1
|
Rana M, Dash AK, Ponnusamy K, Tyagi RK. Nuclear localization signal region in nuclear receptor PXR governs the receptor association with mitotic chromatin. Chromosome Res 2018; 26:255-276. [DOI: 10.1007/s10577-018-9583-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
|
2
|
Schofield DM, Templar A, Newton J, Nesbeth DN. Promoter engineering to optimize recombinant periplasmic Fab' fragment production in Escherichia coli. Biotechnol Prog 2016; 32:840-7. [PMID: 27071365 DOI: 10.1002/btpr.2273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/14/2016] [Indexed: 11/11/2022]
Abstract
Fab' fragments have become an established class of biotherapeutic over the last two decades. Likewise, developments in synthetic biology are providing ever more powerful techniques for designing bacterial genes, gene networks and entire genomes that can be used to improve industrial performance of cells used for production of biotherapeutics. We have previously observed significant leakage of an exogenous therapeutic Fab' fragment into the growth medium during high cell density cultivation of an Escherichia coli production strain. In this study we sought to apply a promoter engineering strategy to address the issue of Fab' fragment leakage and its consequent bioprocess challenges. We used site directed mutagenesis to convert the Ptac promoter, present in the plasmid, pTTOD-A33 Fab', to a Ptic promoter which has been shown by others to direct expression at a 35% reduced rate compared to Ptac . We characterized the resultant production trains in which either Ptic or Ptac promoters direct Fab' fragment expression. The Ptic promoter strain showed a 25-30% reduction in Fab' expression relative to the original Ptac strain. Reduced Fab' leakage and increased viability over the course of a fed-batch fermentation were also observed for the Ptic promoter strain. We conclude that cell design steps such as the Ptac to Ptic promoter conversion reported here, can yield significant process benefit and understanding with respect to periplasmic Fab' fragment production. It remains an open question as to whether the influence of transgene expression on periplasmic retention is mediated by global metabolic burden effects or periplasm overcapacity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:840-847, 2016.
Collapse
Affiliation(s)
- Desmond M Schofield
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT
| | - Alex Templar
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT
| | - Joseph Newton
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT
| | - Darren N Nesbeth
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London, WC1E 6BT
| |
Collapse
|
3
|
Ma RQ, He F, Wen HS, Li JF, Mu WJ, Liu M, Zhang YQ, Hu J, Qun L. Polymorphysims of CYP17-I Gene in the Exons Were Associated with the Reproductive Endocrine of Japanese Flounder (Paralichthys olivaceus). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:794-9. [PMID: 25049628 PMCID: PMC4093092 DOI: 10.5713/ajas.2011.11489] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/03/2012] [Accepted: 01/17/2012] [Indexed: 11/27/2022]
Abstract
The cytochrome P450c17-I (CYP17-I) is one of the enzymes critical to gonadal development and the synthesis of androgens. Two single nucleotide polymorphisms (SNPs) were detected within the coding region of the CYP17-I gene in a population of 75 male Japanese flounder (Paralichthys olivaceus). They were SNP1 (c.C445T) located in exon2 and SNP2 (c.T980C (p.Phe307Leu)) located in exon5. Four physiological indices, which were serum testosterone (T), serum 17β-estradiol (E2), Hepatosomatic index (HSI), and Gonadosomatic index (GSI), were studied to examine the effect of the two SNPs on the reproductive endocrines of Japanese flounder. Multiple comparisons revealed that CT genotype of SNP1 had a much lower T level than CC genotype (p<0.05) and the GSI of individuals with CC genotype of SNP2 was higher than those with TT genotype (p<0.05). Four diplotypes were constructed based on the two SNPs and the diplotype D3 had a significantly lower T level and GSI. In conclusion, the two SNPs were significantly associated with reproductive traits of Japanese flounder.
