1
|
Li Y, Li C, Xu W, Zhao J, Liu K, Liu X, Li Y, Tang Z, Li A, Zhang H. Chondroitin sulfate reverses tibial dyschondroplasia, broiler chondrocyte proliferation and differentiation dysfunction via the CHST11/β-Catenin pathway. Int J Biol Macromol 2025; 315:144488. [PMID: 40409655 DOI: 10.1016/j.ijbiomac.2025.144488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/23/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Broiler tibial dyschondroplasia (TD) is a prevalent disorder that impairs locomotion and disrupts feeding behaviors, thereby compromising production efficiency and causing significant economic losses. Consequently, there is a growing need for effective therapeutic interventions. Chondroitin sulfate (CS) has demonstrated potential to enhance bone development and improve growth performance. However, the molecular mechanisms underlying CS alleviates TD remain unclear, due to its multiple biological activities. This study revealed that CS significantly alleviates TD in broilers by enhancing the body weight, increasing tibial mass, and promoting repair of growth plate injuries. Specifically, CS treatment restored the normal morphology of the tibial growth plate and upregulated the expression of extracellular matrix components (ECM), including Col2α1, ACAN, and CHST11, in TD-affected chondrocytes, consequently activating the Wnt/β-Catenin pathway. Notably, the inhibition of CHST11 markedly suppressed ECM synthesis and chondrocytes proliferation, accompanied by a decrease in β-Catenin expression, replicating the pathological patterns observed in thiram-induced TD chondrocytes. Importantly, CS supplementation effectively counteracted CHST11 inhibition, restoring ECM synthesis and cellular proliferation through the upregulation of the CHST11/β-Catenin pathway. These findings point to the pivotal role of CHST11-mediated activation of the Wnt/β-Catenin pathway plays a vital role in the therapeutic effect of CS in broiler TD.
Collapse
Affiliation(s)
- Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Cong Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Wenjing Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Kai Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Aoyun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Menezes R, Vincent R, Osorno L, Hu P, Arinzeh TL. Biomaterials and tissue engineering approaches using glycosaminoglycans for tissue repair: Lessons learned from the native extracellular matrix. Acta Biomater 2023; 163:210-227. [PMID: 36182056 PMCID: PMC10043054 DOI: 10.1016/j.actbio.2022.09.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 01/30/2023]
Abstract
Glycosaminoglycans (GAGs) are an important component of the extracellular matrix as they influence cell behavior and have been sought for tissue regeneration, biomaterials, and drug delivery applications. GAGs are known to interact with growth factors and other bioactive molecules and impact tissue mechanics. This review provides an overview of native GAGs, their structure, and properties, specifically their interaction with proteins, their effect on cell behavior, and their mechanical role in the ECM. GAGs' function in the extracellular environment is still being understood however, promising studies have led to the development of medical devices and therapies. Native GAGs, including hyaluronic acid, chondroitin sulfate, and heparin, have been widely explored in tissue engineering and biomaterial approaches for tissue repair or replacement. This review focuses on orthopaedic and wound healing applications. The use of GAGs in these applications have had significant advances leading to clinical use. Promising studies using GAG mimetics and future directions are also discussed. STATEMENT OF SIGNIFICANCE: Glycosaminoglycans (GAGs) are an important component of the native extracellular matrix and have shown promise in medical devices and therapies. This review emphasizes the structure and properties of native GAGs, their role in the ECM providing biochemical and mechanical cues that influence cell behavior, and their use in tissue regeneration and biomaterial approaches for orthopaedic and wound healing applications.
