1
|
Wu Y, Zhang X, Zhao Q, Tan B, Chen X, Liao J. Role of Hydrogels in Bone Tissue Engineering: How Properties Shape Regeneration. J Biomed Nanotechnol 2020; 16:1667-1686. [PMID: 33485397 DOI: 10.1166/jbn.2020.2997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone defect that resulted from trauma, tumors, and other reasons is believed as a common clinical problem, which exists mainly in post-traumatic healing. Additionally, autologous/allogeneic transplantation, bone tissue engineering attracts increasing attention due to the existing problem of the limited donor. The applications of biomaterials can be considered as a rising and promising strategy for bone regeneration. Especially, hydrogel is featured with hydrophilic characteristic, good biocompatibility, and porous structure, which shows unique properties for bone regeneration. The main properties of hydrogel such as surface property, adhesive property, mechanical property, porosity, and degradation property, generally present influences on the migration, proliferation, and differentiation of mesenchymal stem cells exclusively or in combination, which consequently affect the regeneration of bones. This review mainly focuses on the theme: "how properties of hydrogel shape bone regeneration." Moreover, the latest progress achieved in the above mentioned direction is further discussed. Despite the fascinating advances researchers have made, certain potential challenges continue to exist in the research field, which need to be addressed for accelerating the clinical translation of hydrogel in bone regeneration.
Collapse
|
2
|
Arabiyat AS, Becerra-Bayona S, Kamaldinov T, Munoz-Pinto DJ, Hahn MS. Hydrogel Properties May Influence Mesenchymal Stem Cell Lineage Progression Through Modulating GAPDH Activity. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00164-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Lopa S, Piraino F, Talò G, Mainardi VL, Bersini S, Pierro M, Zagra L, Rasponi M, Moretti M. Microfluidic Biofabrication of 3D Multicellular Spheroids by Modulation of Non-geometrical Parameters. Front Bioeng Biotechnol 2020; 8:366. [PMID: 32432090 PMCID: PMC7214796 DOI: 10.3389/fbioe.2020.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) cell spheroids are being increasingly applied in many research fields due to their enhanced biological functions as compared to conventional two-dimensional (2D) cultures. 3D cell spheroids can replicate tissue functions, which enables their use both as in vitro models and as building blocks in tissue biofabrication approaches. In this study, we developed a perfusable microfluidic platform suitable for robust and reproducible 3D cell spheroid formation and tissue maturation. The geometry of the device was optimized through computational fluid dynamic (CFD) simulations to improve cell trapping. Experimental data were used in turn to generate a model able to predict the number of trapped cells as a function of cell concentration, flow rate, and seeding time. We demonstrated that tuning non-geometrical parameters it is possible to control the size and shape of 3D cell spheroids generated using articular chondrocytes (ACs) as cellular model. After seeding, cells were cultured under perfusion at different flow rates (20, 100, and 500 μl/min), which induced the formation of conical and spherical spheroids. Wall shear stress values on cell spheroids, computed by CFD simulations, increased accordingly to the flow rate while remaining under the chondroprotective threshold in all configurations. The effect of flow rate on cell number, metabolic activity, and tissue-specific matrix deposition was evaluated and correlated with fluid velocity and shear stress distribution. The obtained results demonstrated that our device represents a helpful tool to generate stable 3D cell spheroids which can find application both to develop advanced in vitro models for the study of physio-pathological tissue maturation mechanisms and to obtain building blocks for the biofabrication of macrotissues.
Collapse
Affiliation(s)
- Silvia Lopa
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Francesco Piraino
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Valerio Luca Mainardi
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Laboratory for Biological Structures Mechanics, Chemistry, Material and Chemical Engineering Department "Giulio Natta," Politecnico di Milano, Milan, Italy
| | - Simone Bersini
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Margherita Pierro
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy
| | - Luigi Zagra
- IRCCS Istituto Ortopedico Galeazzi, Hip Department, Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Milan, Italy.,Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Lugano, Switzerland
| |
Collapse
|
4
|
Al-Sabah A, Burnell SE, Simoes IN, Jessop Z, Badiei N, Blain E, Whitaker IS. Structural and mechanical characterization of crosslinked and sterilised nanocellulose-based hydrogels for cartilage tissue engineering. Carbohydr Polym 2019; 212:242-251. [DOI: 10.1016/j.carbpol.2019.02.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 11/30/2022]
|
5
|
Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor. Methods Mol Biol 2016; 1502:63-75. [PMID: 27115505 DOI: 10.1007/7651_2016_354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs) are capable of differentiating into almost all cell types in vitro and hold great promise for drug screening, developmental studies and have a huge potential in many therapeutic areas. ESCs can aggregate to form embryoid body (EB) in static suspension culture by spontaneous differentiation, which resembles an intact embryo; while static suspension culture cannot prevent agglomeration of cells and offers little control over the size and shape of EBs, it results in aggregation of EBs into large, irregular masses, which prejudice the efficiency of differentiation of cells. Recently, bioreactor-based platforms have been shown to not only offer a beneficial effect on increasing diffusion of nutrients and oxygen which promotes cell viability and proliferation but also display local biomechanical properties (e.g., low fluid shear stresses and hydrodynamic force) in tissue development and organogenesis. This chapter describes a protocol for using a rotary suspension bioreactor to produce embryoid bodies and process the differentiation of mouse embryonic stem cells (mESCs), and to assess the efficiency of EB differentiation in the bioreactor by real-time PCR and immunostaining.