Collapse
|
4
|
Gupta S, Bram EE, Weiss R. Genetically programmable pathogen sense and destroy. ACS Synth Biol 2013; 2:715-23. [PMID: 23763381 DOI: 10.1021/sb4000417] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a major cause of urinary tract and nosocomial infections. Here, we propose and demonstrate proof-of-principle for a potential cell therapy approach against P. aeruginosa. Using principles of synthetic biology, we genetically modified E. coli to specifically detect wild type P. aeruginosa (PAO1) via its quorum sensing (QS) molecule, 3OC 12 HSL. Engineered E. coli sentinels respond to the presence of 3OC 12 HSL by secreting CoPy, a novel pathogen-specific engineered chimeric bacteriocin, into the extracellular medium using the flagellar secretion tag FlgM. Extracellular FlgM-CoPy is designed to kill PAO1 specifically. CoPy was constructed by replacing the receptor and translocase domain of Colicin E3 with that of Pyocin S3. We show that CoPy toxicity is PAO1 specific, not affecting sentinel E. coli or the other bacterial strains tested. In order to define the system's basic requirements and PAO1-killing capabilities, we further determined the growth rates of PAO1 under different conditions and concentrations of purified and secreted FlgM-CoPy. The integrated system was tested by co-culturing PAO1 cells, on semisolid agar plates, together with engineered sentinel E. coli, capable of secreting FlgM-CoPy when induced by 3OC 12 HSL. Optical microscopy results show that the engineered E. coli sentinels successfully inhibit PAO1 growth.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Eran E. Bram
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139, United States
| |
Collapse
|
5
|
Palle SR, Seeve CM, Eckert AJ, Wegrzyn JL, Neale DB, Loopstra CA. Association of loblolly pine xylem development gene expression with single-nucleotide polymorphisms. TREE PHYSIOLOGY 2013; 33:763-74. [PMID: 23933831 DOI: 10.1093/treephys/tpt054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Variation in the expression of genes with putative roles in wood development was associated with single-nucleotide polymorphisms (SNPs) using a population of loblolly pine (Pinus taeda L.) that included individuals from much of the native range. Association studies were performed using 3938 SNPs and expression data obtained using quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) for 106 xylem development genes in 400 clonally replicated loblolly pine individuals. A general linear model (GLM) approach, which takes the underlying population structure into consideration, was used to discover significant associations. After adjustment for multiple testing using a false discovery rate correction, 88 statistically significant associations (Q<0.05) were observed for 80 SNPs with the expression data of 33 xylem development genes. Thirty SNPs caused nonsynonymous mutations, 18 resulted in synonymous mutations, 11 were in 3' untranslated regions (UTRs), 1 was in a 5' UTR and 20 were in introns. Using AraNet, we found that Arabidopsis genes with high similarity to the loblolly pine genes involved in 21 of the 88 statistically significant associations are connected in functional gene networks. Comparisons of gene expression values revealed that in most cases the average expression in plants homozygous for the rare SNP allele was lower than that of plants that were heterozygous or homozygous for the abundant allele. Although there are association studies of SNPs and expression profiles for humans, Arabidopsis and white spruce, to the best of our knowledge, this is the first example of such an association genetic study in pines. Functional validation of these associations will lead to a deeper understanding of the molecular basis of phenotypic differences in wood development among individuals in conifer populations.
Collapse
Affiliation(s)
- Sreenath R Palle
- Department of Ecosystem Science and Management, Molecular and Environmental Plant Sciences, Texas A&M University, TAMU 2138, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gupta P, Swanberg JC, Lee KH. A single nucleotide polymorphism in ycdC alters tRNA synthetase expression and results in hypersecretion in Escherichia coli. Biotechnol Prog 2012; 28:646-53. [PMID: 22505047 DOI: 10.1002/btpr.1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/06/2012] [Indexed: 11/08/2022]
Abstract
The most important approach to the development of platform organisms for recombinant protein production relies on random mutagenesis and phenotypic selection. Complex phenotypes, including those associated with significantly elevated expression and secretion of heterologous proteins, are the result of multiple genomic mutations. Using next generation sequencing, a parent and derivative hypersecreter strain (B41) of Escherichia coli were sequenced with an average coverage of 52.8X and 55X, respectively. A new base-pair calling program, revealed a single nucleotide polymorphism in the B41 genome at position 1,074,787, resulting in translation termination near the N-terminus of a transcriptional regulator protein, RutR, coded by the ycdC gene. We verified the hypersecretion phenotype in a ycdC::Tn5 mutant and observed a 3.4-fold increase in active hemolysin secretion, consistent with the increase observed in B41 strain. mRNA expression profiling showed decreased expression of tRNA-synthetases and some amino acid transporters in the ycdC::Tn5 mutant. This study demonstrates the power of next generation sequencing to characterize mutants leading to successful metabolic engineering strategies for strain improvement.