Collapse
Affiliation(s)
- Roseline Menezes
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Richard Vincent
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Laura Osorno
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Phillip Hu
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Treena Livingston Arinzeh
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States; Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
3
|
Albarqi HA, Alqahtani AA, Ullah I, Khan NR, Basit HM, Iftikhar T, Wahab A, Ali M, Badar M. Microwave-Assisted Physically Cross-Linked Chitosan-Sodium Alginate Hydrogel Membrane Doped with Curcumin as a Novel Wound Healing Platform. AAPS PharmSciTech 2022; 23:72. [PMID: 35147834 DOI: 10.1208/s12249-022-02222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
This project purposes to develop chitosan and sodium alginate-based hydrogel membranes loaded with curcumin through microwave-based physical cross-linking technique and its evaluation for wound healing potential. For the purpose, curcumin-loaded chitosan and sodium alginate membranes were developed using microwave at fixed frequency of 2450 MHz, power 350 W for 60 s, and tested for their physicochemical attributes like swelling, erosion, surface morphology, drug content, and in vitro drug release. The membranes were also subjected to tensile strength and vibrational and thermal analysis followed by testing in vivo on animals. The results indicated that microwave treatment significantly enhanced the swelling ability, reduced the erosion, and ensured smooth surface texture with optimal drug content. The drug was released in a slow fashion releasing total of 41 ± 4.2% within 24-h period with a higher tensile strength of 16.4 ± 5.3 Mpa. The vibrational analysis results revealed significant fluidization of hydrophilic domains and defluidization of hydrophobic domains which translated into a significant rise in the melting temperature and corresponding enthalpy which were found to be 285.2 ± 3.2 °C and 4.89 ± 1.4 J/g. The in vivo testing revealed higher percent re-epithelialization (75 ± 2.3%) within 14 days of the treatment application in comparison to only gauze and other treatments applied, with higher extent of collagen deposition having well-defined epidermis and stratum corneum formation. The microwave-treated chitosan-sodium alginate hydrogel membranes loaded with curcumin may prove to be another alternative to treat skin injuries. Graphical Abstract.
Collapse
|
4
|
Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, Gálvez-Martín P, Marchal JA, Vázquez-Lasa B, Gallego I, Saenz-Del-Burgo L, Pedraz JL. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Macromol Biosci 2022; 22:e2100435. [PMID: 35029035 DOI: 10.1002/mabi.202100435] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Indexed: 11/11/2022]
Abstract
Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study was focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it was added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties were evaluated. Then, sterilisation effect, biocompatibility and printability on developed NC-Alg-CS and NC-Alg-DS inks were evaluated. Subsequently, printed scaffolds were characterized. Finally, NC-Alg-CS and NC-Alg-DS inks were loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability were assessed. Results showed that the addition of both CS and DS to the NC-Alg ink improved its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage was promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, 18100, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.,BioFab i3D Lab - Biofabrication and 3D (bio)printing singular Laboratory, University of Granada, Granada, 18100, Spain
| | - Blanca Vázquez-Lasa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
5
|
Chen Y, Ma M, Teng Y, Cao H, Yang Y, Wang Y, Li X, Sun Y, Liang J, Fan Y, Zhang X. Efficient manufacturing of tissue engineered cartilage in vitro by a multiplexed 3D cultured method. J Mater Chem B 2021; 8:2082-2095. [PMID: 32068202 DOI: 10.1039/c9tb01484e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cell culture has become an indispensable tool to uncover fundamental biophysical and biomolecular mechanisms of cells assembling into tissues. An important advancement in cell culture techniques was the introduction of three-dimensional (3D) culture systems. In this study, the mutual fusion of chondrocyte pellets was promoted in order to produce large-sized tissue-engineered cartilage by a multiplexed 3D hanging drop culture and agarose mold method to optimize the means of cultivation. Cell proliferation, aggregation, cell morphology maintenance as well as cartilage related gene expression and matrix secretion in vitro and subcutaneous implantation models were evaluated. These results indicated that the multiplexed 3D hanging drop culture involving the fusion of small pellets into a large structure enabled the efficient production of 3D tissue engineered cartilage that was closer to physiological cartilage tissue in comparison to that of the agarose mold method.
Collapse
Affiliation(s)
- Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Mengcheng Ma
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yingying Teng
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Hongfu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yuedi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yuxiang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| |
Collapse
|
6
|
Neves MI, Araújo M, Moroni L, da Silva RM, Barrias CC. Glycosaminoglycan-Inspired Biomaterials for the Development of Bioactive Hydrogel Networks. Molecules 2020; 25:E978. [PMID: 32098281 PMCID: PMC7070556 DOI: 10.3390/molecules25040978] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Glycosaminoglycans (GAG) are long, linear polysaccharides that display a wide range of relevant biological roles. Particularly, in the extracellular matrix (ECM) GAG specifically interact with other biological molecules, such as growth factors, protecting them from proteolysis or inhibiting factors. Additionally, ECM GAG are partially responsible for the mechanical stability of tissues due to their capacity to retain high amounts of water, enabling hydration of the ECM and rendering it resistant to compressive forces. In this review, the use of GAG for developing hydrogel networks with improved biological activity and/or mechanical properties is discussed. Greater focus is given to strategies involving the production of hydrogels that are composed of GAG alone or in combination with other materials. Additionally, approaches used to introduce GAG-inspired features in biomaterials of different sources will also be presented.
