic Biology Engineering Research Center (SynBERC), Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks. World J Microbiol Biotechnol 2014; 30:2871-83. [DOI: 10.1007/s11274-014-1713-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
|
9
|
Vijayendran C, Flaschel E. Impact of profiling technologies in the understanding of recombinant protein production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 121:45-70. [PMID: 20186528 DOI: 10.1007/10_2009_56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Since expression profiling methods have been available in a high throughput fashion, the implication of these technologies in the field of biotechnology has increased dramatically. Microarray technology is one such unique and efficient methodology for simultaneous exploration of expression levels of numerous genes. Likewise, two-dimensional gel electrophoresis or multidimensional liquid chromatography coupled with mass spectrometry are extensively utilised for studying expression levels of numerous proteins. In the field of biotechnology these highly parallel analytical methods have paved the way to study and understand various biological phenomena depending on expression patterns. The next phenomenological level is represented by the metabolome and the (metabolic) fluxome. However, this chapter reviews gene and protein profiling and their impact on understanding recombinant protein production. We focus on the computational methods utilised for the analyses of data obtained from these profiling technologies as well as prominent results focusing on recombinant protein expression with Escherichia coli. Owing to the knowledge accumulated with respect to cellular signals triggered during recombinant protein production, this field is on the way to design strategies for developing improved processes. Both gene and protein profiling have exhibited a handful of functional categories to concentrate on in order to identify target genes and proteins, respectively, involved in the signalling network with major impact on recombinant protein production.
Collapse
Affiliation(s)
- Chandran Vijayendran
- International NRW Graduate School in Bioinformatics and Genome Research, CeBiTec, Bielefeld University, 33594, Bielefeld, Germany,
| | | |
Collapse
|
10
|
Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, Gosset G, Encarnación S, Bolivar F. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microb Cell Fact 2012; 11:46. [PMID: 22513097 PMCID: PMC3390287 DOI: 10.1186/1475-2859-11-46] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/18/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycerol has enhanced its biotechnological importance since it is a byproduct of biodiesel synthesis. A study of Escherichia coli physiology during growth on glycerol was performed combining transcriptional-proteomic analysis as well as kinetic and stoichiometric evaluations in the strain JM101 and certain derivatives with important inactivated genes. RESULTS Transcriptional and proteomic analysis of metabolic central genes of strain JM101 growing on glycerol, revealed important changes not only in the synthesis of MglB, LamB and MalE proteins, but also in the overexpression of carbon scavenging genes: lamB, malE, mglB, mglC, galP and glk and some members of the RpoS regulon (pfkA, pfkB, fbaA, fbaB, pgi, poxB, acs, actP and acnA). Inactivation of rpoS had an important effect on stoichiometric parameters and growth adaptation on glycerol. The observed overexpression of poxB, pta, acs genes, glyoxylate shunt genes (aceA, aceB, glcB and glcC) and actP, suggested a possible carbon flux deviation into the PoxB, Acs and glyoxylate shunt. In this scenario acetate synthesized from pyruvate with PoxB was apparently reutilized via Acs and the glyoxylate shunt enzymes. In agreement, no acetate was detected when growing on glycerol, this strain was also capable of glycerol and acetate coutilization when growing in mineral media and derivatives carrying inactivated poxB or pckA genes, accumulated acetate. Tryptophanase A (TnaA) was synthesized at high levels and indole was produced by this enzyme, in strain JM101 growing on glycerol. Additionally, in the isogenic derivative with the inactivated tnaA gene, no indole was detected and acetate and lactate were accumulated. A high efficiency aromatic compounds production capability was detected in JM101 carrying pJLBaroG(fbr)tktA, when growing on glycerol, as compared to glucose. CONCLUSIONS The overexpression of several carbon scavenging, acetate metabolism genes and the absence of acetate accumulation occurred in JM101 cultures growing on glycerol. To explain these results it is proposed that in addition to the glycolytic metabolism, a gluconeogenic carbon recycling process that involves acetate is occurring simultaneously in this strain when growing on glycerol. Carbon flux from glycerol can be efficiently redirected in JM101 strain into the aromatic pathway using appropriate tools.
