1
|
Eduardo Hernández-Guisao R, Axayacatl González-García R, McCubbin T, Guerra-Blanco P, Salgado Manjarrez E, Aranda-Barradas J, Velasco A, Inés García-Peña E. Proteomic analysis of natural photoheterotrophic mixed consortium for biohydrogen production under nongrowing conditions. BIORESOURCE TECHNOLOGY 2025; 419:132023. [PMID: 39732376 DOI: 10.1016/j.biortech.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
A biohydrogen and polyhydroxyalkanoates (PHA)-producing natural photoheterotrophic mixed culture composed mainly by Rhodopseudomonas palustris and Clostridium sp was studied by a proteomic analysis under non-growth conditions (nitrogen-absence and organic acids). Proteins in C. pasteurianum were upregulated, particularly those related to stress response. In contrast, C. pasteurianum in the consortium did not present such proteins, showing the advantage of being part of it. Both cultures showed proteins involved in organic acid metabolism and biohydrogen production, such as lactate dehydrogenase, ferredoxins, and hydrogenases. Proteomes of R. palustris as single culture and in consortium showed that organic acids were redirected into central carbon pathways to generate reduced equivalents for biohydrogen production. Light-harvesting proteins and fatty acid metabolism linked to PHA accumulation were also upregulated. This study provides insights into how the proteomes of individual organisms and their consortium counterparts adapt to non-growth conditions, shedding light on how microbial interactions influence protein expression.
Collapse
Affiliation(s)
| | - Ricardo Axayacatl González-García
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Brisbane 4072, Australia; Integrated Design Environment for Advanced Biomanufacturing (IDEA Bio), The University of Queensland, Queensland, Brisbane 4072, Australia
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Queensland, Brisbane 4072, Australia; ARC Centre of Excellence in Synthetic Biology, The University of Queensland, Queensland, Australia
| | - Pamela Guerra-Blanco
- Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, P.O. Box 07340, México City, México
| | - Edgar Salgado Manjarrez
- Bioengineering Department Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico
| | - Juan Aranda-Barradas
- Bioengineering Department Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico
| | - Antonio Velasco
- Bioprocesses Department, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico
| | - Elvia Inés García-Peña
- Bioprocesses Department, Instituto Politécnico Nacional, P.O. Box 07340, Mexico City, Mexico.
| |
Collapse
|
2
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Wang WY, Wang BP, Su HS, Wei MM, Wei YT, Niu FX. Key role of K + and Ca 2+ in high-yield ethanol production by S. Cerevisiae from concentrated sugarcane molasses. Microb Cell Fact 2024; 23:123. [PMID: 38724968 PMCID: PMC11080136 DOI: 10.1186/s12934-024-02401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.
Collapse
Affiliation(s)
- Wei-Yang Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, China
- Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bei-Ping Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Hai-Song Su
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Mei-Ming Wei
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, China
| | - Yu-Tuo Wei
- Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fu-Xing Niu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, China.
| |
Collapse
|
4
|
Zhao Y, Hu L, Hou Y, Wang Y, Peng Y, Nie X. Toxic effects of environmentally relevant concentrations of naproxen exposure on Daphnia magna including antioxidant system, development, and reproduction. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106794. [PMID: 38064890 DOI: 10.1016/j.aquatox.2023.106794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Naproxen (NPX) is one of common non-prescription non-steroidal anti-inflammatory drugs (NSAIDs) which is widely detected in aquatic environments worldwide due to its high usage and low degradation. NPX exerts anti-inflammatory and analgesic pharmacological effects through the inhibition of prostaglandin-endoperoxide synthase (PTGS), also known as cyclooxygenase (COX). Given its evolutionarily relatively conserved biological functions, the potential toxic effects of NPX on non-target aquatic organisms deserve more attention. However, the ecotoxicological studies of NPX mainly focused on its acute toxic effects under higher concentrations while the chronic toxic effects under realistic concentrations exposure, especially for the underlying molecular mechanisms still remain unclear. In the present study, Daphnia magna, being widely distributed in freshwater aquatic environments, was selected to investigate the toxic effects of environmentally relevant concentrations of NPX via determining the response of the Nrf2/Keap1 signaling pathway-mediated antioxidant system in acute exposure, as well as the changes in life-history traits, such as growth, reproduction, and behavior in chronic exposure. The results showed that the short-term exposure to NPX (24 h and 48 h) suppressed ptgs2 expression while activating Nrf2/Keap1 signaling pathway and its downstream antioxidant genes (ho-1, sod, cat and trxr). However, with prolonged exposure to 96 h, the opposite performance was observed, the accumulation of malondialdehyde (MDA) indicated that D. magna suffered from severe oxidative stress. To maintain homeostasis, the exposed organism may trigger ferroptosis and apoptosis processes with the help of Silent mating type information regulation 2 homologs (SIRTs). The long-term chronic exposure to NPX (21 days) caused toxic effects on D. magna at the individual and population levels, including growth, reproduction and behavior, which may be closely related to the oxidative stress induced by the drug. The present study suggested that more attention should be paid to the ecological risk assessment of NSAIDs including NPX on aquatic non-target organisms.
Collapse
Affiliation(s)
- Yufei Zhao
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Limei Hu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yingshi Hou
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Yimeng Wang
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Ying Peng
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Xiangping Nie
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
5
|
Gao S, Liao Y, He H, Yang H, Yang X, Xu S, Wang X, Chen K, Ouyang P. Advance of tolerance engineering on microbes for industrial production. Synth Syst Biotechnol 2023; 8:697-707. [PMID: 38025766 PMCID: PMC10656194 DOI: 10.1016/j.synbio.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.
Collapse
Affiliation(s)
- Siyuan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Yang Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Hao He
- Petrochemical Research Institute of PetroChina Co. Ltd., Beijing, 102206, China
| | - Huiling Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xuewei Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Sheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| |
Collapse
|
6
|
Fernández-Blanco C, Robles-Iglesias R, Naveira-Pazos C, Veiga MC, Kennes C. Production of biofuels from C 1 -gases with Clostridium and related bacteria-Recent advances. Microb Biotechnol 2023; 16:726-741. [PMID: 36661185 PMCID: PMC10034633 DOI: 10.1111/1751-7915.14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/21/2023] Open
Abstract
Clostridium spp. are suitable for the bioconversion of C1 -gases (e.g., CO2 , CO and syngas) into different bioproducts. These products can be used as biofuels and are reviewed here, focusing on ethanol, butanol and hexanol, mainly. The production of higher alcohols (e.g., butanol and hexanol) has hardly been reviewed. Parameters affecting the optimization of the bioconversion process and bioreactor performance are addressed as well as the pathways involved in these bioconversions. New aspects, such as mixotrophy and sugar versus gas fermentation, are also reviewed. In addition, Clostridia can also produce higher alcohols from the integration of the Wood-Ljungdahl pathway and the reverse ß-oxidation pathway, which has also not yet been comprehensively reviewed. In the latter process, the acetogen uses the reducing power of CO/syngas to reduce C4 or C6 fatty acids, previously produced by a chain elongating microorganism (commonly Clostridium kluyveri), into the corresponding bioalcohol.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Cecilia Naveira-Pazos
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research-Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña, Spain
| |
Collapse
|
7
|
Kwon SJ, Lee J, Lee HS. Metabolic changes of the acetogen Clostridium sp. AWRP through adaptation to acetate challenge. Front Microbiol 2022; 13:982442. [PMID: 36569090 PMCID: PMC9768041 DOI: 10.3389/fmicb.2022.982442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, we report the phenotypic changes that occurred in the acetogenic bacterium Clostridium sp. AWRP as a result of an adaptive laboratory evolution (ALE) under the acetate challenge. Acetate-adapted strain 46 T-a displayed acetate tolerance to acetate up to 10 g L-1 and increased ethanol production in small-scale cultures. The adapted strain showed a higher cell density than AWRP even without exogenous acetate supplementation. 46 T-a was shown to have reduced gas consumption rate and metabolite production. It was intriguing to note that 46 T-a, unlike AWRP, continued to consume H2 at low CO2 levels. Genome sequencing revealed that the adapted strain harbored three point mutations in the genes encoding an electron-bifurcating hydrogenase (Hyt) crucial for autotrophic growth in CO2 + H2, in addition to one in the dnaK gene. Transcriptome analysis revealed that most genes involved in the CO2-fixation Wood-Ljungdahl pathway and auxiliary pathways for energy conservation (e.g., Rnf complex, Nfn, etc.) were significantly down-regulated in 46 T-a. Several metabolic pathways involved in dissimilation of nucleosides and carbohydrates were significantly up-regulated in 46 T-a, indicating that 46 T-a evolved to utilize organic substrates rather than CO2 + H2. Further investigation into degeneration in carbon fixation of the acetate-adapted strain will provide practical implications for CO2 + H2 fermentation using acetogenic bacteria for long-term continuous fermentation.
Collapse
Affiliation(s)
- Soo Jae Kwon
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Joungmin Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
| | - Hyun Sook Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Busan, South Korea
- Department of Marine Biotechnology, University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
8
|
Huang MY, Wang WY, Liang ZZ, Huang YC, Yi Y, Niu FX. Enhancing the Production of Pinene in Escherichia coli by Using a Combination of Shotgun, Product-Tolerance and I-SceI Cleavage Systems. BIOLOGY 2022; 11:1484. [PMID: 36290388 PMCID: PMC9598909 DOI: 10.3390/biology11101484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Tolerance breeding through genetic engineering, sequence and omics analyses, and gene identification processes are widely used to synthesize biofuels. The majority of related mechanisms have been shown to yield endogenous genes with high expression. However, the process was time-consuming and labor-intensive, meaning there is a need to address the problems associated with the low-throughput screening method and significant time and money consumption. In this study, a combination of the limit screening method (LMS method) and product-tolerance engineering was proposed and applied. The Escherichia coli MG1655 genomic DNA library was constructed using the shotgun method. Then, the cultures were incubated at concentrations of 0.25%, 0.5%, 0.75% and 1.0% of pinene with different inhibitory effects. Finally, the genes acrB, flgFG, motB and ndk were found to be associated with the enhanced tolerance of E. coli to pinene. Using the I-SceI cleavage system, the promoters of acrB, flgFG and ndk genes were replaced with P37. The final strain increased the production of pinene from glucose by 2.1 times.