Collapse
|
6
|
Rennerfeldt DA, Renth AN, Talata Z, Gehrke SH, Detamore MS. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering. Biomaterials 2013; 34:8241-57. [PMID: 23932504 PMCID: PMC3773240 DOI: 10.1016/j.biomaterials.2013.07.052] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/18/2013] [Indexed: 10/26/2022]
Abstract
Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells.
Collapse
Affiliation(s)
- Deena A Rennerfeldt
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|
7
|
Ko CY, Yang CY, Yang SR, Ku KL, Tsao CK, Chwei-Chin Chuang D, Chu IM, Cheng MH. Cartilage formation through alterations of amphiphilicity of poly(ethylene glycol)–poly(caprolactone) copolymer hydrogels. RSC Adv 2013. [DOI: 10.1039/c3ra42406e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Khan AA, Surrao DC. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering. Tissue Eng Part C Methods 2011; 18:358-68. [PMID: 22092352 DOI: 10.1089/ten.tec.2011.0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In cartilage tissue engineering an optimized culture system, maintaining an appropriate extracellular environment (e.g., pH of media), can increase cell proliferation and extracellular matrix (ECM) accumulation. We have previously reported on a continuous-flow bioreactor that improves tissue growth by supplying the cells with a near infinite supply of medium. Previous studies have observed that acidic environments reduce ECM synthesis and chondrocyte proliferation. Hence, in this study we investigated the combined effects of a continuous culture system (bioreactor) together with additional buffering agents (e.g., sodium bicarbonate [NaHCO₃]) on cartilaginous tissue growth in vitro. Isolated bovine chondrocytes were grown in three-dimensional cultures, either in static conditions or in a continuous-flow bioreactor, in media with or without NaHCO₃. Tissue constructs cultivated in the bioreactor with NaHCO₃-supplemented media were characterized with significantly increased (p<0.05) ECM accumulation (glycosaminoglycans a 98-fold increase; collagen a 25-fold increase) and a 13-fold increase in cell proliferation, in comparison with static cultures. Additionally, constructs grown in the bioreactor with NaHCO₃-supplemented media were significantly thicker than all other constructs (p<0.05). Further, the chondrocytes from the primary construct expanded and synthesized ECM, forming a secondary construct without a separate expansion phase, with a diameter and thickness of 4 mm and 0.72 mm respectively. Tissue outgrowth was negligible in all other culturing conditions. Thus this study demonstrates the advantage of employing a continuous flow bioreactor coupled with NaHCO₃ supplemented media for articular cartilage tissue engineering.
Collapse
Affiliation(s)
- Aasma A Khan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom.
| | | |
Collapse
|
9
|
Roberts JJ, Nicodemus GD, Giunta S, Bryant SJ. Incorporation of biomimetic matrix molecules in PEG hydrogels enhances matrix deposition and reduces load-induced loss of chondrocyte-secreted matrix. J Biomed Mater Res A 2011; 97:281-91. [PMID: 21442729 DOI: 10.1002/jbm.a.33057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 12/21/2010] [Accepted: 01/20/2011] [Indexed: 01/12/2023]
Abstract
Poly(ethylene glycol) (PEG) hydrogels offer numerous advantages in designing controlled 3D environments for cartilage regeneration, but offer little biorecognition for the cells. Incorporating molecules that more closely mimic the native tissue may provide key signals for matrix synthesis and may also help in the retention of neotissue, particularly when mechanical stimulation is employed. Therefore, this research tested the hypothesis that exogenous hyaluronan encapsulated within PEG hydrogels improves tissue deposition by chondrocytes, while the incorporation of Link-N (DHLSDNYTLDHDRAIH), a fragment of link protein that is involved in stabilizing hyaluronan and aggrecan in cartilage, aids in the retention of the entrapped hyaluronan as well as cell-secreted glycosaminoglycans (GAGs), particularly when dynamic loading is employed. The incorporation of Link-N as covalent tethers resulted in a significant reduction, ~60%, in the loss of entrapped exogenous hyaluronan under dynamic stimulation. When chondrocytes were encapsulated in PEG hydrogels containing exogenous hyaluronan and/or Link-N, the extracellular matrix (ECM) analogs aided in the retention of cell-secreted GAGs under loading. The presence of hyaluronan led to enhanced deposition of collagen type II and aggrecan. In conclusion, our results highlight the importance of ECM analogs, specifically hyaluronan and Link-N, in matrix retention and matrix development and offer new strategies for designing scaffolds for cartilage regeneration.