Collapse
Affiliation(s)
- Karla Martínez-Gómez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Noemí Flores
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Héctor M Castañeda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Gabriel Martínez-Batallar
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| | - Sergio Encarnación
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 565-A, Cuernavaca, Morelos, CP 62210, Mexico
| | - Francisco Bolivar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 510-3, Cuernavaca, Morelos, CP 62250, Mexico
| |
Collapse
|
11
|
Franklin O, Hall EK, Kaiser C, Battin TJ, Richter A. Optimization of biomass composition explains microbial growth-stoichiometry relationships. Am Nat 2011; 177:E29-42. [PMID: 21460549 DOI: 10.1086/657684] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.
Collapse
Affiliation(s)
- Oskar Franklin
- International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria.
| | | | | | | | | |
Collapse
|
12
|
Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genet Biol 2011; 48:92-103. [DOI: 10.1016/j.fgb.2010.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/08/2010] [Accepted: 08/19/2010] [Indexed: 01/14/2023]
|
13
|
Han MJ, Lee JW, Lee SY. Understanding and engineering of microbial cells based on proteomics and its conjunction with other omics studies. Proteomics 2011; 11:721-43. [DOI: 10.1002/pmic.201000411] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 09/05/2010] [Accepted: 09/07/2010] [Indexed: 12/18/2022]
|
14
|
Link H, Anselment B, Weuster-Botz D. Rapid media transition: an experimental approach for steady state analysis of metabolic pathways. Biotechnol Prog 2010; 26:1-10. [PMID: 19785030 DOI: 10.1002/btpr.290] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Commonly steady state analysis of microbial metabolism is performed under well defined physiological conditions in continuous cultures with fixed external rates. However, most industrial bioprocesses are operated in fed-batch mode under non-stationary conditions, which cannot be realized in chemostat cultures. A novel experimental setup-rapid media transition-enables steady state perturbation of metabolism on a time scale of several minutes in parallel to operating bioprocesses. For this purpose, cells are separated from the production process and transferred into a lab-scale stirred-tank reactor with modified environmental conditions. This new approach was evaluated experimentally in four rapid media transition experiments with Escherichia coli from a fed-batch process. We tested the reaction to different carbon sources entering at various points of central metabolism. In all cases, the applied substrates (glucose, succinate, acetate, and pyruvate) were immediately utilized by the cells. Extracellular rates and metabolome data indicate a metabolic steady state during the short-term cultivation. Stoichiometric analysis revealed distribution of intracellular fluxes, which differs drastically subject to the applied carbon source. For some reactions, the variation of flux could be correlated to changes of metabolite concentrations.
Collapse
Affiliation(s)
- Hannes Link
- Lehrstuhl für Bioverfahrenstechnik, Technische Universität München, Garching 85748, Germany
| | | | | |
Collapse
|
15
|
Han MJ, Lee SY, Koh ST, Noh SG, Han WH. Biotechnological applications of microbial proteomes. J Biotechnol 2010; 145:341-9. [PMID: 20045032 DOI: 10.1016/j.jbiotec.2009.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 11/21/2009] [Accepted: 12/23/2009] [Indexed: 01/06/2023]
Abstract
Advances in proteomic technologies have led to the creation of large-scale proteome databases that can be used to elucidate invaluable information on the dynamics of the metabolic, signaling and regulatory networks and to aid understanding of physiological changes. In particular, proteomics can have practical applications, for example, through the identification of proteins that may be potential targets for the biotechnology industry, and through the extension of our understanding of the physiological action of these proteins. In this review, we describe proteomic approaches for the discovery of targets that have potential biotechnological applications. These targets include promoters, chaperones, soluble fusion partners, anchoring motifs, and excretion fusion partners. In addition, we discuss the potential applications of proteomic techniques for the design of future bioprocesses and the optimization of existing ones. Successful applications of proteomic information have proven to have enormous value for both scientific and practical applications.