Collapse
Affiliation(s)
- Ming-Yue Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
- Department of Basic Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Wei-Yang Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Zhen-Zhen Liang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yu-Chen Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Yi Yi
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Fu-Xing Niu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Guangxi University of Science and Technology, Liuzhou 545006, China
| |
Collapse
|
9
|
Xia M, Wang D, Xia Y, Shi H, Tian Z, Zheng Y, Wang M. Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production. Microb Cell Fact 2022; 21:130. [PMID: 35761287 PMCID: PMC9238237 DOI: 10.1186/s12934-022-01824-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background Lignocellulosic biomass is recognized as an effective potential substrate for biobutanol production. Though many pretreatment and detoxification methods have been set up, the fermentability of detoxicated lignocellulosic substrate is still far lower than that of starchy feedstocks. On the other hand, the number of recent efforts on rational metabolic engineering approaches to increase butanol production in Clostridium strains is also quite limited, demonstrating the physiological complexity of solventogenic clostridia. In fact, the strain performance is greatly impacted by process control. developing efficient process control strategies could be a feasible solution to this problem. Results In this study, oxidoreduction potential (ORP) controlling was applied to increase the fermentability of enzymatically hydrolyzed steam-exploded corn stover (SECS) for butanol production. When ORP of detoxicated SECS was controlled at − 350 mV, the period of fermentation was shortened by 6 h with an increase of 27.5% in the total solvent (to 18.1 g/L) and 34.2% in butanol (to 10.2 g/L) respectively. Silico modeling revealed that the fluxes of NADPH, NADH and ATP strongly differed between the different scenarios. Quantitative analysis showed that intracellular concentrations of ATP, NADPH/NADP+, and NADH/NAD+ were increased by 25.1%, 81.8%, and 62.5%. ORP controlling also resulted in a 2.1-fold increase in butyraldehyde dehydrogenase, a 1.2-fold increase in butanol dehydrogenase and 29% increase in the cell integrity. Conclusion ORP control strategy effectively changed the intracellular metabolic spectrum and significantly improved Clostridium cell growth and butanol production. The working mechanism can be summarized into three aspects: First, Glycolysis and TCA circulation pathways were strengthened through key nodes such as pyruvate carboxylase [EC: 6.4.1.1], which provided sufficient NADH and NADPH for the cell. Second, sufficient ATP was provided to avoid “acid crash”. Third, the key enzymes activities regulating butanol biosynthesis and cell membrane integrity were improved. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01824-2.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Di Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yiming Xia
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Haijiao Shi
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Zhongyu Tian
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety. Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education. College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Yan J, Yang Z, Xie J. Comparative Transcriptome Analysis of Shewanella putrefaciens WS13 Biofilms Under Cold Stress. Front Cell Infect Microbiol 2022; 12:851521. [PMID: 35811677 PMCID: PMC9257041 DOI: 10.3389/fcimb.2022.851521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023] Open
Abstract
Shewanella putrefaciens is a Gram-negative bacterium that can cause seafood spoilage under low-temperature conditions. The bacterium easily forms biofilms to enhance its survival in challenging environments. Our previous research revealed that the biofilm formed by S. putrefaciens WS13 under the low temperature (4 °C) has larger biomass and tighter structure than at an optimum growth temperature (30 °C). In this study, comparative transcriptome analysis was further performed to get insights into the global-level of gene expression in the biofilm formed by S. putrefaciens WS13 under the refrigerating and optimal temperatures using Illumina RNA-Sequencing technique. The results revealed that a total of 761 genes were differentially expressed, of which 497 were significantly up-regulated and 264 were significantly down-regulated (p<0.05). The qRT-PCR results of randomly selected differentially expressed genes (DEGs) confirmed the RNA sequencing results. Comparison of transcriptome data revealed 28 significantly changed metabolic pathways under the cold stress, including the down-regulated chemotaxis, and motility, and up-regulated tryptophan metabolism, histidine biosynthesis, and quorum sensing, which benefited the biofilm formation of S. putrefaciens WS13 under the adverse circumstance. This study provided useful data for better understanding of the biofilm formation of S. putrefaciens, and also laid a theoretical foundation for novel vaccine and drug targets against the severe spoilage bacterium under the cold stress.
Collapse
Affiliation(s)
- Jun Yan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
| | - Zhijun Yang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- Laboratory for Quality and Safety Risk Assessment of Aquatic Products in Storage and Preservation of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- *Correspondence: Jing Xie,
| |
Collapse
|
11
|
Peng F, Ye M, Liu Y, Liu J, Lan Y, Luo A, Zhang T, Jiang Z, Song H. Comparative genomics reveals response of Rhodococcus pyridinivorans B403 to phenol after evolution. Appl Microbiol Biotechnol 2022; 106:2751-2761. [DOI: 10.1007/s00253-022-11858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022]
|
12
|
Effect of Olive Cake and Cactus Cladodes Incorporation in Goat Kids' Diet on the Rumen Microbial Community Profile and Meat Fatty Acid Composition. BIOLOGY 2021; 10:biology10121237. [PMID: 34943152 PMCID: PMC8698275 DOI: 10.3390/biology10121237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Throughout the world, the ruminant diet is based on conventional feedstuffs, which their price constantly fluctuates, and their use presents a concurrence to human nutrition. The use of alternative feed resources seems to be a solution to reduce charges and diversify ruminants’ diet. Olive cake and cactus cladodes are two alternative feed resources that are recommended to be used in ruminant feed. However, their effect on the bacterial community of ruminants is not widely investigated. This study aims to evaluate the effect of olive cake and cactus cladodes on the ruminal microbial ecosystem and meat fatty acids of goat kids. The incorporation of these feedstuffs did not change the bacterial abundance and diversity. Goat kids’ rumen liquor seemed to be able to adapt to alternative feed resources incorporation. The introduction of olive cake and cactus cladodes slightly affect meat fatty acids without a negative effect. Thus, ruminants seem to have the ability to adapt to the alternative feed resources digestion, and their use as a feed could diversify feed and reduce feed cost. Abstract The olive cake (OC) and the cactus cladodes (CC) are two alternative feed resources widely available in the southern Mediterranean region that could be used in ruminants’ diet. Their impact on the rumen bacterial ecosystem is unknown. This work aims to evaluate their effects on the microbial community and meat fatty acids of goat’s kids. Forty-four goat kids were divided into four groups receiving diets with conventional concentrate, or 35% OC, or 30% CC, or 15% OC, and 15% CC. After 3 months, these animals were slaughtered, and the rumen liquor and longissimus dorsi and semimembranosus muscles samples were collected. Animals receiving a control diet had rumen liquor with high acidity than test groups (p < 0.001). Test rumen liquor was more adapted to digest efficiently their matching diet than control liquor (p < 0.05). These feedstuffs did not affect rumen bacteria abundance and alpha diversity (richness, evenness, and reciprocal Simpson indexes), and these results were confirmed by beta-diversity tests (NMDS plot, HOMOVA, PERMANOVA). The test diets slightly affected the individual fatty acids of meat (p < 0.05) without effect on fatty acids summaries, indexes, and ratios. Thus, these alternative feed resources could take place in goat kids’ diet to diversify their feed and to reduce feed costs.