Collapse
Affiliation(s)
- Prateek Gupta
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
7
|
Deane CM, Saunders R. The imprint of codons on protein structure. Biotechnol J 2011; 6:641-9. [DOI: 10.1002/biot.201000329] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/23/2011] [Indexed: 12/23/2022]
|
8
|
Low KO, Mahadi NM, Rahim RA, Rabu A, Abu Bakar FD, Murad AMA, Illias RM. An effective extracellular protein secretion by an ABC transporter system in Escherichia coli: statistical modeling and optimization of cyclodextrin glucanotransferase secretory production. J Ind Microbiol Biotechnol 2011; 38:1587-97. [PMID: 21336875 DOI: 10.1007/s10295-011-0949-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/02/2011] [Indexed: 11/27/2022]
Abstract
Direct transport of recombinant protein from cytosol to extracellular medium offers great advantages, such as high specific activity and a simple purification step. This work presents an investigation on the potential of an ABC (ATP-binding cassette) transporter system, the hemolysin transport system, for efficient protein secretion in Escherichia coli (E. coli). A higher secretory production of recombinant cyclodextrin glucanotransferase (CGTase) was achieved by a new plasmid design and subsequently by optimization of culture conditions via central composite design. An improvement of at least fourfold extracellular recombinant CGTase was obtained using the new plasmid design. The optimization process consisted of 20 experiments involving six star points and six replicates at the central point. The predicted optimum culture conditions for maximum recombinant CGTase secretion were found to be 25.76 μM IPTG, 1.0% (w/v) arabinose and 34.7°C post-induction temperature, with a predicted extracellular CGTase activity of 68.76 U/ml. Validation of the model gave an extracellular CGTase activity of 69.15 ± 0.71 U/ml, resulting in a 3.45-fold increase compared to the initial conditions. This corresponded to an extracellular CGTase yield of about 0.58 mg/l. We showed that a synergistic balance of transported protein and secretory pathway is important for efficient protein transport. In addition, we also demonstrated the first successful removal of the C-terminal secretion signal from the transported fusion protein by thrombin proteolytic cleavage.
Collapse
Affiliation(s)
- Kheng Oon Low
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
9
|
Enhanced secretory production of hemolysin-mediated cyclodextrin glucanotransferase in Escherichia coli by random mutagenesis of the ABC transporter system. J Biotechnol 2010; 150:453-9. [PMID: 20959127 DOI: 10.1016/j.jbiotec.2010.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/20/2022]
Abstract
The hemolysin transport system was found to mediate the release of cyclodextrin glucanotransferase (CGTase) into the extracellular medium when it was fused to the C-terminal 61 amino acids of HlyA (HlyAs(61)). To produce an improved-secretion variant, the hly components (hlyAs, hlyB and hlyD) were engineered by directed evolution using error-prone PCR. Hly mutants were screened on solid LB-starch plate for halo zone larger than the parent strain. Through screening of about 1 × 10(4) Escherichia coli BL21(DE3) transformants, we succeeded in isolating five mutants that showed a 35-217% increase in the secretion level of CGTase-HlyAs(61) relative to the wild-type strain. The mutation sites of each mutant were located at HlyB, primarily along the transmembrane domain, implying that the corresponding region was important for the improved secretion of the target protein. In this study we describe the finding of novel site(s) of HlyB responsible for enhancing secretion of CGTase in E. coli.
Collapse
|
10
|
|
11
|
Liao PY, Choi YS, Lee KH. FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots. Nucleic Acids Res 2010; 37:7302-11. [PMID: 19783813 PMCID: PMC2790909 DOI: 10.1093/nar/gkp796] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In +1 programmed ribosomal frameshifting (PRF), ribosomes skip one nucleotide toward the 3'-end during translation. Most of the genes known to demonstrate +1 PRF have been discovered by chance or by searching homologous genes. Here, a bioinformatic framework called FSscan is developed to perform a systematic search for potential +1 frameshift sites in the Escherichia coli genome. Based on a current state of the art understanding of the mechanism of +1 PRF, FSscan calculates scores for a 16-nt window along a gene sequence according to different effects of the stimulatory signals, and ribosome E-, P- and A-site interactions. FSscan successfully identified the +1 PRF site in prfB and predicted yehP, pepP, nuoE and cheA as +1 frameshift candidates in the E. coli genome. Empirical results demonstrated that potential +1 frameshift sequences identified promoted significant levels of +1 frameshifting in vivo. Mass spectrometry analysis confirmed the presence of the frameshifted proteins expressed from a yehP-egfp fusion construct. FSscan allows a genome-wide and systematic search for +1 frameshift sites in E. coli. The results have implications for bioinformatic identification of novel frameshift proteins, ribosomal frameshifting, coding sequence detection and the application of mass spectrometry on studying frameshift proteins.
Collapse
Affiliation(s)
- Pei-Yu Liao
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Yong Seok Choi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Kelvin H. Lee
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York and Chemical Engineering Department and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- *To whom correspondence should be addressed. Tel: +1 302 831 0344;
| |
Collapse
|
12
|
Ni Y, Chen R. Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 2009; 31:1661-70. [PMID: 19597765 DOI: 10.1007/s10529-009-0077-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/09/2009] [Accepted: 06/11/2009] [Indexed: 01/17/2023]
Abstract
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.
Collapse
Affiliation(s)
- Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China
| | | |
Collapse
|