Collapse
Affiliation(s)
- Mariana I. Neves
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia da Universidade do Porto, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Marco Araújo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ET Maastricht, The Netherlands;
| | - Ricardo M.P. da Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Cristina C. Barrias
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (M.I.N.); (M.A.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Chen Q, Bruyneel A, Carr C, Czernuszka J. Trilayer scaffold with cardiosphere-derived cells for heart valve tissue engineering. J Biomed Mater Res B Appl Biomater 2019; 108:729-737. [PMID: 31184806 DOI: 10.1002/jbm.b.34427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 11/08/2022]
Abstract
Natural polymers collagen, glycosaminoglycans, and elastin are promising candidate materials for heart valve tissue engineering scaffolds. This work produced trilayer scaffolds that resembled the layered structures of the extracellular matrices of native heart valves. The scaffolds showed anisotropic bending moduli (in both dry and hydrated statuses) depending on the loading directions (lower in the With Curvature direction than in the Against Curvature direction), which mimicked the characteristic behavior of the native heart valves. The interactions between cardiosphere-derived cells and the scaffolds were characterized by multiphoton microscopy, and relatively similar cell distributions were observed on different layers (a cell density of 3,000-4,000 mm-3 and a migration depth of 0.3-0.4 mm). The trilayer scaffold has represented a forwarding step from the previous studies, in attempting to better replicate a native heart valve structurally, mechanically, and biologically.
Collapse
Affiliation(s)
- Qi Chen
- R&D.cn, Guangzhou International Bio-Island, Guangzhou, China.,Department of Materials, University of Oxford, Oxford, UK
| | - Arne Bruyneel
- Cardiovascular Institute, Stanford University, Stanford, California
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jan Czernuszka
- Department of Materials, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Yang J, Liu Y, He L, Wang Q, Wang L, Yuan T, Xiao Y, Fan Y, Zhang X. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater 2018; 74:156-167. [PMID: 29734010 DOI: 10.1016/j.actbio.2018.05.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 02/04/2023]
Abstract
Over the past decades, numerous tissue-engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate the functionalized calcified layer. In this study, the potential of icariin (Ica) conjugated hyaluronic acid/collagen (Ica-HA/Col) hydrogel to promote the osteochondral interface restoration was investigated. Compared with HA/Col hydrogel, Ica-HA/Col hydrogel simultaneously facilitated chondrogenesis and osteogenesis in vitro. The cells encapsulated in Ica-HA/Col hydrogel tended to aggregate into bigger clusters. The chondrogenic genes' expression level was remarkably up-regulated, and the matrix synthesis of sGAG and type II collagen was significantly enhanced. Similarly, the osteogenic genes, including RUNX2, ALP, and OCN were also up-regulated at early stage. Consequently, more calcium deposition was observed in the Ica-HA/Col hydrogel construct. Moreover, the gene expression and matrix synthesis of type X collagen, an important marker for the formation of calcified layer; were significantly higher in the Ica-HA/Col hydrogel. Furthermore, the in vivo study showed that Ica-HA/Col constructs facilitated the reconstruction of osteochondral interface in rabbit subchondral defects. In the Ica-HA/Col group, the neo-cartilage layer contained more type II collagen and the newly formed subchondral bone deposited more abundant type I collagen. Overall, the results indicated that Ica-HA/Col hydrogel might be a promising scaffold to reconstruct an osteochondral interface, therefore promoting restoring of osteochondral defect. STATEMENT OF SIGNIFICANCE The osteochondral defect restoration not only involves the repair of damaged cartilage and the subchondral bone, but also the reconstruction of osteochondral interface (the functional calcified layer). The calcified layer regeneration is essential for integrative and functional osteochondral repair. Over the past decade, numerous tissue engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate a functionalized calcified layer. The present study demonstrates that Ica-HA/Col hydrogel facilitates deposition of matrix related to calcified layer in mixed chondrogenic/osteogenic inductive media and restoration of osteochondral defect in vivo. Since, Ica-HA/Col hydrogel as is cheaper, easier and more efficient, it might be a desired scaffold for the osteochondral defects restoration.