Collapse
|
13
|
Liu L, Zeng W, Yu S, Li J, Zhou J. Rapid Enabling of Gluconobacter oxydans Resistance to High D-Sorbitol Concentration and High Temperature by Microdroplet-Aided Adaptive Evolution. Front Bioeng Biotechnol 2021; 9:731247. [PMID: 34540816 PMCID: PMC8446438 DOI: 10.3389/fbioe.2021.731247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Gluconobacter oxydans is important in the conversion of D-sorbitol into l-sorbose, which is an essential intermediate for industrial-scale production of vitamin C. In a previous study, the strain G. oxydans WSH-004 could directly produce 2-keto-l-gulonic acid (2-KLG). However, its D-sorbitol tolerance was poor compared with that of other common industrial G. oxydans strains, which grew well in the presence of more than 200 g/L of D-sorbitol. This study aimed to use the microbial microdroplet culture (MMC) system for the adaptive evolution of G. oxydans WSH-004 so as to improve its tolerance to high substrate concentration and high temperature. A series of adaptively evolved strains, G. oxydans MMC1-MMC10, were obtained within 90 days. The results showed that the best strain MMC10 grew in a 300 g/L of D-sorbitol medium at 40°C. The comparative genomic analysis revealed that genetic changes related to increased tolerance were mainly in protein translation genes. Compared with the traditional adaptive evolution method, the application of microdroplet-aided adaptive evolution could improve the efficiency in terms of reducing time and simplifying the procedure for strain evolution. This research indicated that the microdroplet-aided adaptive evolution was an effective tool for improving the phenotypes with undemonstrated genotypes in a short time.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Costa P, Usai G, Re A, Manfredi M, Mannino G, Bertea CM, Pessione E, Mazzoli R. Clostridium cellulovorans Proteomic Responses to Butanol Stress. Front Microbiol 2021; 12:674639. [PMID: 34367082 PMCID: PMC8336468 DOI: 10.3389/fmicb.2021.674639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Combination of butanol-hyperproducing and hypertolerant phenotypes is essential for developing microbial strains suitable for industrial production of bio-butanol, one of the most promising liquid biofuels. Clostridium cellulovorans is among the microbial strains with the highest potential for direct production of n-butanol from lignocellulosic wastes, a process that would significantly reduce the cost of bio-butanol. However, butanol exhibits higher toxicity compared to ethanol and C. cellulovorans tolerance to this solvent is low. In the present investigation, comparative gel-free proteomics was used to study the response of C. cellulovorans to butanol challenge and understand the tolerance mechanisms activated in this condition. Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH-MS) analysis allowed identification and quantification of differentially expressed soluble proteins. The study data are available via ProteomeXchange with the identifier PXD024183. The most important response concerned modulation of protein biosynthesis, folding and degradation. Coherent with previous studies on other bacteria, several heat shock proteins (HSPs), involved in protein quality control, were up-regulated such as the chaperones GroES (Cpn10), Hsp90, and DnaJ. Globally, our data indicate that protein biosynthesis is reduced, likely not to overload HSPs. Several additional metabolic adaptations were triggered by butanol exposure such as the up-regulation of V- and F-type ATPases (involved in ATP synthesis/generation of proton motive force), enzymes involved in amino acid (e.g., arginine, lysine, methionine, and branched chain amino acids) biosynthesis and proteins involved in cell envelope re-arrangement (e.g., the products of Clocel_4136, Clocel_4137, Clocel_4144, Clocel_4162 and Clocel_4352, involved in the biosynthesis of saturated fatty acids) and a redistribution of carbon flux through fermentative pathways (acetate and formate yields were increased and decreased, respectively). Based on these experimental findings, several potential gene targets for metabolic engineering strategies aimed at improving butanol tolerance in C. cellulovorans are suggested. This includes overexpression of HSPs (e.g., GroES, Hsp90, DnaJ, ClpC), RNA chaperone Hfq, V- and F-type ATPases and a number of genes whose function in C. cellulovorans is currently unknown.
Collapse
Affiliation(s)
- Paolo Costa
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giulia Usai
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Marcello Manfredi
- Center for Translational Research on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy.,Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Enrica Pessione
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
15
|
Wu J, Yan X, Weng P, Chen G, Wu Z. Homology- and cross-resistance of Lactobacillus plantarum to acid and osmotic stress and the influence of induction conditions on its proliferation by RNA-Seq. J Basic Microbiol 2021; 61:576-590. [PMID: 33945164 DOI: 10.1002/jobm.202100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
In this study, homology- and cross-resistance of Lactobacillus plantarum L1 and Lactobacillus plantarum L2 to acid and osmotic stress were investigated. Meanwhile, its proliferation mechanism was demonstrated by transcriptomic analysis using RNA sequencing. We found that the homologous-resistance and cross-resistance of L. plantarum L1 and L. plantarum L2 increased after acid and osmotic induction treatment by lactic acid and sodium lactate solution in advance, and the survival rate of live bacteria was improved. In addition, the count of viable bacteria of L. plantarum L2 significantly increased cultivated at a pH 5.0 with a 15% sodium lactate sublethal treatment, compared with the control group. Further study revealed that genes related to membrane transport, amino acid metabolism, nucleotide metabolism, and cell growth were significantly upregulated. These findings will contribute to promote high-density cell culture of starter cultures production in the fermented food industry.
Collapse
Affiliation(s)
- Jingyi Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xu Yan
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Gong Chen
- Sichuan Food Fermentation Industry Research and Design Institute, Chengdu, Sichuan, China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Kusumawardhani H, Furtwängler B, Blommestijn M, Kaltenytė A, van der Poel J, Kolk J, Hosseini R, de Winde JH. Adaptive Laboratory Evolution Restores Solvent Tolerance in Plasmid-Cured Pseudomonas putida S12: a Molecular Analysis. Appl Environ Microbiol 2021; 87:e00041-21. [PMID: 33674430 PMCID: PMC8091024 DOI: 10.1128/aem.00041-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas putida S12 is inherently solvent tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The megaplasmid pTTS12 of P. putida S12 carries several gene clusters involved in solvent tolerance, and the removal of this megaplasmid caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent tolerance of this strain. Whole-genome sequencing identified several single nucleotide polymorphisms (SNPs) and a mobile element insertion enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% [vol/vol]). We identified mutations in an RND efflux pump regulator, arpR, that resulted in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit β', a global two-component regulatory system (GacA/GacS), and a putative AraC family transcriptional regulator, Afr. Transcriptomic analysis further revealed a constitutive downregulation of energy-consuming activities in ALE-derived strains, such as flagellar assembly, FoF1 ATP synthase, and membrane transport proteins. In summary, constitutive expression of a solvent extrusion pump in combination with high metabolic flexibility enabled the restoration of the solvent tolerance trait in P. putida S12 lacking its megaplasmid.IMPORTANCE Sustainable production of high-value chemicals can be achieved by bacterial biocatalysis. However, bioproduction of biopolymers and aromatic compounds may exert stress on the microbial production host and limit the resulting yield. Having a solvent tolerance trait is highly advantageous for microbial hosts used in the biobased production of aromatics. The presence of a megaplasmid has been linked to the solvent tolerance trait of Pseudomonas putida; however, the extent of innate, intrinsic solvent tolerance in this bacterium remained unclear. Using adaptive laboratory evolution, we successfully adapted the plasmid-cured P. putida S12 strain to regain its solvent tolerance. Through these adapted strains, we began to clarify the causes, origins, limitations, and trade-offs of the intrinsic solvent tolerance in P. putida This work sheds light on the possible genetic engineering targets to enhance solvent tolerance in Pseudomonas putida as well as other bacteria.
Collapse
Affiliation(s)
| | | | | | - Adelė Kaltenytė
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jaap van der Poel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jan Kolk
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rohola Hosseini
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
17
|
Huang Y, Smith W, Harwood C, Wipat A, Bacardit J. Computational Strategies for the Identification of a Transcriptional Biomarker Panel to Sense Cellular Growth States in Bacillus subtilis. SENSORS (BASEL, SWITZERLAND) 2021; 21:2436. [PMID: 33916259 PMCID: PMC8036383 DOI: 10.3390/s21072436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/08/2023]
Abstract
A goal of the biotechnology industry is to be able to recognise detrimental cellular states that may lead to suboptimal or anomalous growth in a bacterial population. Our current knowledge of how different environmental treatments modulate gene regulation and bring about physiology adaptations is limited, and hence it is difficult to determine the mechanisms that lead to their effects. Patterns of gene expression, revealed using technologies such as microarrays or RNA-seq, can provide useful biomarkers of different gene regulatory states indicative of a bacterium's physiological status. It is desirable to have only a few key genes as the biomarkers to reduce the costs of determining the transcriptional state by opening the way for methods such as quantitative RT-PCR and amplicon panels. In this paper, we used unsupervised machine learning to construct a transcriptional landscape model from condition-dependent transcriptome data, from which we have identified 10 clusters of samples with differentiated gene expression profiles and linked to different cellular growth states. Using an iterative feature elimination strategy, we identified a minimal panel of 10 biomarker genes that achieved 100% cross-validation accuracy in predicting the cluster assignment. Moreover, we designed and evaluated a variety of data processing strategies to ensure our methods were able to generate meaningful transcriptional landscape models, capturing relevant biological processes. Overall, the computational strategies introduced in this study facilitate the identification of a detailed set of relevant cellular growth states, and how to sense them using a reduced biomarker panel.
Collapse
Affiliation(s)
- Yiming Huang
- Interdisciplinary Computing and Complex BioSystems (ICOS) Group, School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.H.); (W.S.)
| | - Wendy Smith
- Interdisciplinary Computing and Complex BioSystems (ICOS) Group, School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.H.); (W.S.)
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Anil Wipat
- Interdisciplinary Computing and Complex BioSystems (ICOS) Group, School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.H.); (W.S.)
| | - Jaume Bacardit
- Interdisciplinary Computing and Complex BioSystems (ICOS) Group, School of Computing, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (Y.H.); (W.S.)
| |
Collapse
|
18
|
Fan X, Yuan Y, Zhang F, Ai L, Wu Z, Peng R. Expression, Rapid Purification and Functional Analysis of DnaK from Rhodococcus ruber. Protein Pept Lett 2021; 28:1023-1032. [PMID: 33645471 DOI: 10.2174/0929866528666210301150421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heat shock proteins (HSPs) represent a group of important proteins which are produced by all kinds of organisms especially under stressful conditions. DnaK, an Hsp70 homolog in prokaryotes, has indispensable roles when microbes was confronted with stress conditions. However, few data on DnaK from Rhodococcus sp. were available in the literature. In a previous study, we reported that toluene and phenol stress gave rise to a 29.87-fold and 3.93-fold increase for the expression of DnaK from R. ruber SD3, respectively. Thus, we deduced DnaK was in correlation with the organic solvent tolerance of R. ruber SD3. OBJECTIVE To elucidate the role of DnaK in the organic solvent tolerance of R. ruber SD3, expression, purification and functional analysis of Dnak from R. ruber SD3 were performed in the present paper. METHODS In this article, DnaK from R. ruber SD3 was heterologously expressed in E. coli BL21(DE3) and purified by affinity chromatography. Functional analysis of DnaK was performed using determination of kinetics, docking, assay of chaperone activity and microbial growth. RESULTS The recombinant DnaK was rapidly purified by affinity chromatography with the purification fold of 1.9 and the recovery rate of 57.9%. Km, Vmax and Kcat for Dnak from R. ruber SD3 were 80.8 μM, 58.1 nmol/min and 374.3 S-1, respectively. The recombinant protein formed trimer in vitro, with the calculated molecular weight of 214 kDa. According to In-silico analysis, DnaK interacted with other molecular chaperones and some important proteins in the metabolism. The specific activity of catalase in the presence of recombinant DnaK was 1.85 times or 2.00 times that in the presence of BSA or Tris-HCl buffer after exposure to 54 °C for 1h. E. coli transformant with pET28-dnak showed higher growth than E. coli transformant with pET28 at 43°C and in the presence of phenol, respectively. CONCLUSION The biochemical properties and the interaction analysis of DnaK from R. ruber SD3 deepened our understanding of DnaK function. DnaK played an important role in microbial growth when R. ruber was subjected to various stress such as heating and organic solvent.