Collapse
Affiliation(s)
- Justine J Roberts
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
10
|
Influence of physical properties of biomaterials on cellular behavior. Pharm Res 2011; 28:1422-30. [PMID: 21331474 PMCID: PMC3099000 DOI: 10.1007/s11095-011-0378-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 01/19/2011] [Indexed: 01/06/2023]
Abstract
Purpose In this study, we evaluated the effect of hydrogel structural properties on proliferation and biosynthesis activity of encapsulated chondrocytes. Methods Hydrogels with varying structural and mechanical properties were prepared by photopolymerizing PEGDA precursors having MWs of 3.4 kDa, 6 kDa, 10 kDa, and 20 kDa and were characterized for their swelling ratio, network structure, morphology, and mechanical properties. The effect of hydrogel structural properties on the cellular activity of encapsulated chondrocytes was studied over four weeks. Results Varying the molecular weight of PEGDA precursors exhibited a significant effect on the structural and mechanical properties of the hydrogels. Large mesh size was found to support cell proliferation. However, extracellular matrix (ECM) accumulation varied with the precursor molecular weight. Both PEGDA 6 kDa and 10 kDa hydrogels supported GAG accumulation, while PEGDA 10 kDa and 20KDa hydrogels supported collagen accumulation. Chondrocytes cultured in PEGDA 10 kDa hydrogels expressed a relative increase in collagen type II and aggrecan expression while maintaining low collagen type I expression. Conclusions Increasing mesh size of the hydrogels resulted in an increase in cellular proliferation exhibiting the strong correlation between mesh size and cell growth, while mesh size had a differential effect on ECM accumulation and expression of cartilage specific markers. Electronic Supplementary Material The online version of this article (doi:10.1007/s11095-011-0378-9) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Detzel CJ, Van Wie BJ. Use of a centrifugal bioreactor for cartilaginous tissue formation from isolated chondrocytes. Biotechnol Prog 2011; 27:451-9. [PMID: 21290617 DOI: 10.1002/btpr.551] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 09/10/2010] [Indexed: 11/09/2022]
Abstract
Although a centrifugal bioreactor (CCBR) supports high-density mammalian suspension cell cultures by balancing drag, buoyancy, and centrifugal forces, to date anchorage-dependent cultures have not been tried. Also, steady or intermittent hydrostatic pressures of 8 to 500 kPa, and shears of 0.02 to 1.4 N/m(2) can be simultaneously applied in the CCBR. This article demonstrates the use of a CCBR to stimulate chondrogenesis in a high-density culture. At 3 weeks, histological results show even distribution of glycosaminoglycan (GAG) and collagen, with 1,890 ± 270 cells/mm(2) cell densities that exceed those of 1,470 ± 270 in pellet cultures. Analysis of collagen content reveals similar levels for all treatment groups; 6.8 ± 3.5 and 5.0 ± 0.4 μg collagen/μg DNA for 0.07 and 0.26 MPa CCBR cultures, respectively, in contrast to 6.6 ± 1.9 values for control pellet cultures. GAG levels of 5.6 ± 1.5 and 4.1 ± 0.9 μg GAG /μg DNA are present for cultures stressed at 0.07 and 0.26 MPa, respectively, in comparison to control pellet cultures at the 8.4 ± 0.9 level. Although results to date have not revealed mechanical stress combinations that stimulate chondrogenesis over unstressed controls, system advantages include continuous culture at cell densities above those in the pellet, precise medium control, the ability to independently vary multiple mechanical stresses over a broad range, and the flexibility for integration of scaffold features for future chondrogenesis stimulation studies.
