1
|
Mei X, Chang Y, Shen J, Zhang Y, Xue C. Expression and characterization of a novel alginate-binding protein: A promising tool for investigating alginate. Carbohydr Polym 2020; 246:116645. [PMID: 32747278 DOI: 10.1016/j.carbpol.2020.116645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022]
Abstract
Alginate is a commercially important polysaccharide widely applied in various industries. Carbohydrate-binding proteins could be utilized as desirable tools in the investigation and further applications of polysaccharides. Few alginate-binding proteins have hitherto been characterized and reported. In the present study, a novel alginate-binding protein ABP_Wf, consisting of two "orphan" carbohydrate-binding modules, was cloned from a predicted alginate utilization locus of marine bacterium Wenyingzhuangia funcanilytica, and expressed in Escherichia coli. ABP_Wf exhibited a specific binding capacity to alginate, and the association constant (Ka) and affinity (KD) were 1.94 × 103 M-1s-1 and 1.16 × 10-6 M. It was confirmed that the binding capacity of ABP_Wf to alginate is attributed to its constituent CBM16 domain rather than the CBM44 domain. The potentials of ABP_Wf in the semi-quantitative detection and the in situ visualization of alginate were evaluated, which implied that ABP_Wf could be served as a promising tool for investigating alginate.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
2
|
Rongpipi S, Ye D, Gomez ED, Gomez EW. Progress and Opportunities in the Characterization of Cellulose - An Important Regulator of Cell Wall Growth and Mechanics. FRONTIERS IN PLANT SCIENCE 2019; 9:1894. [PMID: 30881371 PMCID: PMC6405478 DOI: 10.3389/fpls.2018.01894] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/06/2018] [Indexed: 05/02/2023]
Abstract
The plant cell wall is a dynamic network of several biopolymers and structural proteins including cellulose, pectin, hemicellulose and lignin. Cellulose is one of the main load bearing components of this complex, heterogeneous structure, and in this way, is an important regulator of cell wall growth and mechanics. Glucan chains of cellulose aggregate via hydrogen bonds and van der Waals forces to form long thread-like crystalline structures called cellulose microfibrils. The shape, size, and crystallinity of these microfibrils are important structural parameters that influence mechanical properties of the cell wall and these parameters are likely important determinants of cell wall digestibility for biofuel conversion. Cellulose-cellulose and cellulose-matrix interactions also contribute to the regulation of the mechanics and growth of the cell wall. As a consequence, much emphasis has been placed on extracting valuable structural details about cell wall components from several techniques, either individually or in combination, including diffraction/scattering, microscopy, and spectroscopy. In this review, we describe efforts to characterize the organization of cellulose in plant cell walls. X-ray scattering reveals the size and orientation of microfibrils; diffraction reveals unit lattice parameters and crystallinity. The presence of different cell wall components, their physical and chemical states, and their alignment and orientation have been identified by Infrared, Raman, Nuclear Magnetic Resonance, and Sum Frequency Generation spectroscopy. Direct visualization of cell wall components, their network-like structure, and interactions between different components has also been made possible through a host of microscopic imaging techniques including scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. This review highlights advantages and limitations of different analytical techniques for characterizing cellulose structure and its interaction with other wall polymers. We also delineate emerging opportunities for future developments of structural characterization tools and multi-modal analyses of cellulose and plant cell walls. Ultimately, elucidation of the structure of plant cell walls across multiple length scales will be imperative for establishing structure-property relationships to link cell wall structure to control of growth and mechanics.