Collapse
Affiliation(s)
- Xin Fan
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Yuan Yuan
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Fan Zhang
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Lei Ai
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Zhonghao Wu
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Ren Peng
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| |
Collapse
|
19
|
Patakova P, Kolek J, Jureckova K, Branska B, Sedlar K, Vasylkivska M, Provaznik I. Deeper below the surface-transcriptional changes in selected genes of Clostridium beijerinckii in response to butanol shock. Microbiologyopen 2020; 10:e1146. [PMID: 33319506 PMCID: PMC7884928 DOI: 10.1002/mbo3.1146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/04/2023] Open
Abstract
The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone–butanol–ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum‐sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.
Collapse
Affiliation(s)
- Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
20
|
Xu G, Xiao L, Wu A, Han R, Ni Y. Enhancing n-Butanol Tolerance of Escherichia coli by Overexpressing of Stress-Responsive Molecular Chaperones. Appl Biochem Biotechnol 2020; 193:257-270. [PMID: 32929579 DOI: 10.1007/s12010-020-03417-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Microbial tolerance to organic solvents is critical for efficient production of biofuels. In this study, n-butanol tolerance of Escherichia coli JM109 was improved by overexpressing of genes encoding stress-responsive small RNA-regulator, RNA chaperone, and molecular chaperone. Gene rpoS, coding for sigma S subunit of RNA polymerase, was the most efficient in improving n-butanol tolerance of E. coli. The highest OD600 and the specific growth rate of JM109/pQE80L-rpoS reached 1.692 and 0.144 h-1 respectively at 1.0% (v/v) n-butanol. Double and triple expression of molecular chaperones rpoS, secB, and groS were conducted and optimized. Recombinant strains JM109/pQE80L-secB-rpoS and JM109/pQE80L-groS-secB-rpoS exhibited the highest n-butanol tolerance, with specific growth rates of 0.164 and 0.165 h-1, respectively. Membrane integrity, potentials, and cell morphology analyses demonstrated the high viability of JM109/pQE80L-groS-secB-rpoS. This study provides guidance on employing various molecular chaperones for enhancing the tolerance of E. coli against n-butanol.
Collapse
Affiliation(s)
- Guochao Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Lin Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Anning Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ruizhi Han
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Ye Ni
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
21
|
Degeneration of industrial bacteria caused by genetic instability. World J Microbiol Biotechnol 2020; 36:119. [DOI: 10.1007/s11274-020-02901-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
|
22
|
Genomics and transcriptomics analysis reveals the mechanism of isobutanol tolerance of a laboratory evolved Lactococcus lactis strain. Sci Rep 2020; 10:10850. [PMID: 32616741 PMCID: PMC7331579 DOI: 10.1038/s41598-020-67635-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Isobutanol, in spite of its significant superiority over ethanol as a biofuel, remains commercially non-viable due to the non-availability of a suitable chassis which can handle the solvent toxicity associated with its production. To meet this challenge, we chose Lactococcus lactis which is known for its ability to handle environmental stress and carried out Adaptive laboratory evolution (ALE) in a continuous stirred tank reactor (CSTR) to evolve an isobutanol tolerant strain. The strain was grown for more than 60 days (> 250 generations) while gradually increasing the selection pressure, i.e. isobutanol concentration, in the feed. This led to the evolution of a strain that had an exceptionally high tolerance of up to 40 g/l of isobutanol even though a scanning electron microscope (SEM) study as well as analysis of membrane potential revealed only minor changes in cellular morphology. Whole genome sequencing which was done to confirm the strain integrity also showed comparatively few mutations in the evolved strain. However, the criticality of these mutations was reflected in major changes that occurred in the transcriptome, where gene expression levels from a wide range of categories that involved membrane transport, amino acid metabolism, sugar uptake and cell wall synthesis were significantly altered. Analysing the synergistic effect of these changes that lead to the complex phenotype of isobutanol tolerance can help in the construction of better host platforms for isobutanol production.
Collapse
|
23
|
Zheng Y, Hu X, Jia Z, Bodelier PLE, Guo Z, Zhang Y, Li F, He P. Co-occurrence patterns among prokaryotes across an age gradient in pit mud of Chinese strong-flavor liquor. Can J Microbiol 2020; 66:495-504. [PMID: 32233983 DOI: 10.1139/cjm-2020-0012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is widely believed that the quality and characteristics of Chinese strong-flavor liquor (CSFL) are closely related to the age of the pit mud; CSFL produced from older pit mud tastes better. This study aimed to investigate the alteration and interaction of prokaryotic communities across an age gradient in pit mud. Prokaryotic microbes in different-aged pit mud (1, 6, and 10 years old) were analyzed by Illumina MiSeq sequencing of the 16S rRNA gene. Analysis of the 16S rRNA gene indicated that the prokaryotic community was significantly altered with pit mud age. There was a significant increase in the genera Methanosarcina, Methanobacterium, and Aminobacterium with increased age of pit mud, while the genus Lactobacillus showed a significant decreasing trend. Network analysis demonstrated that both synergetic co-occurrence and niche competition were dominated by 68 prokaryotic genera. These genera formed 10 hubs of co-occurrence patterns, mainly under the phyla Firmicutes, Euryarchaeota, and Bacteroidetes, playing important roles on ecosystem stability of the pit mud. Environmental variables (pH, NH4+, available P, available K, and Ca2+) correlated significantly with prokaryotic community assembly. The interaction of prokaryotic communities in the pit mud ecosystem and the relationship among prokaryotic communities and environmental factors contribute to the higher quality of the pit mud in older fermentation pits.
Collapse
Affiliation(s)
- Yan Zheng
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Xiaolong Hu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Paul L E Bodelier
- Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, the Netherlands
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, People's Republic of China
| | - Yong Zhang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Fangli Li
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan Province, People's Republic of China
| |
Collapse
|
24
|
Tanniche I, Collakova E, Denbow C, Senger RS. Characterizing metabolic stress-induced phenotypes of Synechocystis PCC6803 with Raman spectroscopy. PeerJ 2020; 8:e8535. [PMID: 32266110 PMCID: PMC7115747 DOI: 10.7717/peerj.8535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During their long evolution, Synechocystis sp. PCC6803 developed a remarkable capacity to acclimate to diverse environmental conditions. In this study, Raman spectroscopy and Raman chemometrics tools (RametrixTM) were employed to investigate the phenotypic changes in response to external stressors and correlate specific Raman bands with their corresponding biomolecules determined with widely used analytical methods. METHODS Synechocystis cells were grown in the presence of (i) acetate (7.5-30 mM), (ii) NaCl (50-150 mM) and (iii) limiting levels of MgSO4 (0-62.5 mM) in BG-11 media. Principal component analysis (PCA) and discriminant analysis of PCs (DAPC) were performed with the RametrixTM LITE Toolbox for MATLABⓇ. Next, validation of these models was realized via RametrixTM PRO Toolbox where prediction of accuracy, sensitivity, and specificity for an unknown Raman spectrum was calculated. These analyses were coupled with statistical tests (ANOVA and pairwise comparison) to determine statistically significant changes in the phenotypic responses. Finally, amino acid and fatty acid levels were measured with well-established analytical methods. The obtained data were correlated with previously established Raman bands assigned to these biomolecules. RESULTS Distinguishable clusters representative of phenotypic responses were observed based on the external stimuli (i.e., acetate, NaCl, MgSO4, and controls grown on BG-11 medium) or its concentration when analyzing separately. For all these cases, RametrixTM PRO was able to predict efficiently the corresponding concentration in the culture media for an unknown Raman spectra with accuracy, sensitivity and specificity exceeding random chance. Finally, correlations (R > 0.7) were observed for all amino acids and fatty acids between well-established analytical methods and Raman bands.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Eva Collakova
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Cynthia Denbow
- School of Plant & Environmental Sciences, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
25
|
Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4. J Ind Microbiol Biotechnol 2020; 47:319-328. [PMID: 32103460 DOI: 10.1007/s10295-020-02266-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 12/15/2022]
Abstract
Clostridium saccharoperbutylacetonicum N1-4 (Csa) is a historically significant anaerobic bacterium which can perform saccharolytic fermentations to produce acetone, butanol, and ethanol (ABE). Recent genomic analyses have highlighted this organism's potential to produce polyketide and nonribosomal peptide secondary metabolites, but little is known regarding the identity and function of these metabolites. This study provides a detailed bioinformatic analysis of seven biosynthetic gene clusters (BGCs) present in the Csa genome that are predicted to produce polyketides/nonribosomal peptides. An RNA-seq-based untargeted transcriptomic approach revealed that five of seven BGCs were expressed during ABE fermentation. Additional characterization of a highly expressed nonribosomal peptide synthetase gene led to the discovery of its associated metabolite and its biosynthetic pathway. Transcriptomic analysis suggested an association of this nonribosomal peptide synthetase gene with butanol tolerance, which was supported by butanol challenge assays.