Collapse
Affiliation(s)
- Christopher J Detzel
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 642710, Pullman, WA 99164, USA
| | | |
Collapse
|
12
|
Nicodemus G, Skaalure S, Bryant S. Gel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogels. Acta Biomater 2011; 7:492-504. [PMID: 20804868 DOI: 10.1016/j.actbio.2010.08.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 08/02/2010] [Accepted: 08/24/2010] [Indexed: 11/24/2022]
Abstract
While designing poly(ethylene glycol) hydrogels with high moduli suitable for in situ placement is attractive for cartilage regeneration, the impact of a tighter crosslinked structure on the organization and deposition of the matrix is not fully understood. The objectives of this study were to characterize the composition and spatial organization of new matrix as a function of gel crosslinking and study its impact on chondrocytes in terms of anabolic and catabolic gene expression and catabolic activity. Bovine articular chondrocytes were encapsulated in hydrogels with three crosslinking densities (compressive moduli 60, 320 and 590 kPa) and cultured for 25 days. Glycosaminoglycan production increased with culture time and was greatest in the gels with lowest crosslinking. Collagens II and VI, aggrecan, link protein and decorin were localized to pericellular regions in all gels, but their presence decreased with increasing gel crosslinking. Collagen II and aggrecan expression were initially up-regulated in gels with higher crosslinking, but increased similarly up to day 15. Matrix metalloproteinase (MMP)-1 and MMP-13 expression were elevated (∼25-fold) in gels with higher crosslinking throughout the study, while MMP-3 was unaffected by gel crosslinking. The presence of aggrecan and collagen degradation products confirmed MMP activity. These findings indicate that chondrocytes synthesized the major cartilage components within PEG hydrogels, however, gel structure had a significant impact on the composition and spatial organization of the new tissue and on how chondrocytes responded to their environment, particularly with respect to their catabolic expression.
Collapse
|
13
|
Kelly SE, Di Benedetto A, Greco A, Howard CM, Sollars VE, Primerano DA, Valluri JV, Claudio PP. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications. PLoS One 2010; 5:e10035. [PMID: 20386701 PMCID: PMC2851647 DOI: 10.1371/journal.pone.0010035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133(+)] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB) (Celdyne, Houston, TX). For comparison, another bioreactor, the rotary cell culture system (RCCS) manufactured by Synthecon (Houston, TX) was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133(+) cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a (+)15-fold proliferation of the CD133(+) cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (−)4.8-fold decrease in the CD133(+)cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133(+) cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.
Collapse
Affiliation(s)
- Sarah E. Kelly
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Altomare Di Benedetto
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- Department of Basic and Applied Biology, Faculty of Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adelaide Greco
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- CEINGE-Advanced Biotechnology, s.c.ar.l., Naples, Italy
- Department of Biomorphological and Functional Science, University of Naples “Federico II”, and IBB-CNR, Naples, Italy
| | - Candace M. Howard
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Vincent E. Sollars
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Donald A. Primerano
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
| | - Jagan V. Valluri
- Department of Biology, Marshall University, Huntington, West Virginia, United States of America
| | - Pier Paolo Claudio
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- Department of Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
14
|
A versatile pH sensitive chondroitin sulfate-PEG tissue adhesive and hydrogel. Biomaterials 2010; 31:2788-97. [PMID: 20047758 DOI: 10.1016/j.biomaterials.2009.12.033] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 12/13/2009] [Indexed: 11/24/2022]
Abstract
We developed a chondroitin sulfate-polyethylene glycol (CS-PEG) adhesive hydrogel with numerous potential biomedical applications. The carboxyl groups on chondroitin sulfate (CS) chains were functionalized with N-hydroxysuccinimide (NHS) to yield chondroitin sulfate succinimidyl succinate (CS-NHS). Following purification, the CS-NHS molecule can react with primary amines to form amide bonds. Hence, using six arm polyethylene glycol amine PEG-(NH2)6 as a crosslinker we formed a hydrogel which was covalently bound to proteins in tissue via amide bonds. By varying the initial pH of the precursor solutions, the hydrogel stiffness, swelling properties, and kinetics of gelation could be controlled. The sealing/adhesive strength could also be modified by varying the damping and storage modulus properties of the material. The adhesive strength of the material with cartilage tissue was shown to be ten times higher than that of fibrin glue. Cells encapsulated or in direct contact with the material remained viable and metabolically active. Furthermore, CS-PEG material produced minimal inflammatory response when implanted subcutaneously in a rat model and enzymatic degradation was demonstrated in vitro. This work establishes an adhesive hydrogel derived from biological and synthetic components with potential application in wound healing and regenerative medicine.
Collapse
|
15
|
Sun S, Cao H, Su H, Tan T. Preparation and characterization of a novel injectable in situ cross-linked hydrogel. Polym Bull (Berl) 2009. [DOI: 10.1007/s00289-009-0048-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
|