Collapse
|
9
|
Rnjak‐Kovacina J, Tang F, Whitelock JM, Lord MS. Glycosaminoglycan and Proteoglycan-Based Biomaterials: Current Trends and Future Perspectives. Adv Healthc Mater 2018; 7:e1701042. [PMID: 29210510 DOI: 10.1002/adhm.201701042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Proteoglycans and their glycosaminoglycans (GAG) are essential for life as they are responsible for orchestrating many essential functions in development and tissue homeostasis, including biophysical properties and roles in cell signaling and extracellular matrix assembly. In an attempt to capture these biological functions, a range of biomaterials are designed to incorporate off-the-shelf GAGs, typically isolated from animal sources, for tissue engineering, drug delivery, and regenerative medicine applications. All GAGs, with the exception of hyaluronan, are present in the body covalently coupled to the protein core of proteoglycans, yet the incorporation of proteoglycans into biomaterials remains relatively unexplored. Proteoglycan-based biomaterials are more likely to recapitulate the unique, tissue-specific GAG profiles and native GAG presentation in human tissues. The protein core offers additional biological functionality, including cell, growth factor, and extracellular matrix binding domains, as well as sites for protein immobilization chemistries. Finally, proteoglycans can be recombinantly expressed in mammalian cells and thus offer genetic manipulation and metabolic engineering opportunities for control over the protein and GAG structures and functions. This Progress Report summarizes current developments in GAG-based biomaterials and presents emerging research and future opportunities for the development of biomaterials that incorporate GAGs presented in their native proteoglycan form.
Collapse
Affiliation(s)
| | - Fengying Tang
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - John M. Whitelock
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Megan S. Lord
- Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW 2052 Australia
| |
Collapse
|
10
|
Farrugia BL, Lord MS, Whitelock JM, Melrose J. Harnessing chondroitin sulphate in composite scaffolds to direct progenitor and stem cell function for tissue repair. Biomater Sci 2018; 6:947-957. [DOI: 10.1039/c7bm01158j] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review details the inclusion of chondroitin sulphate in bioscaffolds for superior functional properties in tissue regenerative applications.
Collapse
Affiliation(s)
- B. L. Farrugia
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - M. S. Lord
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. M. Whitelock
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
| | - J. Melrose
- Graduate School of Biomedical Engineering
- UNSW Sydney 2052
- Australia
- Raymond Purves Bone and Joint Research Laboratory
- Kolling Institute Northern Sydney Local Health District
| |
Collapse
|
11
|
Iijima K, Tsuji Y, Kuriki I, Kakimoto A, Nikaido Y, Ninomiya R, Iyoda T, Fukai F, Hashizume M. Control of cell adhesion and proliferation utilizing polysaccharide composite film scaffolds. Colloids Surf B Biointerfaces 2017; 160:228-237. [DOI: 10.1016/j.colsurfb.2017.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/17/2017] [Accepted: 09/10/2017] [Indexed: 01/05/2023]
|
12
|
Li X, Teng Y, Liu J, Lin H, Fan Y, Zhang X. Chondrogenic differentiation of BMSCs encapsulated in chondroinductive polysaccharide/collagen hybrid hydrogels. J Mater Chem B 2017; 5:5109-5119. [PMID: 32264096 DOI: 10.1039/c7tb01020f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although BMSC-based therapy is one of the most front-line technologies for cartilage repair, it is still a big challenge to attain ideal niches for BMSC chondrogenic differentiation. In this study, we developed hyaluronate and chondroitin sulfate derivatives to prepare covalently crosslinked polysaccharide hydrogels. Based on these binary hydrogels, collagen was added to prepare ternary hybrid hydrogels and its effect on encapsulated BMSCs was studied. After culturing with different cell densities in vitro without the addition of growth factors for 3 weeks, the chondrogenesis of BMSCs was evaluated by CLSM, mechanical testing, histological staining, immunohistochemical staining and gene expression. The results indicated that BMSCs in high cell density (50 million per mL) cell-laden constructs had a more obvious chondrogenic phenotype than those in low cell density ones (5 million per mL). However, the components of hydrogels had a significant influence on chondrogenic differentiation. With the addition of collagen, the BMSCs in ternary hybrid hydrogels showed more significant chondrogenesis, possessing with more amounts of secreted glycosaminoglycans (GAGs) and type II collagen deposition, higher mechanical properties and chondrogenic gene expression over 3 weeks of culture in vitro. It can be concluded that the bioactive collagen is beneficial to the chondrogenesis of BMSCs. This hybrid hydrogels deserve further studies to have a prospective application in tissue engineering for cartilage defect repair.