Collapse
|
26
|
Ebrahimi E, Amiri H, Asadollahi MA, Shojaosadati SA. Efficient butanol production under aerobic conditions by coculture of
Clostridium acetobutylicum
and
Nesterenkonia
sp. strain F. Biotechnol Bioeng 2019; 117:392-405. [DOI: 10.1002/bit.27221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/23/2019] [Accepted: 11/03/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Ehsan Ebrahimi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | - Mohammad A. Asadollahi
- Department of Biotechnology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahan Iran
- Environmental Research Institute, Department of Environmental BiotechnologyUniversity of IsfahanIsfahan Iran
| | | |
Collapse
|
27
|
Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, Patakova P. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS One 2019; 14:e0224560. [PMID: 31697692 PMCID: PMC6837493 DOI: 10.1371/journal.pone.0224560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain Clostridium beijerinckii NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of C. beijerinckii NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic Clostridium and may be used in the selection of individual genes for further research.
Collapse
Affiliation(s)
- Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- * E-mail:
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
28
|
Zhang T, Shi XC, Xia Y, Mai L, Tremblay PL. Escherichia coli adaptation and response to exposure to heavy atmospheric pollution. Sci Rep 2019; 9:10879. [PMID: 31350435 PMCID: PMC6659633 DOI: 10.1038/s41598-019-47427-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
90% of the world population is exposed to heavy atmospheric pollution. This is a major public health issue causing 7 million death each year. Air pollution comprises an array of pollutants such as particulate matters, ozone and carbon monoxide imposing a multifactorial stress on living cells. Here, Escherichia coli was used as model cell and adapted for 390 generations to atmospheric pollution to assess its long-term effects at the genetic, transcriptomic and physiological levels. Over this period, E. coli evolved to grow faster and acquired an adaptive mutation in rpoB, which encodes the RNA polymerase β subunit. Transcriptomic and biochemical characterization showed alteration of the cell membrane composition resulting in lesser permeability after the adaptation process. A second significant change in the cell wall structure of the adapted strain was the greater accumulation of the exopolysaccharides colanic acid and cellulose in the extracellular fraction. Results also indicated that amino acids homeostasis was involved in E. coli response to atmospheric pollutants. This study demonstrates that adaptive mutation with transformative physiological impact can be fixed in genome after exposure to atmospheric pollution and also provides a comprehensive portrait of the cellular response mechanisms involved.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China
| | - Xiao-Chen Shi
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China
| | - Yangyang Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, P.R. China
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, P.R. China
| | - Pier-Luc Tremblay
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, P.R. China. .,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, P.R. China.
| |
Collapse
|
29
|
Baumann-Dudenhoeffer AM, D'Souza AW, Tarr PI, Warner BB, Dantas G. Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes. Nat Med 2018; 24:1822-1829. [PMID: 30374198 PMCID: PMC6294307 DOI: 10.1038/s41591-018-0216-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Abstract
Commensal gut bacterial communities (microbiomes) are predicted to influence human health and disease1,2. Neonatal gut microbiomes are colonized with maternal and environmental flora and mature toward a stable composition over 2-3 years3,4. To study pre- and postnatal determinants of infant microbiome development, we analyzed 402 fecal metagenomes from 60 infants aged 0-8 months, using longitudinal generalized linear mixed models (GLMMs). Distinct microbiome signatures correlated with breastfeeding, formula ingredients, and maternal gestational weight gain (GWG). Amino acid synthesis pathway accretion in breastfed microbiomes complemented normative breastmilk composition. Prebiotic oligosaccharides, designed to promote breastfed-like microflora5, predicted functional pathways distinct from breastfed infant microbiomes. Soy formula in six infants was positively associated with Lachnospiraceae and pathways suggesting a short-chain fatty acid (SCFA)-rich environment, including glycerol to 1-butanol fermentation, which is potentially dysbiotic. GWG correlated with altered carbohydrate degradation and enriched vitamin synthesis pathways. Maternal and postnatal antibiotics predicted microbiome alterations, while delivery route had no persistent effects. Domestic water source correlates suggest water may be an underappreciated determinant of microbiome acquisition. Clinically important microbial pathways with statistically significant dietary correlates included dysbiotic markers6,7, core enterotype features8, and synthesis pathways for enteroprotective9 and immunomodulatory10,11 metabolites, epigenetic mediators1, and developmentally critical vitamins12, warranting further investigation.
Collapse
Affiliation(s)
- Aimee M Baumann-Dudenhoeffer
- Division of Newborn Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
| | - Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Barbara B Warner
- Division of Newborn Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
30
|
Horinouchi T, Maeda T, Furusawa C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J Microbiol Biotechnol 2018; 34:157. [PMID: 30341456 PMCID: PMC6208762 DOI: 10.1007/s11274-018-2542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Microbes are capable of producing alcohols, making them an important source of alternative energy that can replace fossil fuels. However, these alcohols can be toxic to the microbes themselves, retaring or inhibiting cell growth and decreasing the production yield. One solution is improving the alcohol tolerance of such alcohol-producing organisms. Advances in omics technologies, including transcriptomic, proteomic, metabolomic, and genomic technologies, have helped us understand the complex mechanisms underlying alcohol toxicity, and such advances could assist in devising strategies for engineering alcohol-tolerant strains. This review highlights these advances and discusses strategies for improving alcohol tolerance using omics analyses.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tomoya Maeda
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
31
|
Ralston MT, Papoutsakis ET. RNAseq‐based transcriptome assembly of
Clostridium acetobutylicum
for functional genome annotation and discovery. AIChE J 2018. [DOI: 10.1002/aic.16396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matthew T. Ralston
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute University of Delaware Newark DE 19711
- Center for Bioinformatics and Computational Biology University of Delaware Newark DE 19711
| | - Eleftherios T. Papoutsakis
- Dept. of Chemical and Biomolecular Engineering University of Delaware Newark DE 19711
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute University of Delaware Newark DE 19711
| |
Collapse
|
32
|
Luo J, Song Z, Ning J, Cheng Y, Wang Y, Cui F, Shen Y, Wang M. The ethanol-induced global alteration in Arthrobacter simplex and its mutants with enhanced ethanol tolerance. Appl Microbiol Biotechnol 2018; 102:9331-9350. [DOI: 10.1007/s00253-018-9301-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 08/03/2018] [Indexed: 11/27/2022]
|
33
|
Small and Low but Potent: the Complex Regulatory Role of the Small RNA SolB in Solventogenesis in Clostridium acetobutylicum. Appl Environ Microbiol 2018; 84:AEM.00597-18. [PMID: 29728392 DOI: 10.1128/aem.00597-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
The recently revived Clostridium acetobutylicum-based acetone-butanol-ethanol (ABE) fermentation is widely celebrated and studied for its impact on industrial biotechnology. C. acetobutylicum has been studied and engineered extensively, yet critical areas of the molecular basis for how solvent formation is regulated remain unresolved. The core solventogenic genes (adhE1/aad, ctfA, ctfB, and adc) are carried on the sol locus of the pSOL1 megaplasmid, whose loss leads to asporogenous, "degenerate" cells. The sol locus includes a noncoding small RNA (sRNA), SolB, whose role is presumed to be critical for solventogenesis but has eluded resolution. In the present study, SolB overexpression downregulated the sol-locus genes at the transcript level, resulting in attenuated protein expression and a solvent-deficient phenotype, thus suggesting that SolB affects expression of all sol-locus transcripts and seemingly validating its hypothesized role as a repressor. However, deletion of solB resulted in a total loss of acetone production and severe attenuation of butanol formation, with complex effects on sol-locus genes and proteins: it had a small impact on adc mRNA or its corresponding protein (acetoacetate decarboxylase) expression level, somewhat reduced adhE1 and ctfA-ctfB mRNA levels, and abolished the ctfA-ctfB-encoded coenzyme A transferase (CoAT) activity. Computational predictions support a model whereby SolB expressed at low levels enables the stabilization and translation of sol-locus transcripts to facilitate tuning of the production of various solvents depending on the prevailing culture conditions. A key predicted SolB target is the ribosome binding site (RBS) of the ctfA transcript, and this was verified by expressing variants of the ctfA-ctfB genes to demonstrate the importance of SolB for acetone formation.IMPORTANCE Small noncoding RNAs regulate many important metabolic and developmental programs in prokaryotes, but their role in anaerobes has been explored minimally. Regulation of solvent formation in the important industrial organism C. acetobutylicum remains incompletely understood. While the genes for solvent formation and their promoters are known, the means by which this organism tunes the ratios of key solvents, notably the butanol/acetone ratio to balance its electron resources, remains unknown. Significantly, the roles of several coding and noncoding genes in the sol locus in tuning the solvent formation ratios have not been explored. Here we show that the small RNA SolB fine-tunes the expression of solvents, with acetone formation being a key target, by regulating the translation of the acetone formation rate-limiting enzyme, the coenzyme A transferase (CoAT). It is notable that SolB expressed at very low levels enables CoAT translation, while at high, nonphysiological expression levels, it leads to degradation of the corresponding transcript.