Collapse
Affiliation(s)
- Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, United States
- Materials Research Institute, The Pennsylvania State University, University Park, PA, United States
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
3
|
Li T, Liu N, Ou X, Zhao X, Qi F, Huang J, Liu D. Visualizing cellulase adsorption and quantitatively determining cellulose accessibility with an updated fungal cellulose-binding module-based fluorescent probe protein. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:105. [PMID: 29657580 PMCID: PMC5890345 DOI: 10.1186/s13068-018-1105-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cellulose accessibility to cellulases (CAC) is a direct factor determining the enzymatic digestibility of lignocellulosic cellulose. Improving CAC by pretreatment is a prerequisite step for the efficient release of fermentable sugars from biomass cell wall. However, conventional methods to study the porosimetry of solid materials showed some limitations to be used for investigating CAC. In this work, an updated novel fusion protein comprising a fungal cellulose-binding module (CBM) from Cel7A cellobiohydrolase I (CBH I) of Trichoderma reesei QM6 and a di-green fluorescent protein (GFP2) was constructed for quantitative determination of CAC. RESULTS The obtained probe protein had similar molecular size (e.g., weight) with that of Cel7A and could give detectable signal for quantitative analysis. Several construction strategies were compared with regard to the site of His-tag and order of CBM and GFP2 modules in the protein sequence, in order to achieve good expression quantity and usability of the probe protein. His6-CBM-GFP2 has been identified as the best probe protein for investigating the effects of structural features of cellulosic substrates on cellulose accessibility. Substrate samples with different contents of xylan, lignin, and degree of substitution of cellulose -OH by formyl group were obtained, respectively, by mild H2SO4 pre-hydrolysis, NaClO2 selective delignification, and treatment of filter paper cellulose with concentrated formic acid. The determined CAC was in a wide range of 0.6-20.4 m2/g depending on the contents of hemicelluloses, lignin, and formyl group as well as cellulose degree of crystallization. CONCLUSIONS The obtained fusion probe protein could be used as a versatile tool to quantitatively investigate the impacts of biomass structural features on CAC and hydrolyzability of cellulose substrates, as well as nonproductive adsorption of cellulase enzymes on lignin.
Collapse
Affiliation(s)
- Tian Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Nan Liu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Xianjin Ou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuebing Zhao
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| | - Feng Qi
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117 Fujian China
| | - Dehua Liu
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
4
|
Rydahl MG, Hansen AR, Kračun SK, Mravec J. Report on the Current Inventory of the Toolbox for Plant Cell Wall Analysis: Proteinaceous and Small Molecular Probes. FRONTIERS IN PLANT SCIENCE 2018; 9:581. [PMID: 29774041 PMCID: PMC5943554 DOI: 10.3389/fpls.2018.00581] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/13/2018] [Indexed: 05/18/2023]
Abstract
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Collapse
Affiliation(s)
- Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Aleksander R. Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- GlycoSpot IVS, Frederiksberg, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Jozef Mravec
| |
Collapse
|
5
|
Paës G, von Schantz L, Ohlin M. Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules. SOFT MATTER 2015; 11:6586-94. [PMID: 26189625 DOI: 10.1039/c5sm01157d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lignocellulose-acting enzymes play a central role in the biorefinery of plant biomass to make fuels, chemicals and materials. These enzymes are often appended to carbohydrate binding modules (CBMs) that promote substrate targeting. When used in plant materials, which are complex assemblies of polymers, the binding properties of CBMs can be difficult to understand and predict, thus limiting the efficiency of enzymes. In order to gain more information on the binding properties of CBMs, some bioinspired model assemblies that contain some of the polymers and covalent interactions found in the plant cell walls have been designed. The mobility of three engineered CBMs has been investigated by FRAP in these assemblies, while varying the parameters related to the polymer concentration, the physical state of assemblies and the oligomerization state of CBMs. The features controlling the mobility of the CBMs in the assemblies have been quantified and hierarchized. We demonstrate that the parameters can have additional or opposite effects on mobility, depending on the CBM tested. We also find evidence of a relationship between the mobility of CBMs and their binding strength. Overall, bioinspired assemblies are able to reveal the unique features of affinity of CBMs. In particular, the results show that oligomerization of CBMs and the presence of ferulic acid motifs in the assemblies play an important role in the binding affinity of CBMs. Thus we propose that these features should be finely tuned when CBMs are used in plant cell walls to optimise bioprocesses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR0614 Fractionnement des AgroRessources et Environnement, 2 esplanade Roland-Garros, 51100 Reims, France.