Collapse
Affiliation(s)
- Xiupeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Chen YC, Chen RN, Jhan HJ, Liu DZ, Ho HO, Mao Y, Kohn J, Sheu MT. Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering. Tissue Eng Part C Methods 2015; 21:971-86. [PMID: 25919905 DOI: 10.1089/ten.tec.2015.0036] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Given the growing number of arthritis patients and the limitations of current treatments, there is great urgency to explore cartilage substitutes by tissue engineering. In this study, we developed a novel decellularization method for menisci to prepare acellular extracellular matrix (ECM) scaffolds with minimal adverse effects on the ECM. Among all the acid treatments, formic acid treatment removed most of the cellular contents and preserved the highest ECM contents in the decellularized porcine menisci. Compared with fresh porcine menisci, the content of DNA decreased to 4.10%±0.03%, and there was no significant damage to glycosaminoglycan (GAG) or collagen. Histological staining also confirmed the presence of ECM and the absence of cellularity. In addition, a highly hydrophilic scaffold with three-dimensional interconnected porous structure was fabricated from decellularized menisci tissue. Human chondrocytes showed enhanced cell proliferation and synthesis of chondrocyte ECM including type II collagen and GAG when cultured in this acellular scaffold. Moreover, the scaffold effectively supported chondrogenesis of human bone marrow-derived mesenchymal stem cells. Finally, in vivo implantation was conducted in rats to assess the biocompatibility of the scaffolds. No significant inflammatory response was observed. The acellular ECM scaffold provided a native environment for cells with diverse physiological functions to promote cell proliferation and new tissue formation. This study reported a novel way to prepare decellularized meniscus tissue and demonstrated the potential as scaffolds to support cartilage repair.
Collapse
Affiliation(s)
- Ying-Chen Chen
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Ray-Neng Chen
- 2 Department of Cosmetics Applications and Management, Mackay Junior College of Medicine , Nursing, and Management, Taipei, Taiwan
| | - Hua-Jing Jhan
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Der-Zen Liu
- 3 Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University , Taipei, Taiwan .,4 Center for General Education, Hsuan Chuang University , Hsinchu, Taiwan
| | - Hsiu-O Ho
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan
| | - Yong Mao
- 5 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Joachim Kohn
- 5 New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey.,6 Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , Piscataway, New Jersey
| | - Ming-Thau Sheu
- 1 School of Pharmacy, College of Pharmacy, Taipei Medical University , Taipei, Taiwan .,7 Clinical Research Center and Traditional Herbal Medicine Research Center, Taipei Medical University Hospital , Taipei, Taiwan
| |
Collapse
|
15
|
Chitosan-based scaffold modified with D-(+) raffinose for cartilage repair: an in vivo study. J Negat Results Biomed 2015; 14:2. [PMID: 25586743 PMCID: PMC4299396 DOI: 10.1186/s12952-014-0021-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Osteochondral defects significantly affect patients' quality of life and represent challenging tissue lesions, because of the poor regenerative capacity of cartilage. Tissue engineering has long sought to promote cartilage repair, by employing artificial scaffolds to enhance cell capacity to deposit new cartilage. An ideal biomaterial should closely mimic the natural environment of the tissue, to promote scaffold colonization, cell differentiation and the maintenance of a differentiated cellular phenotype. The present study evaluated chitosan scaffolds enriched with D-(+) raffinose in osteochondral defects in rabbits. Cartilage defects were created in distal femurs, both on the condyle and on the trochlea, and were left untreated or received a chitosan scaffold. The animals were sacrificed after 2 or 4 weeks, and samples were analysed microscopically. RESULTS The retrieved implants were surrounded by a fibrous capsule and contained a noticeable inflammatory infiltrate. No hyaline cartilage was formed in the defects. Although defect closure reached approximately 100% in the control group after 4 weeks, defects did not completely heal when filled with chitosan. In these samples, the lesion contained granulation tissue at 2 weeks, which was then replaced by fibrous connective tissue by week 4. Noteworthy, chitosan never appeared to be integrated in the surrounding cartilage. CONCLUSIONS In conclusion, the present study highlights the limits of D-(+) raffinose-enriched chitosan for cartilage regeneration and offers useful information for further development of this material for tissue repair.