Collapse
Affiliation(s)
- Mee-Jung Han
- Department of Chemical and Biomolecular Engineering, Dongyang University, # 1 Gyochon-dong, Punggi-eup, Yeongju, Gyeongbuk 750-711, Republic of Korea.
| | | | | | | | | |
Collapse
|
16
|
Horler RSP, Müller A, Williamson DC, Potts JR, Wilson KS, Thomas GH. Furanose-specific sugar transport: characterization of a bacterial galactofuranose-binding protein. J Biol Chem 2009; 284:31156-63. [PMID: 19744923 PMCID: PMC2781514 DOI: 10.1074/jbc.m109.054296] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 09/06/2009] [Indexed: 12/31/2022] Open
Abstract
The widespread utilization of sugars by microbes is reflected in the diversity and multiplicity of cellular transporters used to acquire these compounds from the environment. The model bacterium Escherichia coli has numerous transporters that allow it to take up hexoses and pentoses, which recognize the more abundant pyranose forms of these sugars. Here we report the biochemical and structural characterization of a transporter protein YtfQ from E. coli that forms part of an uncharacterized ABC transporter system. Remarkably the crystal structure of this protein, solved to 1.2 A using x-ray crystallography, revealed that YtfQ binds a single molecule of galactofuranose in its ligand binding pocket. Selective binding of galactofuranose over galactopyranose was also observed using NMR methods that determined the form of the sugar released from the protein. The pattern of expression of the ytfQRTyjfF operon encoding this transporter mirrors that of the high affinity galactopyranose transporter of E. coli, suggesting that this bacterium has evolved complementary transporters that enable it to use all the available galactose present during carbon limiting conditions.
Collapse
Affiliation(s)
| | - Axel Müller
- From the Department of Biology
- York Structural Biology Laboratory,and
| | | | - Jennifer R. Potts
- From the Department of Biology
- Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | |
Collapse
|
17
|
Lüders S, Fallet C, Franco-Lara E. Proteome analysis of the Escherichia coli heat shock response under steady-state conditions. Proteome Sci 2009; 7:36. [PMID: 19772559 PMCID: PMC2758844 DOI: 10.1186/1477-5956-7-36] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 09/21/2009] [Indexed: 11/17/2022] Open
Abstract
In this study a proteomic approach was used to investigate the steady-state response of Escherichia coli to temperature up-shifts in a cascade of two continuously operated bioreactors. The first reactor served as cell source with optimal settings for microbial growth, while in the second chemostat the cells were exposed to elevated temperatures. By using this reactor configuration, which has not been reported to be used for the study of bacterial stress responses so far, it is possible to study temperature stress under well-defined, steady-state conditions. Specifically the effect on the cellular adaption to temperature stress using two-dimensional gel electrophoresis was examined and compared at the cultivation temperatures of 37 degrees C and 47.5 degrees C. As expected, the steady-state study with the double bioreactor configuration delivered a different protein spectrum compared to that obtained with standard batch experiments in shaking flasks and bioreactors. Setting a high cut-out spot-to-spot size ratio of 5, proteins involved in defence against oxygen stress, functional cell envelope proteins, chaperones and proteins involved in protein biosynthesis, the energy metabolism and the amino acid biosynthesis were found to be differently expressed at high cultivation temperatures. The results demonstrate the complexity of the stress response in a steady-state culture not reported elsewhere to date.