| | | | | |
Collapse
|
6
|
Paës G. Fluorescent probes for exploring plant cell wall deconstruction: a review. Molecules 2014; 19:9380-402. [PMID: 24995923 PMCID: PMC6271034 DOI: 10.3390/molecules19079380] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/16/2022] Open
Abstract
Plant biomass is a potential resource of chemicals, new materials and biofuels that could reduce our dependency on fossil carbon, thus decreasing the greenhouse effect. However, due to its chemical and structural complexity, plant biomass is recalcitrant to green biological transformation by enzymes, preventing the establishment of integrated bio-refineries. In order to gain more knowledge in the architecture of plant cell wall to facilitate their deconstruction, many fluorescent probes bearing various fluorophores have been devised and used successfully to reveal the changes in structural motifs during plant biomass deconstruction, and the molecular interactions between enzymes and plant cell wall polymers. Fluorescent probes are thus relevant tools to explore plant cell wall deconstruction.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA (French National Institute for Agricultural Research), UMR0614 Fractionation of AgroResources and Environment, 2 esplanade Roland-Garros, 51100 Reims, France.
| |
Collapse
|
7
|
Lacayo CI, Hwang MS, Ding SY, Thelen MP. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells. PLoS One 2013; 8:e68266. [PMID: 23874568 PMCID: PMC3715489 DOI: 10.1371/journal.pone.0068266] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/23/2013] [Indexed: 01/15/2023] Open
Abstract
Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis, but realistic enough to capture the natural complexity of lignocellulose in the plant cell wall. Consequently, these cells represent a suitable model for analyzing native lignocellulose degradation.
Collapse
Affiliation(s)
- Catherine I. Lacayo
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Mona S. Hwang
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Shi-You Ding
- Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, United States of America
| | - Michael P. Thelen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wang YY, Ryu GH. Physical properties of extruded corn grits with corn fibre by CO2 injection extrusion. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2012.10.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Coletta VC, Rezende CA, da Conceição FR, Polikarpov I, Guimarães FEG. Mapping the lignin distribution in pretreated sugarcane bagasse by confocal and fluorescence lifetime imaging microscopy. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:43. [PMID: 23548159 PMCID: PMC3626924 DOI: 10.1186/1754-6834-6-43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/06/2013] [Indexed: 05/16/2023]
Abstract
BACKGROUND Delignification pretreatments of biomass and methods to assess their efficacy are crucial for biomass-to-biofuels research and technology. Here, we applied confocal and fluorescence lifetime imaging microscopy (FLIM) using one- and two-photon excitation to map the lignin distribution within bagasse fibers pretreated with acid and alkali. The evaluated spectra and decay times are correlated with previously calculated lignin fractions. We have also investigated the influence of the pretreatment on the lignin distribution in the cell wall by analyzing the changes in the fluorescence characteristics using two-photon excitation. Eucalyptus fibers were also analyzed for comparison. RESULTS Fluorescence spectra and variations of the decay time correlate well with the delignification yield and the lignin distribution. The decay dependences are considered two-exponential, one with a rapid (τ1) and the other with a slow (τ2) decay time. The fastest decay is associated to concentrated lignin in the bagasse and has a low sensitivity to the treatment. The fluorescence decay time became longer with the increase of the alkali concentration used in the treatment, which corresponds to lignin emission in a less concentrated environment. In addition, the two-photon fluorescence spectrum is very sensitive to lignin content and accumulation in the cell wall, broadening with the acid pretreatment and narrowing with the alkali one. Heterogeneity of the pretreated cell wall was observed. CONCLUSIONS Our results reveal lignin domains with different concentration levels. The acid pretreatment caused a disorder in the arrangement of lignin and its accumulation in the external border of the cell wall. The alkali pretreatment efficiently removed lignin from the middle of the bagasse fibers, but was less effective in its removal from their surfaces. Our results evidenced a strong correlation between the decay times of the lignin fluorescence and its distribution within the cell wall. A new variety of lignin fluorescence states were accessed by two-photon excitation, which allowed an even broader, but complementary, optical characterization of lignocellulosic materials. These results suggest that the lignin arrangement in untreated bagasse fiber is based on a well-organized nanoenvironment that favors a very low level of interaction between the molecules.