Collapse
|
16
|
Wang CC, Yang KC, Lin KH, Wu CC, Liu YL, Lin FH, Chen IH. A biomimetic honeycomb-like scaffold prepared by flow-focusing technology for cartilage regeneration. Biotechnol Bioeng 2014; 111:2338-48. [DOI: 10.1002/bit.25295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/14/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Chen-Chie Wang
- Department of Orthopedic Surgery; Taipei Tzu Chi Hospital; The Buddhist Tzu Chi Medical Foundation; New Taipei City Taiwan
- Department of Orthopedics; School of Medicine; Tzu Chi University; Hualien 97004 Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology; College of Oral Medicine; Taipei Medical University; Taipei Medical University; Taipei Taiwan
- Department of Organ Reconstruction; Institute for Frontier Medical Sciences; Kyoto University; Kyoto Japan
| | - Keng-Hui Lin
- Institute of Physics and Research Center for Applied Science; Academia Sinica; Taipei Taiwan
| | - Chang-Chin Wu
- Department of Orthopedics; National Taiwan University Hospital; College of Medicine; National Taiwan University; Taipei Taiwan
- Department of Orthopedics; En Chu Kong Hospital; New Taipei City Taiwan
| | - Yen-Liang Liu
- Department of Biomedical Engineering; The University of Texas at Austin; Austin
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, College of Engineering and College of Medicine; National Taiwan University; Taipei Taiwan
| | - Ing-Ho Chen
- Department of Orthopedics; School of Medicine; Tzu Chi University; Hualien 97004 Taiwan
- Department of Orthopedic Surgery, Hualien Tzu Chi Hospital; The Buddhist Tzu Chi Medical Foundation; Hualien 970 Taiwan
| |
Collapse
|
17
|
Lord MS, Tsoi BM, Farrugia BL, Simon Ting SR, Baker S, Wiesmann WP, Whitelock JM. Synthesis and characterization of water soluble biomimetic chitosans for bone and cartilage tissue regeneration. J Mater Chem B 2014; 2:6517-6526. [DOI: 10.1039/c4tb00531g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfated chitosan-arginine was synthesized to replicate growth factor-binding glycosaminoglycans. This material promoted cartilage formation from human progenitor cells while chitosan-arginine promoted bone.
Collapse
Affiliation(s)
- Megan S. Lord
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Bonny M. Tsoi
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - Brooke L. Farrugia
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | - S. R. Simon Ting
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| | | | | | - John M. Whitelock
- Graduate School of Biomedical Engineering
- The University of New South Wales
- Sydney, Australia
| |
Collapse
|
18
|
Pharmaceutically versatile sulfated polysaccharide based bionano platforms. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:605-26. [DOI: 10.1016/j.nano.2012.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/26/2012] [Indexed: 12/18/2022]
|
19
|
Li D, Yuan T, Zhang X, Xiao Y, Wang R, Fan Y, Zhang X. Icariin: a potential promoting compound for cartilage tissue engineering. Osteoarthritis Cartilage 2012; 20:1647-56. [PMID: 22917745 DOI: 10.1016/j.joca.2012.08.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 07/06/2012] [Accepted: 08/08/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether icariin, which is a widely used pharmacological constituent in traditional Chinese herbal medicine, can be a potential promoting compound for cartilage tissue engineering. DESIGN Icariin was added into cell-hydrogel constructs derived from neonatal rabbit chondrocytes and collagen type I. The chondrogenic gene expressions and the synthesis of cartilage matrix of the seeded cells were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Biochemical assay. The effects of icariin-added cell-hydrogel constructs on the restoration of supercritical-sized osteochondral defects of adult rabbit were investigated by histological observation. The cell-hydrogel constructs without Icariin were set for controls. RESULTS Icariin obviously up-regulate the expressions included aggrecan, sox9, and collagen type II of seeded chondrocytes from 99.7% to 248%. It increases the synthesis of glycosaminoglycan and collagen type II about fourfold to fivefolds from week 1 to week 4, and accelerates the formation of chondroid tissue in the cell-hydrogel constructs. Even, it improves the restoration efficiency of supercritical-sized osteochondral defects in adult rabbit model, and enhances the integration of new-formed cartilage with subchondral bone. CONCLUSIONS Icariin can be a potential promoting compound for cartilage tissue engineering, and it can be a substitute for the use of some growth factors. The long history and extensive cases of safe use in China, Japan and Korea make it more attractive.