Collapse
Affiliation(s)
- Svenja Lüders
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| | - Claas Fallet
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| | - Ezequiel Franco-Lara
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gausstrasse 17, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Josic D, Kovač S. Application of proteomics in biotechnology – Microbial proteomics. Biotechnol J 2008; 3:496-509. [DOI: 10.1002/biot.200700234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Zhu L, Liu XK, Zhao G, Zhi YD, Bu X, Ying TY, Feng EL, Wang J, Zhang XM, Huang PT, Wang HL. Dynamic proteome changes of Shigella flexneri 2a during transition from exponential growth to stationary phase. GENOMICS PROTEOMICS & BIOINFORMATICS 2007; 5:111-20. [PMID: 17893076 PMCID: PMC5054097 DOI: 10.1016/s1672-0229(07)60021-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Shigella flexneri is an infectious pathogen that causes dysentery to human, which remains a serious threat to public health, particularly in developing countries. In this study, the global protein expression patterns of S. flexneri during transition from exponential growth to stationary phase in vitro were analyzed by using 2-D PAGE combined with MALDI-TOF MS. In a time-course experiment with five time points, the relative abundance of 49 protein spots varied significantly. Interestingly, a putative outer membrane protein YciD (OmpW) was almost not detected in the exponential growth phase but became one of the most abundant proteins in the whole stationary-phase proteome. Some proteins regulated by the global regulator FNR were also significantly induced (such as AnsB, AspA, FrdAB, and KatG) or repressed (such as AceEF, OmpX, SodA, and SucAB) during the growth phase transition. These proteins may be the key effectors of the bacterial cell cycle or play important roles in the cellular maintenance and stress responses. Our expression profile data provide valuable information for the study of bacterial physiology and form the basis for future proteomic analyses of this pathogen.
Collapse
Affiliation(s)
- Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xian-Kai Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Ge Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Yi-Dan Zhi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xin Bu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Tian-Yi Ying
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Er-Ling Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
| | - Jie Wang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Xue-Min Zhang
- National Center of Biomedical Analysis, Beijing 100850, China
| | - Pei-Tang Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
- Corresponding authors.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, China
- Corresponding authors.
| |
Collapse
|
20
|
Hardiman T, Lemuth K, Keller MA, Reuss M, Siemann-Herzberg M. Topology of the global regulatory network of carbon limitation in Escherichia coli. J Biotechnol 2007; 132:359-74. [PMID: 17913275 DOI: 10.1016/j.jbiotec.2007.08.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 07/27/2007] [Accepted: 08/09/2007] [Indexed: 11/16/2022]
Abstract
One fundamental shortcoming of biotechnological processes operating under carbon-limiting conditions is the high-energy demand (maintenance) of the cells. Although the function of the central carbon metabolism in supplying precursors and energy for biosynthesis has been thoroughly characterized, its regulation and dynamic behaviour during carbon-limited growth has not yet been revealed. The current work demonstrates a time series of metabolic flux distributions during fed-batch cultivation of Escherichia coli K-12 W3110 applying a constant feed rate. The fluxes in glycolysis, pentose phosphate pathway and biosynthesis fell significantly, whereas TCA cycle fluxes remained constant. The flux redistribution resulted in an enhanced energy generation in the TCA cycle and consequently, in a 20% lower biomass yield. The intracellular alarmones ppGpp and cAMP accumulated in large quantities after the onset of nutrient limitation, subsequently declining to basal levels. The network topology of the regulation of the central metabolic pathways was identified so that the observed metabolic and regulatory behaviour can be described. This provides novel aspects of global regulation of the metabolism by the cra, crp and relA/spoT modulons. The work constitutes an important step towards dynamic mathematical modelling of regulation and metabolism, which is needed for the rational optimization of biotechnological processes.
Collapse
Affiliation(s)
- Timo Hardiman
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
21
|
Chou CP. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl Microbiol Biotechnol 2007; 76:521-32. [PMID: 17571257 DOI: 10.1007/s00253-007-1039-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 11/26/2022]
Abstract
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell's productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.