Collapse
|
34
|
Improvement of butanol production by the development and co-culture of C. acetobutylicum TSH1 and B. cereus TSH2. Appl Microbiol Biotechnol 2018; 102:6753-6763. [DOI: 10.1007/s00253-018-9151-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 01/07/2023]
|
35
|
Chen X, Ma A, McDermaid A, Zhang H, Liu C, Cao H, Ma Q. RECTA: Regulon Identification Based on Comparative Genomics and Transcriptomics Analysis. Genes (Basel) 2018; 9:genes9060278. [PMID: 29849014 PMCID: PMC6027394 DOI: 10.3390/genes9060278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Regulons, which serve as co-regulated gene groups contributing to the transcriptional regulation of microbial genomes, have the potential to aid in understanding of underlying regulatory mechanisms. In this study, we designed a novel computational pipeline, regulon identification based on comparative genomics and transcriptomics analysis (RECTA), for regulon prediction related to the gene regulatory network under certain conditions. To demonstrate the effectiveness of this tool, we implemented RECTA on Lactococcus lactis MG1363 data to elucidate acid-response regulons. A total of 51 regulons were identified, 14 of which have computational-verified significance. Among these 14 regulons, five of them were computationally predicted to be connected with acid stress response. Validated by literature, 33 genes in Lactococcus lactis MG1363 were found to have orthologous genes which were associated with six regulons. An acid response related regulatory network was constructed, involving two trans-membrane proteins, eight regulons (llrA, llrC, hllA, ccpA, NHP6A, rcfB, regulons #8 and #39), nine functional modules, and 33 genes with orthologous genes known to be associated with acid stress. The predicted response pathways could serve as promising candidates for better acid tolerance engineering in Lactococcus lactis. Our RECTA pipeline provides an effective way to construct a reliable gene regulatory network through regulon elucidation, and has strong application power and can be effectively applied to other bacterial genomes where the elucidation of the transcriptional regulation network is needed.
Collapse
Affiliation(s)
- Xin Chen
- Center for Applied Mathematics, Tianjin University, Tianjin 300072, China.
| | - Anjun Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Adam McDermaid
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| | - Hanyuan Zhang
- College of Computer Science and Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA.
| | - Chao Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan 250021, China.
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA.
| | - Qin Ma
- Bioinformatics and Mathematical Biosciences Lab, Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57006, USA.
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD 57006, USA.
| |
Collapse
|
36
|
Máté de Gérando H, Wasels F, Bisson A, Clement B, Bidard F, Jourdier E, López-Contreras AM, Lopes Ferreira N. Genome and transcriptome of the natural isopropanol producer Clostridium beijerinckii DSM6423. BMC Genomics 2018; 19:242. [PMID: 29636009 PMCID: PMC5894183 DOI: 10.1186/s12864-018-4636-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/28/2018] [Indexed: 12/23/2022] Open
Abstract
Background There is a worldwide interest for sustainable and environmentally-friendly ways to produce fuels and chemicals from renewable resources. Among them, the production of acetone, butanol and ethanol (ABE) or Isopropanol, Butanol and Ethanol (IBE) by anaerobic fermentation has already a long industrial history. Isopropanol has recently received a specific interest and the best studied natural isopropanol producer is C. beijerinckii DSM 6423 (NRRL B-593). This strain metabolizes sugars into a mix of IBE with only low concentrations of ethanol produced (< 1 g/L). However, despite its relative ancient discovery, few genomic details have been described for this strain. Research efforts including omics and genetic engineering approaches are therefore needed to enable the use of C. beijerinckii as a microbial cell factory for production of isopropanol. Results The complete genome sequence and a first transcriptome analysis of C. beijerinckii DSM 6423 are described in this manuscript. The combination of MiSeq and de novo PacBio sequencing revealed a 6.38 Mbp chromosome containing 6254 genomic objects. Three Mobile Genetic Elements (MGE) were also detected: a linear double stranded DNA bacteriophage (ϕ6423) and two plasmids (pNF1 and pNF2) highlighting the genomic complexity of this strain. A first RNA-seq transcriptomic study was then performed on 3 independent glucose fermentations. Clustering analysis allowed us to detect some key gene clusters involved in the main life cycle steps (acidogenesis, solvantogenesis and sporulation) and differentially regulated among the fermentation. These putative clusters included some putative metabolic operons comparable to those found in other reference strains such as C. beijerinckii NCIMB 8052 or C. acetobutylicum ATCC 824. Interestingly, only one gene was encoding for an alcohol dehydrogenase converting acetone into isopropanol, suggesting a single genomic event occurred on this strain to produce isopropanol. Conclusions We present the full genome sequence of Clostridium beijerinckii DSM 6423, providing a complete genetic background of this strain. This offer a great opportunity for the development of dedicated genetic tools currently lacking for this strain. Moreover, a first RNA-seq analysis allow us to better understand the global metabolism of this natural isopropanol producer, opening the door to future targeted engineering approaches. Electronic supplementary material The online version of this article (10.1186/s12864-018-4636-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hadrien Máté de Gérando
- Wageningen Food and Biobased Research, Bornse Weilanden 9, 6709WG, Wageningen, The Netherlands.,IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - François Wasels
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Angélique Bisson
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Benjamin Clement
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | - Etienne Jourdier
- IFP Energies Nouvelles, 1 et 4 avenue de Bois-Préau, 92852, Rueil-Malmaison, France
| | | | | |
Collapse
|
37
|
Zhang R, Cao Y, Liu W, Xian M, Liu H. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microb Cell Fact 2017; 16:227. [PMID: 29258595 PMCID: PMC5735909 DOI: 10.1186/s12934-017-0839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022] Open
Abstract
Background Phloroglucinol is an important chemical which has been successfully produced by engineered Escherichia coli. However, the toxicity of phloroglucinol can enormously inhibit E. coli cell growth and viability, and the productivity is still too low and not economically feasible for industrial applications. Therefore, strain tolerance to toxic metabolites remains a key issue during the production of chemicals using biological processes. Results In the present work, we examined the impact of the native GroESL chaperone system with different overexpression levels on phloroglucinol tolerance and production in E. coli. The groESL gene was cloned into an expression vector, of which expression level was regulated by three different promoters (natural, tac and T7 promoter). Strain tolerance was evaluated employing viable cell counts and phloroglucinol production. In comparison with the control strain, all GroESL overexpressing strains showed good characteristics in cell viability and phloroglucinol synthesis. Strain which overexpressed GroESL under tac promoter was found to show the best tolerance in all of those tested, resulting in a 3.19-fold increase in viable cell numbers compared with control strain of agar-plate culture under the condition of 0.7 g/L phloroglucinol, and a 39.5% increase in phloroglucinol production under fed-batch fermentation. This engineered strain finally accumulated phloroglucinol up to 5.3 g/L in the fed-batch cultivation 10 h after induction, and the productivity was 0.53 g/L/h. To date, the highest phloroglucinol production was achieved in this work compared with the previous reports, which is promising to make the bioprocess feasible from the economical point. Conclusions The data show that appropriate expression level of GroESL plays a critical role in improving phloroglucinol tolerance and production in E. coli, and maybe involve in controlling some aspects of the stress response system through upregulation of GroESL. GroESL overexpression is therefore a feasible and efficient approach for improvement of E. coli tolerance. Electronic supplementary material The online version of this article (10.1186/s12934-017-0839-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wei Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
38
|
Tomko TA, Dunlop MJ. Expression of Heterologous Sigma Factor Expands the Searchable Space for Biofuel Tolerance Mechanisms. ACS Synth Biol 2017; 6:1343-1350. [PMID: 28319371 DOI: 10.1021/acssynbio.6b00375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microorganisms can produce hydrocarbons that can serve as replacements or additions to conventional liquid fuels for use in the transportation sector. However, a common problem in the microbial synthesis of biofuels is that these compounds often have toxic effects on the cell. In this study, we focused on mitigating the toxicity of the biojet fuel precursor pinene on Escherichia coli. We used genomic DNA from Pseudomonas putida KT2440, which has innate solvent-tolerance properties, to create transgenic libraries in an E. coli host. We exposed cells containing the library to pinene, selecting for genes that improved tolerance. Importantly, we found that expressing the sigma factor RpoD from P. putida greatly expanded the diversity of tolerance genes recovered. With low expression of rpoDP.putida, we isolated a single pinene tolerance gene; with increased expression of the sigma factor our selection experiments returned multiple distinct tolerance mechanisms, including some that have been previously documented and also new mechanisms. Interestingly, high levels of rpoDP.putida induction resulted in decreased diversity. We found that the tolerance levels provided by some genes are highly sensitive to the level of induction of rpoDP.putida, while others provide tolerance across a wide range of rpoDP.putida levels. This method for unlocking diversity in tolerance screening using heterologous sigma factor expression was applicable to both plasmid and fosmid-based transgenic libraries. These results suggest that by controlling the expression of appropriate heterologous sigma factors, we can greatly increase the searchable genomic space within transgenic libraries.