Collapse
Affiliation(s)
- D Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Zhang L, Zhang X, Li KF, Li DX, Xiao YM, Fan YJ, Zhang XD. Icariin Promotes Extracellular Matrix Synthesis and Gene Expression of Chondrocytes In Vitro. Phytother Res 2012; 26:1385-92. [DOI: 10.1002/ptr.3733] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/14/2011] [Accepted: 11/18/2011] [Indexed: 12/14/2022]
Affiliation(s)
- Lei Zhang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
- Sichuan Academy of Chinese Medicine Science; Chengdu 610041 China
| | - Xuan Zhang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Kui-Feng Li
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Dong-Xiao Li
- Sichuan Academy of Chinese Medicine Science; Chengdu 610041 China
| | - Yu-Mei Xiao
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Yu-Jiang Fan
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| | - Xing-Dong Zhang
- National Engineering Research Center for Biomaterials; Sichuan University; Chengdu 610064 China
| |
Collapse
|
21
|
Liu J, Song H, Zhang L, Xu H, Zhao X. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol Biosci 2011; 10:1164-70. [PMID: 20552605 DOI: 10.1002/mabi.200900450] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The promising potential of a RAD-16 self-assembly-peptide hydrogel as a scaffold for tissue-engineered cartilage was investigated. Within 3 weeks of in vitro culture, chondrocytes within the hydrogel produced a high amount of GAG and type-II collagen, which are the components of cartilage-specific extracellular matrix (ECM). With the culture time increased, toluidine-blue staining for GAG and immuno-histochemistry staining for type-II collagen of the chondrocytes-hydrogel composites became more intense. Analysis of the gene expression of the ECM molecules also confirmed the chondrocytes in the peptide hydrogel maintained their phenotype within 3 weeks of in vitro culture.
Collapse
Affiliation(s)
- Jingping Liu
- Nanomedicine Laboratory, West China Hospital, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | | | | | | | | |
Collapse
|
22
|
Ragetly G, Griffon DJ, Chung YS. The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 2010; 6:3988-97. [PMID: 20580951 DOI: 10.1016/j.actbio.2010.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
The biocompatibility of chitosan and its similarity to glycosaminoglycans (GAG) make it attractive for cartilage tissue engineering. We have previously reported improved chondrogenesis but limited cell adhesion on chitosan scaffolds. Our objectives were to produce chitosan scaffolds coated with different densities of type II collagen and to evaluate the effect of this coating on mesenchymal stem cell (MSC) adhesion and chondrogenesis. Chitosan fibrous scaffolds were obtained by a wet spinning method and coated with type II collagen at two different densities. A polyglycolic acid mesh served as a reference group. The scaffolds were characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and type II collagen content. Constructs were analyzed after MSCs seeding via live/dead assay, weight and DNA evaluations, SEM, and TEM. Constructs were cultured in chondrogenic medium for 21 days prior to quantitative analysis (weight, DNA, and GAG), SEM, TEM, histology, immunohistochemistry, and quantitative real time polymerase chain reaction. The cell attachment and distribution after seeding correlated with the density of type II collagen. The cell number, the matrix production, and the expression of genes specific for chondrogenesis were improved after culture in collagen coated chitosan constructs. These findings encourage the use of type II collagen for coating chitosan scaffolds to improve MSCs adhesion and chondrogenesis, and confirm the importance of biomimetic scaffolds for tissue engineering.
Collapse
|
23
|
Hanagata N, Takemura T, Minowa T. Global gene expression analysis for evaluation and design of biomaterials. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2010; 11:013001. [PMID: 27877315 PMCID: PMC5090542 DOI: 10.1088/1468-6996/11/1/013001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/22/2010] [Accepted: 01/23/2010] [Indexed: 06/06/2023]
Abstract
Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Center and Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
- Graduate School of Life Science, Hokkaido University, N10 W8, Kita-ku, Sapporo 060-0812, Japan
| | - Taro Takemura
- Nanotechnology Innovation Center and Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Takashi Minowa
- Nanotechnology Innovation Center and Biomaterials Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| |
Collapse
|