Collapse
Affiliation(s)
- C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
22
|
Gupta P, Lee KH. Genomics and proteomics in process development: opportunities and challenges. Trends Biotechnol 2007; 25:324-30. [PMID: 17475353 DOI: 10.1016/j.tibtech.2007.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/19/2007] [Accepted: 04/19/2007] [Indexed: 02/05/2023]
Abstract
Global gene expression profiling by genomic and proteomic analyses has changed the face of drug discovery and biological research in the past few years. The benefit of these technologies in the area of process development for recombinant protein production has been increasingly realized. This review discusses the application of genome-wide expression profiling tools in the design and optimization of bioprocesses, with the emphasis on the effect on process development of mammalian cell culture. Despite the lack of genome sequence information for most of the relevant mammalian cell lines used, these technologies can be applied during various process development steps. Although there are only a few examples in the literature that present a major improvement in productivity based on genomics and proteomics, further advances in analytical tools and genome sequencing technologies will greatly increase our knowledge at the molecular level and will drive the design of future bioprocesses.
Collapse
Affiliation(s)
- Prateek Gupta
- School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Kim Y, Nandakumar MP, Marten MR. Proteome map of Aspergillus nidulans during osmoadaptation. Fungal Genet Biol 2007; 44:886-95. [PMID: 17258477 DOI: 10.1016/j.fgb.2006.12.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/29/2006] [Accepted: 12/03/2006] [Indexed: 02/02/2023]
Abstract
The model filamentous fungus Aspergillus nidulans, when grown in a moderate level of osmolyte (+0.6M KCl), was previously found to have a significantly reduced cell wall elasticity (Biotech Prog, 21:292, 2005). In this study, comparative proteomic analysis via two-dimensional gel electrophoresis (2de) and matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry was used to assess molecular level events associated with this phenomenon. Thirty of 90 differentially expressed proteins were identified. Sequence homology and conserved domains were used to assign probable function to twenty-one proteins currently annotated as "hypothetical." In osmoadapted cells, there was an increased expression of glyceraldehyde-3-phosphate dehydrogenase and aldehyde dehydrogenase, as well as a decreased expression of enolase, suggesting an increased glycerol biosynthesis and decreased use of the TCA cycle. There also was an increased expression of heat shock proteins and Shp1-like protein degradation protein, implicating increased protein turnover. Five novel osmoadaptation proteins of unknown functions were also identified.
Collapse
Affiliation(s)
- Yonghyun Kim
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | |
Collapse
|
24
|
|
25
|
Han MJ, Lee SY. The Escherichia coli proteome: past, present, and future prospects. Microbiol Mol Biol Rev 2006; 70:362-439. [PMID: 16760308 PMCID: PMC1489533 DOI: 10.1128/mmbr.00036-05] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
26
|
Nandakumar MP, Cheung A, Marten MR. Proteomic Analysis of Extracellular Proteins from Escherichia coli W3110. J Proteome Res 2006; 5:1155-61. [PMID: 16674104 DOI: 10.1021/pr050401j] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While numerous proteomic analyses have been carried out on Escherichia coli, the vast majority have focused on expression of intracellular proteins. Yet, recent literature reports imply that even in laboratory strains, significant proteins may be found outside the cell. Here, we identify extracellular proteins associated with nonpathogenic E. coli strain W3110. Two-dimensional gel electrophoresis (2DE) revealed approximately 66 prominent protein spots during exponential growth (4 and 8 h shake flask culture) in minimal medium. The absence of detectable nucleic acids in the culture supernatant implies these proteins did not result from cell lysis. MALDI-TOF MS was used to identify 44 proteins, most of which have been previously identified as either outer membrane or extracellular proteins. In addition, 2DE protease zymogram analysis was carried out which facilitated identification of three extracellular proteases, one of which was not observed during standard 2DE. Our results are consistent with previous findings which imply outer membrane proteins are shed during growth.
Collapse
Affiliation(s)
- M P Nandakumar
- Chemical & Biochemical Engineering Department, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | | | | |
Collapse
|