Collapse
Affiliation(s)
- Timothy A. Tomko
- College
of Engineering and Mathematical Sciences, University of Vermont, 33 Colchester Avenue, Burlington, Vermont 05405, United States
| | - Mary J. Dunlop
- College
of Engineering and Mathematical Sciences, University of Vermont, 33 Colchester Avenue, Burlington, Vermont 05405, United States
- Biomedical
Engineering Department, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
39
|
A New Player in the Biorefineries Field: Phasin PhaP Enhances Tolerance to Solvents and Boosts Ethanol and 1,3-Propanediol Synthesis in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.00662-17. [PMID: 28476770 DOI: 10.1128/aem.00662-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
The microbial production of biofuels and other added-value chemicals is often limited by the intrinsic toxicity of these compounds. The phasin PhaP from the soil bacterium Azotobacter sp. strain FA8 is a polyhydroxyalkanoate granule-associated protein that protects recombinant Escherichia coli against several kinds of stress. PhaP enhances growth and poly(3-hydroxybutyrate) synthesis in polymer-producing recombinant strains and reduces the formation of inclusion bodies during overproduction of heterologous proteins. In this work, the heterologous expression of this phasin in E. coli was used as a strategy to increase tolerance to several biotechnologically relevant chemicals. PhaP was observed to enhance bacterial fitness in the presence of biofuels, such as ethanol and butanol, and other chemicals, such as 1,3-propanediol. The effect of PhaP was also studied in a groELS mutant strain, in which both GroELS and PhaP were observed to exert a beneficial effect that varied depending on the chemical tested. Lastly, the potential of PhaP and GroEL to enhance the accumulation of ethanol or 1,3-propanediol was analyzed in recombinant E. coli Strains that overexpressed either groEL or phaP had increased growth, reflected in a higher final biomass and product titer than the control strain. Taken together, these results add a novel application to the already multifaceted phasin protein group, suggesting that expression of these proteins or other chaperones can be used to improve the production of biofuels and other chemicals.IMPORTANCE This work has both basic and applied aspects. Our results demonstrate that a phasin with chaperone-like properties can increase bacterial tolerance to several biochemicals, providing further evidence of the diverse properties of these proteins. Additionally, both the PhaP phasin and the well-known chaperone GroEL were used to increase the biosynthesis of the biotechnologically relevant compounds ethanol and 1,3-propanediol in recombinant E. coli These findings open the road for the use of these proteins for the manipulation of bacterial strains to optimize the synthesis of diverse bioproducts from renewable carbon sources.
Collapse
|
40
|
Selby K, Mascher G, Somervuo P, Lindström M, Korkeala H. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502. PLoS One 2017; 12:e0176944. [PMID: 28464023 PMCID: PMC5413062 DOI: 10.1371/journal.pone.0176944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/19/2017] [Indexed: 12/11/2022] Open
Abstract
Foodborne pathogenic bacteria are exposed to a number of environmental stresses during food processing, storage, and preparation, and in the human body. In order to improve the safety of food, the understanding of molecular stress response mechanisms foodborne pathogens employ is essential. Many response mechanisms that are activated during heat shock may cross-protect bacteria against other environmental stresses. To better understand the molecular mechanisms Clostridium botulinum, the causative agent of botulism, utilizes during acute heat stress and during adaptation to stressfully high temperature, the C. botulinum Group I strain ATCC 3502 was grown in continuous culture at 39°C and exposed to heat shock at 45°C, followed by prolonged heat stress at 45°C to allow adaptation of the culture to the high temperature. Growth in continuous culture was performed to exclude secondary growth phase effects or other environmental impacts on bacterial gene transcription. Changes in global gene expression profiles were studied using DNA microarray hybridization. During acute heat stress, Class I and III heat shock genes as well as members of the SOS regulon were activated. The neurotoxin gene botA and genes encoding the neurotoxin-associated proteins were suppressed throughout the study. Prolonged heat stress led to suppression of the sporulation machinery whereas genes related to chemotaxis and motility were activated. Induced expression of a large proportion of prophage genes was detected, suggesting an important role of acquired genes in the stress resistance of C. botulinum. Finally, changes in the expression of a large number of genes related to carbohydrate and amino acid metabolism indicated remodeling of the cellular metabolism.
Collapse
Affiliation(s)
- Katja Selby
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gerald Mascher
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Panu Somervuo
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Luo H, Zeng Q, Han S, Wang Z, Dong Q, Bi Y, Zhao Y. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition. World J Microbiol Biotechnol 2017; 33:76. [PMID: 28337710 DOI: 10.1007/s11274-017-2246-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/15/2017] [Indexed: 01/22/2023]
Abstract
Butanol is not only an important chemical intermediate and solvent in pharmaceutical and cosmetics industries, but also considered as an advanced biofuel. Although species of the natural host Clostridium have been engineered, butanol titers in the anaerobe seem to be limited by its intolerance to butanol less than 13 g/L. Here we aimed to develop a technology for enhancing butanol production by a co-culture system with butyrate fermentative supernatant addition. First, when adding 4.0 g/L butyrate into the acetone-butanol-ethanol (ABE) fermentation broth with single-shot at 24 h, the "acid crash" phenomenon occurred and the ABE fermentation performance deteriorated. Subsequently, we found that adding certain amino acids could effectively enhance butyrate re-assimilation, butanol tolerance and titer (from 11.1 to 14.8 g/L). Additionally, in order to decrease the raw material cost, butyrate fermentative supernatant produced by Clostridium tyrobutyricum was applied to butanol production in the Clostridium acetobutylicum/Saccharomyces cerevisiae co-culture system, instead of adding synthetic butyrate. Final butanol and total ABE concentrations reached higher levels of 16.3 and 24.8 g/L with increments of 46.8 and 37.8%, respectively. These results show that the proposed fermentation strategy has great potential for efficiently butanol production with an economic approach.
Collapse
Affiliation(s)
- Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Qingwei Zeng
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuo Han
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qing Dong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| |
Collapse
|
42
|
Blumer-Schuette SE, Zurawski JV, Conway JM, Khatibi P, Lewis DL, Li Q, Chiang VL, Kelly RM. Caldicellulosiruptor saccharolyticus transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microb Biotechnol 2017; 10:1546-1557. [PMID: 28322023 PMCID: PMC5658599 DOI: 10.1111/1751-7915.12494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022] Open
Abstract
Recalcitrance of plant biomass is a major barrier for commercially feasible cellulosic biofuel production. Chemical and enzymatic assays have been developed to measure recalcitrance and carbohydrate composition; however, none of these assays can directly report which polysaccharides a candidate microbe will sense during growth on these substrates. Here, we propose using the transcriptomic response of the plant biomass‐deconstructing microbe, Caldicellulosiruptor saccharolyticus, as a direct measure of how suitable a sample of plant biomass may be for fermentation based on the bioavailability of polysaccharides. Key genes were identified using the global gene response of the microbe to model plant polysaccharides and various types of unpretreated, chemically pretreated and genetically modified plant biomass. While the majority of C. saccharolyticus genes responding were similar between plant biomasses; subtle differences were discernable, most importantly between chemically pretreated or genetically modified biomass that both exhibit similar levels of solubilization by the microbe. Furthermore, the results here present a new paradigm for assessing plant–microbe interactions that can be deployed as a biological assay to report on the complexity and recalcitrance of plant biomass.
Collapse
Affiliation(s)
- Sara E Blumer-Schuette
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jeffrey V Zurawski
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Piyum Khatibi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Derrick L Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Vincent L Chiang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
43
|
Mathematical modelling of clostridial acetone-butanol-ethanol fermentation. Appl Microbiol Biotechnol 2017; 101:2251-2271. [PMID: 28210797 PMCID: PMC5320022 DOI: 10.1007/s00253-017-8137-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/14/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
Abstract
Clostridial acetone-butanol-ethanol (ABE) fermentation features a remarkable shift in the cellular metabolic activity from acid formation, acidogenesis, to the production of industrial-relevant solvents, solventogensis. In recent decades, mathematical models have been employed to elucidate the complex interlinked regulation and conditions that determine these two distinct metabolic states and govern the transition between them. In this review, we discuss these models with a focus on the mechanisms controlling intra- and extracellular changes between acidogenesis and solventogenesis. In particular, we critically evaluate underlying model assumptions and predictions in the light of current experimental knowledge. Towards this end, we briefly introduce key ideas and assumptions applied in the discussed modelling approaches, but waive a comprehensive mathematical presentation. We distinguish between structural and dynamical models, which will be discussed in their chronological order to illustrate how new biological information facilitates the ‘evolution’ of mathematical models. Mathematical models and their analysis have significantly contributed to our knowledge of ABE fermentation and the underlying regulatory network which spans all levels of biological organization. However, the ties between the different levels of cellular regulation are not well understood. Furthermore, contradictory experimental and theoretical results challenge our current notion of ABE metabolic network structure. Thus, clostridial ABE fermentation still poses theoretical as well as experimental challenges which are best approached in close collaboration between modellers and experimentalists.
Collapse
|
44
|
Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis. PLoS One 2017; 12:e0170406. [PMID: 28118386 PMCID: PMC5261816 DOI: 10.1371/journal.pone.0170406] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
The acetogen Clostridium ljungdahlii is capable of syngas fermentation and microbial electrosynthesis. Biofilm formation could benefit both these applications, but was not yet reported for C. ljungdahlii. Biofilm formation does not occur under standard growth conditions, but attachment or aggregation could be induced by different stresses. The strongest biofilm formation was observed with the addition of sodium chloride. After 3 days of incubation, the biomass volume attached to a plastic surface was 20 times higher with than without the addition of 200 mM NaCl to the medium. The addition of NaCl also resulted in biofilm formation on glass, graphite and glassy carbon, the latter two being often used electrode materials for microbial electrosynthesis. Biofilms were composed of extracellular proteins, polysaccharides, as well as DNA, while pilus-like appendages were observed with, but not without, the addition of NaCl. A transcriptome analysis comparing planktonic (no NaCl) and biofilm (NaCl addition) cells showed that C. ljungdahlii coped with the salt stress by the upregulation of the general stress response, Na+ export and osmoprotectant accumulation. A potential role for poly-N-acetylglucosamines and D-alanine in biofilm formation was found. Flagellar motility was downregulated, while putative type IV pili biosynthesis genes were not expressed. Moreover, the gene expression analysis suggested the involvement of the transcriptional regulators LexA, Spo0A and CcpA in stress response and biofilm formation. This study showed that NaCl addition might be a valuable strategy to induce biofilm formation by C. ljungdahlii, which can improve the efficacy of syngas fermentation and microbial electrosynthesis applications.