Collapse
Affiliation(s)
- Vitor Carlos Coletta
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil
| | - Camila Alves Rezende
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil
| | | | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, São Carlos, SP, CEP 13560-970, Brazil
| | | |
Collapse
|
10
|
Liu YS, Ding SY, Himmel ME. Single-molecule tracking of carbohydrate-binding modules on cellulose using fluorescence microscopy. Methods Mol Biol 2012; 908:129-140. [PMID: 22843396 DOI: 10.1007/978-1-61779-956-3_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-molecule fluorescence detection is an invaluable technique for the study of molecular behavior in biological systems, both in vitro and in vivo. In this chapter, we focus on detailed protocols that utilize Total Internal Reflection Fluorescence Microscopy (TIRF-M) to visualize single molecules of carbohydrate-binding module (CBM) labeled with green fluorescent protein (GFP). The content describes step-by-step sample preparation and data acquisition, processing, and analysis. These methods can also be further used to study interactions between domains of cellulase molecules and between cellulases and cellulose.
Collapse
Affiliation(s)
- Yu-San Liu
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, USA.
| | | | | |
Collapse
|
11
|
Paës G, Chabbert B. Characterization of Arabinoxylan/Cellulose Nanocrystals Gels to Investigate Fluorescent Probes Mobility in Bioinspired Models of Plant Secondary Cell Wall. Biomacromolecules 2011; 13:206-14. [DOI: 10.1021/bm201475a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 Fractionnement des AgroRessources et Environnement, Reims, France
- University of Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources
et Environnement, Reims, France
| | - Brigitte Chabbert
- INRA, UMR614 Fractionnement des AgroRessources et Environnement, Reims, France
- University of Reims Champagne-Ardenne, UMR614 Fractionnement des AgroRessources
et Environnement, Reims, France
| |
Collapse
|
12
|
Lacayo CI, Malkin AJ, Holman HYN, Chen L, Ding SY, Hwang MS, Thelen MP. Imaging cell wall architecture in single Zinnia elegans tracheary elements. PLANT PHYSIOLOGY 2010; 154:121-33. [PMID: 20592039 PMCID: PMC2938135 DOI: 10.1104/pp.110.155242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 06/23/2010] [Indexed: 05/18/2023]
Abstract
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.
Collapse
|
13
|
Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 2010; 85:471-80. [PMID: 19838697 DOI: 10.1007/s00253-009-2292-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/02/2009] [Accepted: 10/03/2009] [Indexed: 01/04/2023]
Abstract
There is increasing interest in production of transportation fuels and commodity chemicals from lignocellulosic biomass, most desirably through biological fermentation. Considerable effort has been expended to develop efficient biocatalysts that convert sugars derived from lignocellulose directly to value-added products. Glucose, the building block of cellulose, is the most suitable fermentation substrate for industrial microorganisms such as Escherichia coli, Corynebacterium glutamicum, and Saccharomyces cerevisiae. Other sugars including xylose, arabinose, mannose, and galactose that comprise hemicellulose are generally less efficient substrates in terms of productivity and yield. Although metabolic engineering including introduction of functional pentose-metabolizing pathways into pentose-incompetent microorganisms has provided steady progress in pentose utilization, further improvements in sugar mixture utilization by microorganisms is necessary. Among a variety of issues on utilization of sugar mixtures by the microorganisms, recent studies have started to reveal the importance of sugar transporters in microbial fermentation performance. In this article, we review current knowledge on diversity and functions of sugar transporters, especially those associated with pentose uptake in microorganisms. Subsequently, we review and discuss recent studies on engineering of sugar transport as a driving force for efficient bioconversion of sugar mixtures derived from lignocellulose.