Collapse
|
45
|
Abstract
An operon comprising two genes, CA_P0037 and CA_P0036, that encode proteins of unknown function that were previously shown to be highly expressed in acidogenic cells and repressed in solventogenic and alcohologenic cells is located on the pSOL1 megaplasmid of Clostridium acetobutylicum upstream of adhE2 A CA_P0037::int (189/190s) mutant in which an intron was inserted at position 189/190 in the sense strand of CA_P0037 was successfully generated by the Targetron technique. The resultant mutant showed significantly different metabolic flux patterns in acidogenic (producing mainly lactate, butyrate, and butanol) and alcohologenic (producing mainly butyrate, acetate, and lactate) chemostat cultures but not in solventogenic or batch cultures. Transcriptomic investigation of the CA_P0037::int (189/190s) mutant showed that inactivation of CA_P0037 significantly affected the expression of more than 258 genes under acidogenic conditions. Surprisingly, genes belonging to the Fur regulon, involved in iron transport (CA_C1029-CA_C1032), or coding for the main flavodoxin (CA_C0587) were the most significantly expressed genes under all conditions, whereas fur (coding for the ferric uptake regulator) gene expression remained unchanged. Furthermore, most of the genes of the Rex regulon, such as the adhE2 and ldhA genes, and of the PerR regulon, such as rbr3A-rbr3B and dfx, were overexpressed in the mutant. In addition, the whole CA_P0037-CA_P0036 operon was highly expressed under all conditions in the CA_P0037::int (189/190s) mutant, suggesting a self-regulated expression mechanism. Cap0037 was shown to bind to the CA_P0037-CA_P0036 operon, sol operon, and adc promoters, and the binding sites were determined by DNA footprinting. Finally, a putative Cap0037 regulon was generated using a bioinformatic approach. IMPORTANCE Clostridium acetobutylicum is well-known for its ability to produce solvents, especially n-butanol. Understanding the regulatory network of C. acetobutylicum will be crucial for further engineering to obtain a strain capable of producing n-butanol at high yield and selectivity. This study has discovered that the Cap0037 protein is a novel regulator of C. acetobutylicum that drastically affects metabolism under both acidogenic and alcohologenic fermentation conditions. This is pioneering work for further determining the regulatory mechanism of Cap0037 in C. acetobutylicum and studying the role of proteins homologous to Cap0037 in other members of the phylum Firmicutes.
Collapse
|
46
|
Transcriptomic Responses of the Interactions between Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009 in a Cellulose-Grown Coculture for Enhanced Hydrogen Production. Appl Environ Microbiol 2016; 82:4546-4559. [PMID: 27208134 DOI: 10.1128/aem.00789-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Coculturing dark- and photofermentative bacteria is a promising strategy for enhanced hydrogen (H2) production. In this study, next-generation sequencing was used to query the global transcriptomic responses of an artificial coculture of Clostridium cellulovorans 743B and Rhodopseudomonas palustris CGA009. By analyzing differentially regulated gene expression, we showed that, consistent with the physiological observations of enhanced H2 production and cellulose degradation, the nitrogen fixation genes in R. palustris and the cellulosomal genes in C. cellulovorans were upregulated in cocultures. Unexpectedly, genes related to H2 production in C. cellulovorans were downregulated, suggesting that the enhanced H2 yield was contributed mainly by R. palustris A number of genes related to biosynthesis of volatile fatty acids (VFAs) in C. cellulovorans were upregulated, and correspondingly, a gene that mediates organic compound catabolism in R. palustris was also upregulated. Interestingly, a number of genes responsible for chemotaxis in R. palustris were upregulated, which might be elicited by the VFA concentration gradient created by C. cellulovorans In addition, genes responsible for sulfur and thiamine metabolism in C. cellulovorans were downregulated in cocultures, and this could be due to a response to pH changes. A conceptual model illustrating the interactions between the two organisms was constructed based on the transcriptomic results. IMPORTANCE The findings of this study have important biotechnology applications for biohydrogen production using renewable cellulose, which is an industrially and economically important bioenergy process. Since the molecular characteristics of the interactions of a coculture when cellulose is the substrate are still unclear, this work will be of interest to microbiologists seeking to better understand and optimize hydrogen-producing coculture systems.
Collapse
|
47
|
Sandoval NR, Papoutsakis ET. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: Beyond solo genes. Curr Opin Microbiol 2016; 33:56-66. [PMID: 27376665 DOI: 10.1016/j.mib.2016.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Metabolite toxicity in microbes, particularly at the membrane, remains a bottleneck in the production of fuels and chemicals. Under chemical stress, native adaptation mechanisms combat hyper-fluidization by modifying the phospholipids in the membrane. Recent work in fluxomics reveals the mechanism of how membrane damage negatively affects energy metabolism while lipidomic and transcriptomic analyses show that strains evolved to be tolerant maintain membrane fluidity under stress through a variety of mechanisms such as incorporation of cyclopropanated fatty acids, trans-unsaturated fatty acids, and upregulation of cell wall biosynthesis genes. Engineered strains with modifications made in the biosynthesis of fatty acids, peptidoglycan, and lipopolysaccharide have shown increased tolerance to exogenous stress as well as increased production of desired metabolites of industrial importance. We review recent advances in elucidation of mechanisms or toxicity and tolerance as well as efforts to engineer the bacterial membrane and cell wall.
Collapse
Affiliation(s)
- Nicholas R Sandoval
- Department of Chemical and Biomolecular Engineering, Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
48
|
Gérando HMD, Fayolle-Guichard F, Rudant L, Millah SK, Monot F, Lopes Ferreira N, López-Contreras AM. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling. Appl Microbiol Biotechnol 2016; 100:5427-36. [PMID: 26852409 PMCID: PMC4875934 DOI: 10.1007/s00253-016-7302-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 12/26/2022]
Abstract
Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.
Collapse
Affiliation(s)
- H Máté de Gérando
- Food and Biobased Research Wageningen UR, Wageningen, the Netherlands
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - F Fayolle-Guichard
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - L Rudant
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - S K Millah
- Food and Biobased Research Wageningen UR, Wageningen, the Netherlands
| | - F Monot
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France
| | - N Lopes Ferreira
- Biotechnology Department, IFP Energies nouvelles, Rueil-Malmaison, France.
| | | |
Collapse
|
49
|
Illuminating Anaerobic Microbial Community and Cooccurrence Patterns across a Quality Gradient in Chinese Liquor Fermentation Pit Muds. Appl Environ Microbiol 2016; 82:2506-15. [PMID: 26896127 DOI: 10.1128/aem.03409-15] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/05/2016] [Indexed: 11/20/2022] Open
Abstract
Fermentation pit mud, an important reservoir of diverse anaerobic microorganisms, is essential for Chinese strong-aroma liquor production. Pit mud quality, according to its sensory characteristics, can be divided into three grades: degraded, normal, and high quality. However, the relationship between pit mud microbial community and pit mud quality is poorly understood, as are microbial associations within the pit mud ecosystem. Here, microbial communities at these grades were compared using Illumina MiSeq sequencing of the variable region V4 of the 16S rRNA gene. Our results revealed that the pit mud microbial community was correlated with its quality and environmental factors. Species richness, biodiversity, and relative and/or absolute abundances of Clostridia,Clostridium kluyveri, Bacteroidia, and Methanobacteria significantly increased, with corresponding increases in levels of pH, NH4 (+), and available phosphorus, from degraded to high-quality pit muds, while levels of Lactobacillus, dissolved organic carbon, and lactate significantly decreased, with normal samples in between. Furthermore, 271 pairs of significant and robust correlations (cooccurrence and negative) were identified from 76 genera using network analysis. Thirteen hubs of cooccurrence patterns, mainly under the Clostridia,Bacteroidia,Methanobacteria, and Methanomicrobia, may play important roles in pit mud ecosystem stability, which may be destroyed with rapidly increased levels of lactic acid bacteria (Lactobacillus,Pediococcus, and Streptococcus). This study may help clarify the relationships among microbial community, environmental conditions, and pit mud quality, allow the improvement of pit mud quality by using bioaugmentation and controlling environmental factors, and shed more light on the ecological rules guiding community assembly in pit mud.
Collapse
|
50
|
Jones AJ, Venkataramanan KP, Papoutsakis T. Overexpression of two stress-responsive, small, non-coding RNAs, 6S and tmRNA, imparts butanol tolerance in Clostridium acetobutylicum. FEMS Microbiol Lett 2016; 363:fnw063. [PMID: 26989157 DOI: 10.1093/femsle/fnw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/25/2022] Open
Abstract
While extensively studied in several model organisms, the role of small, non-coding RNAs in the stress response remains largely unexplored in Clostridium organisms. About 100 years after the first industrial Acetone-Butanol-Ethanol fermentation process, based on the Weizmann Clostridium acetobutylicum strain, strain tolerance to butanol remains a crucial factor limiting the economics of the process. Several studies have examined the response of this organism to metabolite stress, and several genes have been engaged to impart enhanced tolerance, but no sRNAs have yet been directly engaged in this task. We show that the two stress-responsive sRNAs, 6S and tmRNA, upon overexpression impart tolerance to butanol as assessed by viability assays under process-relevant conditions. 6S overexpression enhances cell densities as well as butanol titres. We discuss the likely mechanisms that these two sRNAs might engage in this tolerance phenotype. Our data support the continued exploration of sRNAs as a basis for engineering enhanced tolerance and enhanced solvent production, especially because sRNA-based strategies impose a minimal metabolic burden on the cells.
Collapse
Affiliation(s)
- Alexander J Jones
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Keerthi P Venkataramanan
- Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| | - Terry Papoutsakis
- Department of Biological Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Molecular Biotechnology Laboratory, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA Department of Chemical and Biomolecular Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|