Collapse
|
14
|
Kawakubo T, Karita S, Araki Y, Watanabe S, Oyadomari M, Takada R, Tanaka F, Abe K, Watanabe T, Honda Y, Watanabe T. Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)-cyan fluorescent protein (CFP). Biotechnol Bioeng 2010; 105:499-508. [PMID: 19777599 DOI: 10.1002/bit.22550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In enzymatic saccharification of lignocellulosics, the access of the enzymes to exposed cellulose surfaces is a key initial step in triggering hydrolysis. However, knowledge of the structure-hydrolyzability relationship of the pretreated biomass is still limited. Here we used fluorescent-labeled recombinant carbohydrate-binding modules (CBMs) from Clostridium josui as specific markers for crystalline cellulose (CjCBM3) and non-crystalline cellulose (CjCBM28) to analyze the complex surfaces of wood tissues pretreated with NaOH, NaOH-Na(2)S (kraft pulping), hydrothermolysis, ball-milling, and organosolvolysis. Japanese cedar wood, one of the most recalcitrant softwood species was selected for the analysis. The binding analysis clarified the linear dependency of the exposure of crystalline and non-crystalline cellulose surfaces for enzymatic saccharification yield by the organosolv and kraft delignification processes. Ball-milling for 5-30 min increased saccharification yield up to 77%, but adsorption by the CjCBM-cyan fluorescent proteins (CFPs) was below 5%. Adsorption of CjCBM-CFPs on the hydrothermolysis pulp were less than half of those for organosolvolysis pulp, in coincidence with low saccharification yields. For all the pretreated wood, crystallinity index was not directly correlated with the overall saccharification yield. Fluorescent microscopy revealed that CjCBM3-CFP and CjCBM28-CFP were site-specifically adsorbed on external fibrous structures and ruptured or distorted fiber surfaces. The assay system with CBM-CFPs is a powerful measure to estimate the initiation sites of hydrolysis and saccharification yields from chemically delignified wood pulps.
Collapse
Affiliation(s)
- Takeshi Kawakubo
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Umemoto Y, Araki T. Cell wall regeneration in Bangia atropurpurea (Rhodophyta) protoplasts observed using a mannan-specific carbohydrate-binding module. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:24-31. [PMID: 19466498 DOI: 10.1007/s10126-009-9196-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 04/03/2009] [Indexed: 05/27/2023]
Abstract
The cell wall of the red alga Bangia atropurpurea is composed of three unique polysaccharides (beta-1,4-mannan, beta-1,3-xylan, and porphyran), similar to that in Porphyra. In this study, we visualized beta-mannan in the regenerating cell walls of B. atropurpurea protoplasts by using a fusion protein of a carbohydrate-binding module (CBM) and green fluorescent protein (GFP). A mannan-binding family 27 CBM (CBM27) of beta-1,4-mannanase (Man5C) from Vibrio sp. strain MA-138 was fused to GFP, and the resultant fusion protein (GFP-CBM27) was expressed in Escherichia coli. Native affinity gel electrophoresis revealed that GFP-CBM27 maintained its binding ability to soluble beta-mannans, while normal GFP could not bind to beta-mannans. Protoplasts were isolated from the fronds of B. atropurpurea by using three kinds of bacterial enzymes. The GFP-CBM27 was mixed with protoplasts from different growth stages, and the process of cell wall regeneration was observed by fluorescence microscopy. Some protoplasts began to excrete beta-mannan at certain areas of their cell surface after 12 h of culture. As the protoplast culture progressed, beta-mannans were spread on their entire cell surfaces. The percentages of protoplasts bound to GFP-CBM27 were 3%, 12%, 17%, 29%, and 25% after 12, 24, 36, 48, and 60 h of culture, respectively. Although GFP-CBM27 bound to cells at the initial growth stages, its binding to the mature fronds was not confirmed definitely. This is the first report on the visualization of beta-mannan in regenerating algal cell walls by using a fluorescence-labeled CBM.
Collapse
Affiliation(s)
- Yoshiaki Umemoto
- Laboratory for the Utilization of Aquatic Bioresources, Department of Life Science, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan
| | | |
Collapse
|
16
|
Vidal BC, Rausch KD, Tumbleson ME, Singh V. Protease Treatment to Improve Ethanol Fermentation in Modified Dry Grind Corn Processes. Cereal Chem 2009. [DOI: 10.1094/cchem-86-3-0323] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Bernardo C. Vidal
- Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Kent D. Rausch
- Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - M. E. Tumbleson
- Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Vijay Singh
- Agricultural and Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Corresponding author. Phone: 217-333-9510; Fax: 217-244-0323. E-mail:
| |
Collapse
|